
Relieving the Parameterized Coverage Headache
Christine Lovett, Bryan Ramirez, Stacey Secatch

Xilinx, Inc.
3100 Logic Dr.

Longmont, CO 80503
cristi.lovett@xilinx.com , byran.ramirez@xilinx.com,

stacey.secatch@xilinx.com

Michael Horn
Mentor Graphics, Corp.

1811 Pike Rd.
Longmont, CO 80501

mike_horn@mentor.com

Abstract— Modern FPGA and ASIC verification environments
use coverage metrics to help determine how thorough the
verification effort has been. Practices for creating, collecting,
merging and analyzing this coverage information are well
documented for designs that operate in a single configuration
only. However, complications arise when parameters are
introduced into the design, especially when creating customizable
IP.

This paper will discuss the coverage-related pitfalls and solutions
when dealing with parameterized designs.

Keywords UVM, OVM, SystemVerilog, parameters, coverage,
coverage closure, verification methodology, testbench, intellectual
property (IP) cores

I. INTRODUCTION
Code reuse is increasingly common, mostly because it helps

to make engineers more productive. Through reuse it is
possible to use a single code base tuned to specific
requirements in lieu of maintaining multiple code bases. A
standard ASIC technique is to use strap signals along with
register programming at the start of operation to generate a
customized configuration. Designs on programmable fabric can
take this one step further. The downloadable netlist can be
configured by the use of parameters, which optimizes away
unneeded logic at synthesis time. IP providers use this
technique to generate optimized netlists for every customer
with a single infrastructure.

The addition of parameters increases complexity compared
to a non-parameterized design, but working from one code base
instead of multiple customized solutions generally makes this
complexity well worth it. However, compared to working on a
single static configuration, verifying designs over a range of
parameterizations can greatly increase the coverage space and,
consequently, the effort required to reach coverage closure. The
problem is compounded as the number of modifiable
parameters increases. In this paper, functional coverage of the
parameter space will be referred to as “parameter coverage”
and coverage of variable constants with functional coverage
will be referred to as “parameterized coverage.” Parameter
coverage appears to be just another coverage metric, except
that it needs to be closed in the compile/optimization phase of
simulation, instead of the run-time phase where normal
functional coverage is closed.

The Verilog Language Reference Manual (LRM) [1]
describes in straightforward terms how to write parameterized
Register Transfer Level (RTL). The addition of SystemVerilog
onto the Verilog standard has made the language more
powerful, allowing more advanced verification techniques to
be used in developing testbenches.

Gaps still exist when trying to verify a parameterizable
design within a SystemVerilog testbench, especially during the
coverage merge step. The SystemVerilog standard doesn’t
specify in detail how coverage is to be merged. For a design
with a single parameterization, normal verification techniques
generally lead to more or less normal merging of coverage.
However, for multiple parameterizations it’s not clear what
should be done when “constant” values in covergroups are no
longer so constant. Likewise, classes that are parameterized
with different values are now different types, and don’t appear
to be part of the same merge hierarchy.

Along with the new requirement of parameter coverage,
standard functional coverage metrics including coverage
groups, coverage properties, assertions, and code coverage are
still used. However, workarounds are needed to handle the non-
“constant” constant problem that parameters add to functional
coverage. This paper will focus on ways to make coverage
useable for a parameterized design.

A. Coverage for Reusable Code Bases
The parameterized coverage techniques described in this

paper developed as a result of Xilinx’s verification of its Serial
RapidIO (SRIO) Gen2 IP core. The Serial RapidIO protocol is
a serial standard supporting numerous line rates and multiple
link widths. The Xilinx SRIO Gen2 IP is highly configurable,
built to provide customers with flexibility while limiting the
resources required for each specific application. This
configuration is done with parameters, thus allowing the
synthesis tools to provide an optimized solution for every
design permutation. There are currently 77 parameters in the
design, which control everything from register defaults to the
existence of code to the changes in the protocol behavior or bus
widths.

The issues described in this paper may plague anyone
creating reusable designs. It was particularly important during
the development of the SRIO Gen2 IP to ensure the core was
tested to some degree across the various supported
permutations. However, this could also apply to anyone trying
to future-proof their designs by improving maintainability. Any

design that uses a single code base for multiple synthesized
netlists will find these techniques useful. The two most
common issues with coverage that arise from using parameters
are varying bus widths and generated code. As bus widths vary,
it makes it difficult to create meaningful coverage for the
current parameterization being targeted. Generated code is an
issue because code may or may not exist.

One of the problems with parameterized coverage is
determining when to merge a certain set of coverage and when
to keep it separate. Unfortunately, there are no clear rules
dictating when to merge and when not to. Merging coverage is
usually preferred as it enables quicker coverage closure.
However, before completing the merge, the user must evaluate
the goal of the coverage and determine if it must be kept
separate. Specific examples of this will be shown later in the
paper.

1) Parameter Coverage
In an ideal world, all parameters would be fully crossed

with each other to create parameter coverage, and then that
would also be completely crossed with all functional coverage.
This would ensure that each functional coverage item was
tested against each specific parameterization. As the coverage
space grows exponentially, and additional parameters or
parameter values are added, this comprehensive approach
quickly becomes infeasible. For example, if a design has two
parameters, each with two different values, crossing the
parameters would result in four different parameterizations,
which translates to four times the amount of functional
coverage. What happens if the design has more parameters?
Assume now the design has ten parameters, again with only
two possible values each. This would translate to 2^10 (1024)
different parameterizations. Closing on functional coverage is
often difficult enough, but it would take an unreasonable
amount of time if it had to be closed over 1000 times. Imagine
the problem if a design has 50 to 100 parameters with more
than two values for each parameter. The same techniques to
close functional coverage can be used to close parameter
coverage. The verification engineer crosses parameters that
interrelate just like regular functional coverage, leaving
parameters that don’t interfere with each other as stand-alone
coverpoints.

During coverage closure on one of the SRIO Gen2
testbenches, there were a set of parameters that were
particularly difficult to close by pure constrained random
techniques. The parameter coverage controlled what types of
transactions could be initiated and targeted on the user
interfaces and resulted in 512 unique parameterization crosses.
Relying solely on constrained random would have taken weeks
to close this coverage. Realizing this amount of time was
unacceptable, randomizations were directed to generate all 512
parameterizations, enabling coverage to be closed in a
weekend. Closing holes in parameter coverage is generally not
a difficult problem.

While closing the parameter coverage space is a
straightforward problem, crossing each point in that space with
the complete functional coverage space is not realistic.
Therefore, a different approach is needed. A couple of options
exist to ensure functional coverage is adequately achieved

relative to the various parameterizations. The first step is to
cover all parameter settings, but without crossing them. This
verifies that all parameter values have been tested. To further
validate the parameter coverage, only important parameters or
parameters that have a direct effect on another should be
crossed. Finally, specific functional coverage items should be
crossed with any parameters that affect that functionality.

2) Formal Verification with Parameterized IP
Formal verification is another popular technique that can be

used to close coverage on a design. Formal excels at arbitration
and other state-deep problems that are difficult to cover with
functional coverage. Additionally, most vendors provide static
checks that check for code liveness by locating dead code or
unhittable states in state machines that simplify code coverage
analysis.

However, parameterizable code is not currently a good fit
for this method. Normally, any design is constrained into a
specific configuration, and then functionality and code liveness
are mathematically proven for that mode. The process can then
be repeated if the constraints need to be changed for a different
configuration. However, for parameterized designs, every
possible permutation needs to be proven in order to get the
same level of confidence as is possible with a non-
parameterized design. Like parameter coverage, a subset of
parameter crosses can be made here, but with 77 parameters,
covering all the parameter interactions still expand the number
of configurations into a completely infeasible number.

While formal property checking is a poor fit for
parameterized code, formal liveness checks aren’t even
possible. One of the purposes of parameters is to have a
common code base for different functionalities. This means for
any given parameterization there will be dead code as
illustrated by the two examples in Fig. 1 below.

// Example 1: Explicitly declaring dead code
// using a generate statement
generate if (MODE11

 // Active when MODE1 is 1, dead code when
) begin

 // MODE1 is 0
end else begin
 // Active when MODE1 is 0, dead code when
 // MODE1 is 1
end

// Example 2: Implicit dead code using an
// if statement
always @(posedge clk) begin
 if (MODE1) begin
 // Dead code when parameter MODE1 is 0
 end else begin
 // Dead code when parameter MODE1 is 1
 end
end

Figure 1. Parameterized Dead Code

1 Design parameters will be written in all capital letters throughout

this paper.

II. PARAMETERS AND FUNCTIONAL COVERAGE
Even in the case of a single design configuration, functional

coverage requires a lot of time and effort to do correctly in the
case of a single design configuration. When parameters and a
parameterized design are factored into the equation, additional
considerations arise.

A. Parameters and SystemVerilog covergroups within classes
Any value in a coverage bin definition must be constant and

defined when the coverage group is constructed. Occasionally
these are literal values, but parameterized designs also require
parameter values in these definitions. Therefore, there needs to
be some way to get parameters down into coverage groups.

One way would be to declare a covergroup inside a
parameterized class and use the parameters of the parent class.
The biggest issue when dealing with parameterized classes is
that, as far as SystemVerilog is concerned, every different
parameterization of a class results in a different type. Unlike
class extensions, multiple parameterizations of a parameterized
class (specializations) are not compatible through
polymorphism[5]. The original class with default parameters
can’t be used as a handle as it still creates a unique default
specialization. As a result, coverage merging tools see different
types when they are trying to merge, and are unable to do so. If
a covergroup is defined within a parameterized class and
different simulations are run with coverage results saved out,
the coverage results contained within each parameterized class
instance will not be able to merge together.

Our preferred solution is to not define covergroups within a
parameterized class but rather in a non-parameterized class,
which is then instantiated within the parameterized parent
class. Two variations exist for passing parameter values to the
non-parameterized class:

1) Generalized solution for getting parameters into
covergroups

The first option, which works regardless of the
methodology used, is to pass parameter values from the
parameterized class as constructor arguments. This exposes the
information needed to collect useful coverage, but without
affecting post-simulation coverage merging. A simple example
of what this would look like in code is shown in Fig. 2

// The coverage_collector class contains all
// the coverage to be sampled from the
// my_agent class
class coverage_collector;
 int full_count; // Indicates fifo fullness

 covergroup cg_fifo_count(int fifo_depth2

 coverpoint (full_count) {
);

 bins empty = {0};
 bins in_use = {[1:fifo_depth-2]};
 bins full = {fifo_depth-1};
 }
 endgroup

 function new(int fifo_depth = 16);
 cg_fifo_count = new(fifo_depth);
 endfunction : new
 ...
endclass : coverage_collector

Figure 2. Parameter Passing Using New

In this example, arguments are added to the constructor
(one per parameter). Once this class is defined, then it could be
used in a parameterized class as shown in Fig. 3.
// my_agent instantiates the
// coverage_collector
class my_agent #(int FIFO_DEPTH = 16);
 coverage_collector coverage_col;
 ...

 function void build();
 coverage_col = new(.fifo_depth
 (FIFO_DEPTH));
 endfunction : build
 ...
endclass : my_agent

Figure 3. Parameterized Class Providing Parameters to Coverage Class

Fig. 4 below shows this example where my_agent is a
parameterized class passing FIFO_DEPTH through the
constructor to the coverage_collector. The coverage_collector
then passes this on to the covergroup cg_fifo_count.

my_agent

coverage_collector

cg_fifo_count

FIFO_DEPTH

fifo_depth

fifo_depth

Figure 4. Parameters passed through the heirarchy

By extending the constructor in the non-parameterized class,
parameters can be used to collect and affect coverage. This

2 Parameters which are passed as arguments to children or

covergroups will be denoted with the same parameter name, but in
lowercase letters.

technique is useful for simple cases and can easily be extended
to deal with multiple parameters. However, consider a real
world design such as SRIO where 77 parameters are used.
These parameters would have to be passed down through every
constructor, a tedious requirement that would make change
difficult.

2) Getting parameters into covergroups for a OVM/UVM
methodology

Our preferred solution for any OVM[6] or UVM[7] based
environment uses a variant of this technique that is easier to
maintain for a highly parameterizable design. An object should
be created containing all of the possible parameters for a
design. The object can also contain the parameter coverage for
the design, since all variables are present in one location. The
object is then placed into the configuration space, making it
available to any object anywhere in the object hierarchy. Note
that this means that some unnecessary parameters are in the
object; but this is overshadowed by the simplification of having
all parameters available in a common location. In the case
where large numbers of parameters are used, such as in SRIO,
using the parameter object provides an easy, reusable way to
get the parameter information to coverage classes.
Covergroups must be created in the constructor of their parent
class. However, since the parent class isn’t constructed until the
build phase, the configuration class is already available to the
covergroup when it is constructed inside the parent. This is not
a problem since the build phase is top down and has already
completed for the top level test which places the parameter
object into the configuration space. Using this variation, a
configuration object is created to hold the parameter values. An
example container is shown in Fig. 5 below.
// The param_containter class hold the values
// for all parameters in the design
class param_container extends uvm_object;
 `uvm_object_utils(param_container)

 // Data members to hold parameter values
 // Each parameter is set to a default value
 // these values are overwritten in the
 // parameterized test base when the object
 // is created.
 int fifo_depth = 16;
 // other parameter values
 ...

 // constructor, etc.
endclass : param_container

Figure 5. Parameter Container Class

The coverage_collector class then gets the parameter
container prior to constructing the covergroup as shown in Fig.
6. Note that the coverage object must still pass in every
parameter that is required.

// The coverage_collector class contains all
// the coverage to be sampled from the
// my_agent class
class coverage_collector
 extends uvm_subscriber #(transaction_class);

 function new(string name,
 uvm_component parent);
 param_container params;
 ...

 // Call into the configuration space
 // to get the FIFO_DEPTH value
 void’(uvm_config_db #(param_container)::
 get(this, ””,
 “param_container”,
 params));

 cg_fifo_count = new(params.fifo_depth);
 endfunction : new
 ...
endclass : coverage_collector

Figure 6. Parameter Passing Using the Configuration Space

This method for parameter access is shown in Fig. 7 below.

my_agent

coverage_collector

cg_fifo_count

FIFO_DEPTH

fifo_depth

param_container
fifo_depth

Figure 7. Parameter Accesses Using the Configuration Space

A single instance of the param_container class is created,
has its parameter values set and is then placed into the
configuration space in the UVM test. Using a configuration
coverage object to encapsulate parameters is described in the
DVCon 2011 paper “Parameters and OVM: Can’t They Just
Get Along” [3].

B. Class- versus Module- Based Coverage
When writing functional coverage, it is important to

determine where it should live within the test hierarchy. Two
options to consider are class- and module-based coverage.
Class-based coverage is when covergroups are defined within a
class such as a UVM subscriber. Module-based coverage has
covergroups defined within modules. The modules could be
standard RTL code, or SystemVerilog interfaces or modules
that are instantiated using bind statements. Note that
SystemVerilog requires cover properties and assert properties
to be located within modules. Regardless of where the coverage
is placed, tradeoffs must be considered when parameters are
involved.

1) Class-based Coverage
Protocol level coverage should be isolated within a

transaction class that is used across interfaces in a design.
Coverage for the protocol can then be reused across all
interfaces handling that transaction. Some examples of protocol
coverage for SRIO include packet types, valid byte sizes,
packet priorities, and other applicable packet fields.
Fortunately, protocol coverage should have no need for
parameterized code. All parameters should be isolated within
the layers around the coverage class as described above. In the
event the coverage class does require a parameter value,
workarounds are required in order to access those parameters,
such as the previously shown configuration object.

In order to write a covergroup covering a signal with a
parameterized width in a class, the minimum and maximum
values should be considered based on all possible
configurations and the bins must be appropriate for all
configurations. Some coverage is not possible for a given
configuration, which will result in run-time warnings.
However, all coverage will be closed over a full regression run.
The following example covers a counter which iterates though
packet identifiers (IDs) and verifies all IDs are used. The
ID_SIZE parameter is used to set the number of available IDs
to the 0 to 31 range when ID_SIZE=SMALL or the 0 to 63
range when ID_SIZE=LARGE. To save resources, the width
of the counter is parameterized to 5 or 6, respectively. If this
coverage was written in a single coverpoint, all bins could not
be covered in only one configuration. Once multiple ID_SIZE
values are merged, coverage could still be closed over the
complete solution space. In this case, two covergroups are
required in order to make sure all the values are seen in both
configurations since coverage cannot be disabled on a bin basis
due to restrictions in SystemVerilog. This could also be done
using cross coverage, but then many illegal bins would have to
be specified for ID_SIZE=SMALL and a value of 31 cannot be
grouped into multiple bin types. The cleanest solution is shown
in Fig. 8.
// Covering packet ID values within a class
// when packet_ids is a parameterized width
covergroup cg_packet_ids;
 cp_small_pid: coverpoint (packet_ids)
 iff (id_size == small) {
 bins min = {0};
 bins mid = {[1:30]};
 bins max = {31};
 }

 cp_large_pid: coverpoint (packet_ids)
 iff (id_size == large) {
 bins min = {0};
 bins mid = {[1:62]};
 bins max = {63};
 }
endgroup

Figure 8. Covering Packet IDs in a Class

2) Module-based Coverage
Verification of behavior that affects internal logic and is not

visible on an external bus level should be covered within a
module. The reason: higher level classes do not know or care

about these details. An example of this, which is seen
frequently in SRIO, is handshaking between internal modules
or across clock domains. When block A asserts a VALID flag,
VALID cannot deassert until a READY response is asserted
from block B back to block A. One required coverage point is
that a stall condition is seen where VALID is asserted without
the assertion of READY. This functionality is not visible on a
transaction level and should be written in the module to verify
this expected functionality occurs.

BLOCK BBLOCK A

VALID

READY

DATA

Figure 9. Handshaking Between Two Modules

Writing coverage within a module provides access to all
parameters in the module. This provides the benefit of being
able to write only valid coverage based on the current
configuration and the ability to merge coverage across modules
depending on vendor support. Merging across modules is
possible because a union of all coverage pieces may be
available (again, the merge algorithm is not defined in
SystemVerilog). In this case, when covering a parameterized
bus the width is known and the coverage can be written using
the parameters such that only valid bins are created. This
eliminates unnecessary warnings. The example in Fig. 10
below shows the same packet ID coverage described above, but
where the covergroup only contains valid bins based on the
ID_SIZE parameter. Since it is within a module, the generate
keyword is available to exploit.
// Covering packet ID values within a
// module when packet_ids is a parameterized
// width
generate if (ID_SIZE == SMALL) begin
 covergroup cg_packet_ids;
 cp_small_pid: coverpoint (packet_ids){
 bins min = {0};
 bins mid = {[1:30]};
 bins max = {31};
 }
 endgroup

end else if (ID_SIZE == LARGE) begin
 covergroup cg_packet_ids;
 cp_large_pid: coverpoint (packet_ids){
 bins min = {0};
 bins mid = {[1:62]};
 bins max = {63};
 }
 endgroup
end endgenerate

Figure 10. Covering Packet IDs in a Module

3) Placement Recommendation for coverage
Understanding the issues with both module and class

coverage can help determine where coverage should be located.
When covering protocol requirements, it is best to cover in a
class because this enables easy reuse of the coverage. The

reason: parameter workarounds aren’t required. Coverage of
implementation-specific design choices, independent of the
testbench, should be located in a module where it has access to
parameters and does not need to be reusable.

C. Use Cases for parameterized coverage classes
During development of the SRIO core, a range of problems

and limitations were seen with SystemVerilog when
covergroups needed to be parameter aware. The next group of
examples illustrates the basic set of problems and shows the
associated solutions.

1) Parameterized Number of Bins
One common deficiency is how to use parameterized values

as bins within a covergroup. In general, if a single maximum
value is used, a parameter can be inserted into the bin
definition. However, there is no clean way to code the coverage
if the parameter affects the number of desired bins. For
example, for a buffer structure, it is easy enough to specify full
and empty as coverage values. This can even be generalized to
any number of specific values, such as empty, quarter, half,
three-quarters and full. If the number of values to cover based
on the parameterized depth needs to be specified, there is no
clean way to do this within a single covergroup because the
number of values to cover is not known ahead of time. One
possible solution is to create a series of covergroups within a
generate block (for modules) or within the new function (for
classes) as demonstrated in Fig. 11.
// Break a collection of values into single
// values. Determine which values are
// active and new the correct groups
covergroup watermark(int value);
 coverpoint (curr_watermark) {
 bins hit = {value};
 }
endcovergroup

// Create a placeholder for the maximum
// possible values
watermark cg_watermark[MAX_DEPTH/16];

// Create a covergroup for each value
function new(string name,
 uvm_component parent);
 ...
 // Determine the depth from the
 // configuration object
 ...
 for (int ii3

 cg_watermark[ii] = new(ii*16);
 = 0; ii < depth/16; ii++) begin

 end
endfunction : new

Figure 11. Creating an Array of Covergroups for a Range of Values

3 Note the use of “ ii” for loop variables rather than “i”. The

amount of loops is very high in parameterized code. This coding
guideline simplifies searching for loop variable use within the code
since patterns like “ii”, “jj”, etc, are unlikely to be found within the
text. At the same time, variable patterns like “ii” keep it very clear

that the variable is loop-based rather than a signal-based.

Note that the solution to this problem (determining which
covergroups to construct), is very similar to the solution for the
ID_SIZE parameter example depicted above. Whenever
parameters dictate which bins are active, this solution can be
used.

2) Parameterized Bin Values
The SRIO core uses the AXI4-Streaming protocol for ports

and internal connections. A verification component is used for
every interface for improved reuse. While SRIO only has a
single bus width, the verification component is designed to be
valid for any possible configuration; bus widths may vary from
8 bits to 4096 bits. There is not a clean way to cover a range of
specific literal values when dealing with a variable width bus.
One requirement is to cover all possible combinations of the
byte enables where the enable bits are packed to the right.
These bins are easily coded for a constant width signal. For
example, a 32-bit bus would have bins of {4’b1111, 4’b0111,
4’b0011, 4’b0001} as valid byte_enables. Figures 12-15 show
the valid data bits in green for each of the valid byte_enable
values.

[31:24] [23:16] [15:8] [7:0]

Figure 12. Valid Data Bits When byte_enables is 4’b1111

[31:24] [23:16] [15:8] [7:0]

Figure 13. Valid Data Bits When byte_enables is 4’b0111

[31:24] [23:16] [15:8] [7:0]

Figure 14. Valid Data Bits When byte_enables is 4’b0011

[31:24] [23:16] [15:8] [7:0]

Figure 15. Valid Data Bits When byte_enables is 4’b0001

Coverage within the verification component needs to handle
up to 4096-bit data widths. The solution used for this is to
directly declare every possible value as shown in Fig. 16. The
tools will throw an elaboration warning for bins that are too
large and cover the rest normally. Unlike the packet ID
example above, the widths that are too large will never be
covered for a merged run since the bus width is known in
advance. This is not a coverage hole since the excess bins are
automatically removed because the literals are not possible
given the signal width being covered.

// cg_byte_enable_cov contains all the
// coverage to sample from the byte_enable
// signal
covergroup cg_byte_enable_cov;
 coverpoint (byte_enable) {
 bins align[width] = bins{2’b01,
 2’b11,
 4’b0111,
 4’b1111,
 ...
 512’b1111_1111…};
 }
 ...
endgroup

Figure 16. Variable Width Byte Enable Pattern Coverage

a) SystemVerilog Enhancements
Mantis 2506[4], which is targeted for IEEE 1800-2012, will

allow algorithmic bin generation once it is supported by
vendors. The current proposal includes an algorithmic function
on the left side of the bins statement. This will remove much of
the headache and overhead seen with this kind of coverage
need. Note that additional work will be needed to ensure that
coverage has been written correctly using this new method.
Rather than a list of easy to inspect literals, the bins are now the
output of a potentially complex function. This feature isn’t
only useful for parameterized designs. It also allows large or
complex covergroups to be coded short and succinctly as
shown in Fig. 17.
// cg_byte_enable_cov contains all the
// coverage to sample from the byte_enable
// signal
covergroup cg_byte_enable_cov(int width);
 coverpoint (byte_enable) {
 // Return type must be specified if the
 // bins returned are larger than an
 // integer. Since the return type is
 // passed on the configuration, the max
 // possible width must be used. For this
 // protocol, MAX_WIDTH = 4096/8
 function [MAX_WIDTH-1:0]
 left_align(int width);
 for (int ii = 0; ii < width; ii++) begin
 left_align.push_back(
 MAX_WIDTH’({ii{1’b1}}));
 end
 endfunction

 // byte_enable is the signal being
 // sampled
 bins align[] = byte_enable with
 (left_align(width));
 }
 ...
endgroup

Figure 17. Variable Width Byte Enable Using Mantis 2506

In the actual code for this verification component, this
covergroup has 102 lines of hand-typed code, with error-prone
literals. Using the new syntax, there are only 10 lines of code to
maintain. Additionally, only the correct bins are created

removing all of the warnings generated by the work-around
version.

D. Parameterized Behavior
Protocol coverage is best written in a class which allows for

reuse throughout the testbench. This will almost always be the
case but complications can arise when protocol functionality is
parameterized.

Consider the case of an arbiter where eight different packet
types can be issued on each input port and the number of ports
is parameterized by value N_PORTS. This is a simplified
version of a problem encountered in the SRIO design. These
packets can also have variable lengths. In the common use
case, a shared class would exist on all N_PORTS and cover all
packet types, then cross this with all the valid packet lengths to
guarantee all expected functionality is transmitted. Now
consider that each of the eight packet types is enabled or
disabled through a parameter independently for each port
defined. For example, if N_PORTS is one, port A can have 2 to
the power of 8 combinations of supported packet types (8
packet types by 2 modes (on and off)). For SRIO, this arbiter
has the added complexity that some ports are not allowed to
send certain packet types. If packet types were not restricted to
certain ports, all types would be covered over a merged run and
a shared covergroup could be used. With type restrictions on
certain ports, sharing a covergroup would result in coverage
gaps on restricted ports even with merged coverage.

Given the limitations of SystemVerilog, it’s difficult to find
a clean solution to this problem since covergroups cannot be
generated inside of a class. One solution is adding
configuration settings for the coverage class. Based on these
settings, the appropriate coverage is created that only covers
the supported transactions. The shared class is still reusable
across ports. Note this is similar to the FIFO example where the
number of covergroups was dynamically selected. The
downside to this is that multiple covergroups now have to
exist, one for each possible configuration. For SRIO, packet
type coverage needed to be crossed with various other metrics
like packet length and spacing between packets. Combining all
these types in one covergroup would result in gaps when a
packet type did not exist on a port. To account for this problem,
each packet type was defined in its own covergroup and the
configuration setting determined which covergroups exist.

This quickly becomes a burden as N_PORTS increases and
additional requirements are added to each port. The
complexity can be seen in the example below where, based on
the additional configuration setting on the coverage class, only
the appropriate coverage should be constructed. Fig. 18 shows
an example of one such SRIO configuration where
N_PORTS=3. Port A can only send READS, port B can only
send WRITES and port C has to handle the remaining six
packet types. When port A is created in the testbench
environment, the coverage configuration information will need
to indicate READs are supported and disable all the other
packet types. Port B will need to enable only WRITE support
and disable all other types and port C disables READs and
WRITEs with all other types enabled.

cg_read_coverage

cg_write_coverage

cg_maint_coverage
cg_msg_coverage

…
<all remaining
packet types
instantiated>

A
R
B
I
T
E
R

cg_all_pkt_coverage

A

B

C

Figure 18. Arbiter with N_PORTS=3

Fig. 19 shows the logic used to create only valid packet
coverage based on the configuration settings.

// Construct the appropriate covergroups
// within the new function
function new(string name,
 uvm_component parent);
 ...
 // configured_types will be set for
 // interfaces which disable some packet
 // types. In this case, check what is
 // enabled and only new those covergroups

 if (configured_types) begin
 if (read_support) begin
 cg_read_coverage = new;
 end
 if (write_support) begin
 cg_write_coverage = new;
 end
 ...
 // One check for each packet type

 // If no types are configured, create
 // coverage including all packet types
 end else begin
 cg_all_pkt_coverage = new;
 end
endfunction : new

Figure 19. Conditional Covergroup Creation

Originally, the SRIO transaction coverage was ~190 lines
of code prior to packet configuration requirements. After
parameterization allowing disabled packet types was added,
coverage alone was ~600 lines of code. This number was
increased even more to configure the coverage class for each
port and select only appropriate coverage for a total of ~1200
lines of code.

E. Property Coverage Considerations
Cover directives and assertions (properties), according to

SystemVerilog, must be located within a module or interface.
The module or interface provides direct access to parameters as
static values. Although parameter workarounds are not
required, additional work is needed up front in order to
correctly write property coverage. This affects how RTL is

written. Generate/if blocks that exist in parameterized designs
must be written correctly to avoid bogus assertions and false
coverage.

If a bind file is used, the RTL must be written such that the
bind has access to the signals being covered. Generates will
often be coded with local variables. This is great for coding but
hides access to these signals from the bind file because the
generate statement makes a new scope. The bind is creating a
new instance of a module or interface with the module that had
the generate statements. This means there are now two parallel
scopes which can’t see each other. If these signals are moved
outside the generate block and thus made global variables, they
are now visible to the bind file and can be covered. Fig. 20
below shows module logic_block with logic_block_bind bound
to it. The bind file is able to access the send_ccomp signal
located in logic_block. When localized to generate
ccomp_logic_gen the bind cannot access it since it is in a
parallel scope .

logic_block

ccomp_logic_gen

logic_block_bind

no_ccomp_logic_gen

send_ccomp

send_ccomp

Figure 20. Signal Access Allowed From A Bind File

Care must be taken to ensure signals are not accidentally
covered in an invalid configuration. Undriven signals lead to
assertion failures and can trigger false or illegal coverage. This
can be fixed by either initializing these signals in the else
condition or disabling the cover property based on the
generating parameter as done in the examples in Fig. 21 below.

// Example 1: Clear undriven signals
// for invalid configurations.
// A clock compensation is only sent if
// CCOMP_EN is 1
wire send_ccomp;

generate if (CCOMP_EN == 1) begin:
 ccomp_logic_gen
 assign send_ccomp =
 (ccomp_ctr == MAX_CCOMP_CNT);

end else begin: no_ccomp_logic_gen
 // zero out when CCOMP_EN is 0 so the
 // bind file only samples valid values
 // and assertions on this signal do not
 // fire incorrectly
 assign send_ccomp = 0;
end endgenerate

// Example 2: Disable properties for
// invalid configurations.
cover property
 (@(posedge clk) disable iff (!CCOMP_EN)
 (send_ccomp));

Figure 21. Global Variables for Coverage

F. Generate Block Considerations
Another problem with generated code is that merging

coverage for a signal across all configurations of a design is not
always wanted. For example, consider the case where a FIFO
has a parameterized depth which can be set to 8 or 32 and a full
condition needs to be covered. Covering that the full signal was
asserted might not be sufficient because it will be merged
whether full is seen with a depth of 8 or 32; it is possible full
might have only ever occurred when the depth was 8. If the
parameterization affects the implementation, it is important to
see both settings to ensure full correct functionality. These
decisions must be made by someone familiar with the design
architecture. A simple solution for this example is to cross the
values of FIFO depth with the full flag set to 1. This is shown
below in Fig. 22, which is also an example of replicating
parameter coverage simply to provide access to a cross.
// cg_fifo_full covers the full signal for
// each valid value of FIFO_DEPTH
covergroup cg_fifo_full;
 cp_fifo_full : coverpoint (fifo_full);

 // Coverage on FIFO_DEPTH is already
 // managed within parameter coverage but
 // is duplicated here to allow for use
 // in the cp_fifo_full cross.
 cp_fifo_depth: coverpoint (FIFO_DEPTH) {
 bins min = {8};
 bins max = {32};
 }

 cross cp_fifo_full, cp_fifo_depth {
 ignore_bins ignore =
 binsof(cp_fifo_full) intersect {0};
 }
endgroup

Figure 22. Crossing Parameters with Functional Coverage

Writing properties within modules covering parameterized
code can be greatly simplified by the use of generate
statements, which are also available. Note that generated code
creates implicit hierarchy. This leads to unique coverage spaces
that will not be merged. For busses where each bit needs to be
covered independently, only one cover property needs to be
written in a generate statement that can be reused on all bits.
The example in Fig. 23 shows a signal with a width of
BUF_DEPTH which indicates free locations in a buffer. Each
location needs to be detected as full and empty.
// Based on the buffer depth, see each
// buffer location as full and empty
reg [BUF_DEPTH-1:0] free_locations;
...

generate
 for (int ii=0; ii < BUF_DEPTH; ii++) begin
 covergroup cg_location;
 coverpoint (free_locations[ii]);
 endgroup
 end
endgenerate

Figure 23. Generate Loop for Per Bit Bus Coverage

Another use case for a generate statement is for
multidimensional arrays. The SRIO core can have a serial link
width generated based on a user’s needs. For this, the
LINK_WIDTH parameter indicates how many lanes are valid.
In this example, each lane needs to maintain a count of how
many bit errors were detected on the link and thus a
multidimensional array of counters is used. A cover property
can be generated for only valid links to cover the error count
reaches its max value as done in Fig. 24.
// Check the counter reaches its max value
// on each lane.
reg [3:0] error_cnt [LINK_WIDTH-1:0];
...

generate
 for (int ii=0; ii < LINK_WIDTH; ii++) begin
 cover property
 (@(posedge clk)
 (error_cnt[ii] == MAX_ERRORS));

 end
endgenerate

Figure 24. Generate Loop for Multi-Dimensional Signal Coverage

For both examples described, it is desired to not merge
coverage. By using generate loops, hierarchy will be provided
and results in not merging the coverage.

III. PARAMETERS & CODE COVERAGE
Normally, code coverage is used as a cross-check for

functional coverage to ensure that all coverage points have
been defined. Gaps in code coverage without any relevant
functional coverage can also identify dead code. As mentioned
earlier, while formal can detect this condition early in the
design process for standard designs, this is not possible for
non-parameterized designs. The only way to locate dead code
or unhittable states in a parameterized code base is to run code

coverage and review the output. This makes the code coverage
review phase even more critical for a parameterized design.

One additional problem for code coverage is that it is
additional functionality provided by the vendors and not
specified by the SystemVerilog standard. Vendors are free to
specify code coverage as they see fit including any
parameterized merging behavior. Users must examine all
merged code coverage results in order to ensure that results
provide the information they need for their design.

We suggest code coverage tools merge gathered coverage
metrics across generate/for loops. For most situations, the
code’s functionality is what is being tested; multiple copies
don’t provide more information about the correctness of the
code. If it is the case that specific behavior matters per loop,
embedded functional coverage can be bound in to track this.
Note that this requires that generate signals be declared as
global variables as described above.

For generate/if or generate/case constructs, we suggest that
vendors don’t merge the branches, even when the generate
labels are identical for each branch. Because custom code
appears in each branch, every branch needs to be fully
exercised in order to ensure that the code is well tested.

IV. CONCLUSION
Parameters are well integrated into the RTL design subset

of SystemVerilog. This enables a clean methodology for
designing and maintaining a single code base, while still
delivering multiple custom netlists. The addition of keywords
like generate have eased the burden of designing with
parameters.

The solutions are not as straightforward within the
verification space of SystemVerilog. The good news is that
testbenches can still completely verify these parameterized
designs; the bad news is that solutions still require a lot of
overhead. The availability of the configuration space in
OVM/UVM environments has simplified parameter passing

and access. Using a container object to collect all parameter
values makes it easy to access these values anywhere in the
design, including functional coverage groups.

However, there is still work to be done, particularly for
functional coverage, where handling variable code causes
additional overhead, as shown previously. When verifying a
parameterized design, coverage constructs grow in size.
Additionally, work must be duplicated in order to correctly
ensure that every variant is covered within a configurable
environment.

New additions to the SystemVerilog standard will greatly
help with the problem. Until then, the tips and techniques
outlined above will reduce the headache from a migraine to a
minor annoyance.

ACKNOWLEDGMENTS
We would like to thank Adam Rose from Mentor Graphics

for some excellent technical guidance. We would also like to
thank Geoff Koch for helping to edit this paper.

REFERENCES
[1] IEEE Standard for SystemVerilog: Unified Hardware Design,

Specification and Verification Language, IEEE Std. 1800-2009.
[2] RapidIO™ Interconnect Specification Revision 2.2, 2011,

www.rapidio.org
[3] B. Ramirez, M. Horn, OVM & Parameters: Why Can’t They Just Get

Along?, http://go.mentor.com/parameters_and_ovm
[4] Mantis 2506, http://www.eda.org/svdb/view.php?id=2506
[5] D. Rich, A. Erickson, Using Parameterized Classes and Factories: The

Yin and Yang of Object-Oriented Verification,
http://go.mentor.com/yin-and-yang

[6] Open Verification Methodology (OVM), http://ovmworld.org
[7] Universal Verification Methodology (UVM),

http://www.accellera.org/activities/committees/vip/

	I. Introduction
	A. Coverage for Reusable Code Bases
	1) Parameter Coverage
	2) Formal Verification with Parameterized IP

	II. Parameters and Functional Coverage
	A. Parameters and SystemVerilog covergroups within classes
	1) Generalized solution for getting parameters into covergroups
	2) Getting parameters into covergroups for a OVM/UVM methodology

	B. Class- versus Module- Based Coverage
	1) Class-based Coverage
	2) Module-based Coverage
	3) Placement Recommendation for coverage

	C. Use Cases for parameterized coverage classes
	1) Parameterized Number of Bins
	2) Parameterized Bin Values
	a) SystemVerilog Enhancements

	D. Parameterized Behavior
	E. Property Coverage Considerations
	F. Generate Block Considerations

	III. Parameters & Code Coverage
	IV. Conclusion
	Acknowledgments
	References

