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Abstract— Modern FPGA and ASIC verification environments 
use coverage metrics to help determine how thorough the 
verification effort has been. Practices for creating, collecting, 
merging and analyzing this coverage information are well 
documented for designs that operate in a single configuration 
only. However, complications arise when parameters are 
introduced into the design, especially when creating customizable 
IP.  

This paper will discuss the coverage-related pitfalls and solutions 
when dealing with parameterized designs. 
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coverage closure, verification methodology, testbench, intellectual 
property (IP) cores 

I.  INTRODUCTION 
Code reuse is increasingly common, mostly because it helps 

to make engineers more productive. Through reuse it is 
possible to use a single code base tuned to specific 
requirements in lieu of maintaining multiple code bases. A 
standard ASIC technique is to use strap signals along with 
register programming at the start of operation to generate a 
customized configuration. Designs on programmable fabric can 
take this one step further. The downloadable netlist can be 
configured by the use of parameters, which optimizes away 
unneeded logic at synthesis time. IP providers use this 
technique to generate optimized netlists for every customer 
with a single infrastructure.  

The addition of parameters increases complexity compared 
to a non-parameterized design, but working from one code base 
instead of multiple customized solutions generally makes this 
complexity well worth it. However, compared to working on a 
single static configuration, verifying designs over a range of 
parameterizations can greatly increase the coverage space and, 
consequently, the effort required to reach coverage closure. The 
problem is compounded as the number of modifiable 
parameters increases. In this paper, functional coverage of the 
parameter space will be referred to as “parameter coverage” 
and coverage of variable constants with functional coverage 
will be referred to as “parameterized coverage.” Parameter 
coverage appears to be just another coverage metric, except 
that it needs to be closed in the compile/optimization phase of 
simulation, instead of the run-time phase where normal 
functional coverage is closed. 

The Verilog Language Reference Manual (LRM) [1] 
describes in straightforward terms how to write parameterized 
Register Transfer Level (RTL). The addition of SystemVerilog 
onto the Verilog standard has made the language more 
powerful, allowing more advanced verification techniques to 
be used in developing testbenches. 

Gaps still exist when trying to verify a parameterizable 
design within a SystemVerilog testbench, especially during the 
coverage merge step. The SystemVerilog standard doesn’t 
specify in detail how coverage is to be merged. For a design 
with a single parameterization, normal verification techniques 
generally lead to more or less normal merging of coverage. 
However, for multiple parameterizations it’s not clear what 
should be done when “constant” values in covergroups are no 
longer so constant. Likewise, classes that are parameterized 
with different values are now different types, and don’t appear 
to be part of the same merge hierarchy.  

Along with the new requirement of parameter coverage, 
standard functional coverage metrics including coverage 
groups, coverage properties, assertions, and code coverage are 
still used. However, workarounds are needed to handle the non-
“constant” constant problem that parameters add to functional 
coverage. This paper will focus on ways to make coverage 
useable for a parameterized design.  

A. Coverage for Reusable Code Bases 
The parameterized coverage techniques described in this 

paper developed as a result of Xilinx’s verification of its Serial 
RapidIO (SRIO) Gen2 IP core. The Serial RapidIO protocol is 
a serial standard supporting numerous line rates and multiple 
link widths. The Xilinx SRIO Gen2 IP is highly configurable, 
built to provide customers with flexibility while limiting the 
resources required for each specific application. This 
configuration is done with parameters, thus allowing the 
synthesis tools to provide an optimized solution for every 
design permutation. There are currently 77 parameters in the 
design, which control everything from register defaults to the 
existence of code to the changes in the protocol behavior or bus 
widths. 

The issues described in this paper may plague anyone 
creating reusable designs. It was particularly important during 
the development of the SRIO Gen2 IP to ensure the core was 
tested to some degree across the various supported 
permutations. However, this could also apply to anyone trying 
to future-proof their designs by improving maintainability. Any 



design that uses a single code base for multiple synthesized 
netlists will find these techniques useful. The two most 
common issues with coverage that arise from using parameters 
are varying bus widths and generated code. As bus widths vary, 
it makes it difficult to create meaningful coverage for the 
current parameterization being targeted. Generated code is an 
issue because code may or may not exist. 

One of the problems with parameterized coverage is 
determining when to merge a certain set of coverage and when 
to keep it separate. Unfortunately, there are no clear rules 
dictating when to merge and when not to. Merging coverage is 
usually preferred as it enables quicker coverage closure. 
However, before completing the merge, the user must evaluate 
the goal of the coverage and determine if it must be kept 
separate. Specific examples of this will be shown later in the 
paper. 

1) Parameter Coverage 
In an ideal world, all parameters would be fully crossed 

with each other to create parameter coverage, and then that 
would also be completely crossed with all functional coverage. 
This would ensure that each functional coverage item was 
tested against each specific parameterization. As the coverage 
space grows exponentially, and additional parameters or 
parameter values are added, this comprehensive approach 
quickly becomes infeasible. For example, if a design has two 
parameters, each with two different values, crossing the 
parameters would result in four different parameterizations, 
which translates to four times the amount of functional 
coverage. What happens if the design has more parameters? 
Assume now the design has ten parameters, again with only 
two possible values each. This would translate to 2^10 (1024) 
different parameterizations. Closing on functional coverage is 
often difficult enough, but it would take an unreasonable 
amount of time if it had to be closed over 1000 times. Imagine 
the problem if a design has 50 to 100 parameters with more 
than two values for each parameter. The same techniques to 
close functional coverage can be used to close parameter 
coverage. The verification engineer crosses parameters that 
interrelate just like regular functional coverage, leaving 
parameters that don’t interfere with each other as stand-alone 
coverpoints.  

During coverage closure on one of the SRIO Gen2 
testbenches, there were a set of parameters that were 
particularly difficult to close by pure constrained random 
techniques. The parameter coverage controlled what types of 
transactions could be initiated and targeted on the user 
interfaces and resulted in 512 unique parameterization crosses. 
Relying solely on constrained random would have taken weeks 
to close this coverage. Realizing this amount of time was 
unacceptable, randomizations were directed to generate all 512 
parameterizations, enabling coverage to be closed in a 
weekend. Closing holes in parameter coverage is generally not 
a difficult problem.  

While closing the parameter coverage space is a 
straightforward problem, crossing each point in that space with 
the complete functional coverage space is not realistic. 
Therefore, a different approach is needed. A couple of options 
exist to ensure functional coverage is adequately achieved 

relative to the various parameterizations. The first step is to 
cover all parameter settings, but without crossing them. This 
verifies that all parameter values have been tested. To further 
validate the parameter coverage, only important parameters or 
parameters that have a direct effect on another should be 
crossed. Finally, specific functional coverage items should be 
crossed with any parameters that affect that functionality. 

2) Formal Verification with Parameterized IP 
Formal verification is another popular technique that can be 

used to close coverage on a design. Formal excels at arbitration 
and other state-deep problems that are difficult to cover with 
functional coverage. Additionally, most vendors provide static 
checks that check for code liveness by locating dead code or 
unhittable states in state machines that simplify code coverage 
analysis. 

However, parameterizable code is not currently a good fit 
for this method. Normally, any design is constrained into a 
specific configuration, and then functionality and code liveness 
are mathematically proven for that mode. The process can then 
be repeated if the constraints need to be changed for a different 
configuration. However, for parameterized designs, every 
possible permutation needs to be proven in order to get the 
same level of confidence as is possible with a non-
parameterized design. Like parameter coverage, a subset of 
parameter crosses can be made here, but with 77 parameters, 
covering all the parameter interactions still expand the number 
of configurations into a completely infeasible number. 

While formal property checking is a poor fit for 
parameterized code, formal liveness checks aren’t even 
possible. One of the purposes of parameters is to have a 
common code base for different functionalities. This means for 
any given parameterization there will be dead code as 
illustrated by the two examples in Fig. 1 below. 
 
// Example 1: Explicitly declaring dead code  
// using a generate statement 
generate if (MODE11

  // Active when MODE1 is 1, dead code when 
) begin 

  // MODE1 is 0 
end else begin 
  // Active when MODE1 is 0, dead code when 
  // MODE1 is 1 
end 
 
// Example 2: Implicit dead code using an  
// if statement 
always @(posedge clk) begin 
  if (MODE1) begin 
    // Dead code when parameter MODE1 is 0 
  end else begin 
    // Dead code when parameter MODE1 is 1 
  end 
end 

Figure 1.  Parameterized Dead Code 

                                                        
1 Design parameters will be written in all capital letters throughout 

this paper. 



II. PARAMETERS AND FUNCTIONAL COVERAGE 
Even in the case of a single design configuration, functional 

coverage requires a lot of time and effort to do correctly in the 
case of a single design configuration.  When parameters and a 
parameterized design are factored into the equation, additional 
considerations arise. 

A. Parameters and SystemVerilog covergroups within classes 
Any value in a coverage bin definition must be constant and 

defined when the coverage group is constructed. Occasionally 
these are literal values, but parameterized designs also require 
parameter values in these definitions. Therefore, there needs to 
be some way to get parameters down into coverage groups. 

One way would be to declare a covergroup inside a 
parameterized class and use the parameters of the parent class. 
The biggest issue when dealing with parameterized classes is 
that, as far as SystemVerilog is concerned, every different 
parameterization of a class results in a different type.  Unlike 
class extensions, multiple parameterizations of a parameterized 
class (specializations) are not compatible through 
polymorphism[5]. The original class with default parameters 
can’t be used as a handle as it still creates a unique default 
specialization. As a result, coverage merging tools see different 
types when they are trying to merge, and are unable to do so.  If 
a covergroup is defined within a parameterized class and 
different simulations are run with coverage results saved out, 
the coverage results contained within each parameterized class 
instance will not be able to merge together. 

Our preferred solution is to not define covergroups within a 
parameterized class but rather in a non-parameterized class, 
which is then instantiated within the parameterized parent 
class.  Two variations exist for passing parameter values to the 
non-parameterized class: 

1) Generalized solution for getting parameters into 
covergroups  

The first option, which works regardless of the 
methodology used, is to pass parameter values from the 
parameterized class as constructor arguments.  This exposes the 
information needed to collect useful coverage, but without 
affecting post-simulation coverage merging. A simple example 
of what this would look like in code is shown in Fig. 2 

 

 

 

 

 

 

 

 

 

 

 

// The coverage_collector class contains all 
// the coverage to be sampled from the  
// my_agent class 
class coverage_collector;  
  int full_count; // Indicates fifo fullness 
   
  covergroup cg_fifo_count(int fifo_depth2

    coverpoint (full_count) { 
); 

      bins empty  = {0}; 
      bins in_use = {[1:fifo_depth-2]}; 
      bins full   = {fifo_depth-1}; 
    } 
  endgroup 
 
  function new(int fifo_depth = 16); 
    cg_fifo_count = new(fifo_depth); 
  endfunction : new  
  ... 
endclass : coverage_collector 

Figure 2.  Parameter Passing Using New 

In this example, arguments are added to the constructor 
(one per parameter).  Once this class is defined, then it could be 
used in a parameterized class as shown in Fig. 3. 
// my_agent instantiates the  
// coverage_collector 
class my_agent #(int FIFO_DEPTH = 16); 
  coverage_collector  coverage_col; 
  ... 
 
  function void build(); 
    coverage_col = new(.fifo_depth                
                       (FIFO_DEPTH)); 
  endfunction : build 
  ... 
endclass : my_agent 

Figure 3.  Parameterized Class Providing Parameters to Coverage Class 

Fig. 4 below shows this example where my_agent is a 
parameterized class passing FIFO_DEPTH through the 
constructor to the coverage_collector. The coverage_collector 
then passes this on to the covergroup cg_fifo_count. 

my_agent

coverage_collector

cg_fifo_count

FIFO_DEPTH

fifo_depth

fifo_depth

 
Figure 4.  Parameters passed through the heirarchy 

By extending the constructor in the non-parameterized class, 
parameters can be used to collect and affect coverage.  This 

                                                        
2 Parameters which are passed as arguments to children or 

covergroups will be denoted with the same parameter name, but in 
lowercase letters. 



technique is useful for simple cases and can easily be extended 
to deal with multiple parameters.  However, consider a real 
world design such as SRIO where 77 parameters are used. 
These parameters would have to be passed down through every 
constructor, a tedious requirement that would make change 
difficult. 

2) Getting parameters into covergroups for a OVM/UVM 
methodology 

Our preferred solution for any OVM[6] or UVM[7] based 
environment uses a variant of this technique that is easier to 
maintain for a highly parameterizable design.  An object should 
be created containing all of the possible parameters for a 
design. The object can also contain the parameter coverage for 
the design, since all variables are present in one location. The 
object is then placed into the configuration space, making it 
available to any object anywhere in the object hierarchy. Note 
that this means that some unnecessary parameters are in the 
object; but this is overshadowed by the simplification of having 
all parameters available in a common location. In the case 
where large numbers of parameters are used, such as in SRIO, 
using the parameter object provides an easy, reusable way to 
get the parameter information to coverage classes.  
Covergroups must be created in the constructor of their parent 
class. However, since the parent class isn’t constructed until the 
build phase, the configuration class is already available to the 
covergroup when it is constructed inside the parent. This is not 
a problem since the build phase is top down and has already 
completed for the top level test which places the parameter 
object into the configuration space. Using this variation, a 
configuration object is created to hold the parameter values. An 
example container is shown in Fig. 5 below. 
// The param_containter class hold the values  
// for all parameters in the design 
class param_container extends uvm_object; 
  `uvm_object_utils(param_container) 
 
  // Data members to hold parameter values 
  // Each parameter is set to a default value 
  // these values are overwritten in the  
  // parameterized test base when the object  
  // is created.  
  int fifo_depth = 16; 
  // other parameter values 
  ... 
 
  // constructor, etc. 
endclass : param_container 

Figure 5.  Parameter Container Class 

The coverage_collector class then gets the parameter 
container prior to constructing the covergroup as shown in Fig. 
6. Note that the coverage object must still pass in every 
parameter that is required. 

 

 

 

 

// The coverage_collector class contains all 
// the coverage to be sampled from the  
// my_agent class 
class coverage_collector  
  extends uvm_subscriber #(transaction_class); 
 
  function new(string        name, 
               uvm_component parent); 
    param_container params; 
    ... 
 
    // Call into the configuration space 
    // to get the FIFO_DEPTH value  
    void’(uvm_config_db #(param_container):: 
                        get(this, ””, 
                            “param_container”, 
                            params)); 
 
    cg_fifo_count = new(params.fifo_depth); 
  endfunction : new 
  ... 
endclass : coverage_collector 

Figure 6.  Parameter Passing Using the Configuration Space 

This method for parameter access is shown in Fig. 7 below. 

my_agent

coverage_collector

cg_fifo_count

FIFO_DEPTH

fifo_depth

param_container
fifo_depth

 
Figure 7.  Parameter Accesses Using the Configuration Space 

A single instance of the param_container class is created, 
has its parameter values set and is then placed into the 
configuration space in the UVM test. Using a configuration 
coverage object to encapsulate parameters is described in the 
DVCon 2011 paper “Parameters and OVM: Can’t They Just 
Get Along” [3].  

B.  Class- versus Module- Based Coverage 
When writing functional coverage, it is important to 

determine where it should live within the test hierarchy.  Two 
options to consider are class- and module-based coverage.  
Class-based coverage is when covergroups are defined within a 
class such as a UVM subscriber. Module-based coverage has 
covergroups defined within modules.  The modules could be 
standard RTL code, or SystemVerilog interfaces or modules 
that are instantiated using bind statements. Note that 
SystemVerilog requires cover properties and assert properties 
to be located within modules. Regardless of where the coverage 
is placed, tradeoffs must be considered when parameters are 
involved.  

 



1) Class-based Coverage 
Protocol level coverage should be isolated within a 

transaction class that is used across interfaces in a design. 
Coverage for the protocol can then be reused across all 
interfaces handling that transaction. Some examples of protocol 
coverage for SRIO include packet types, valid byte sizes, 
packet priorities, and other applicable packet fields. 
Fortunately, protocol coverage should have no need for 
parameterized code. All parameters should be isolated within 
the layers around the coverage class as described above. In the 
event the coverage class does require a parameter value, 
workarounds are required in order to access those parameters, 
such as the previously shown configuration object.  

In order to write a covergroup covering a signal with a 
parameterized width in a class, the minimum and maximum 
values should be considered based on all possible 
configurations and the bins must be appropriate for all 
configurations. Some coverage is not possible for a given 
configuration, which will result in run-time warnings. 
However, all coverage will be closed over a full regression run. 
The following example covers a counter which iterates though 
packet identifiers (IDs) and verifies all IDs are used. The 
ID_SIZE parameter is used to set the number of available IDs 
to the 0 to 31 range when ID_SIZE=SMALL or the 0 to 63 
range when ID_SIZE=LARGE.  To save resources, the width 
of the counter is parameterized to 5 or 6, respectively. If this 
coverage was written in a single coverpoint, all bins could not 
be covered in only one configuration.  Once multiple ID_SIZE 
values are merged, coverage could still be closed over the 
complete solution space. In this case, two covergroups are 
required in order to make sure all the values are seen in both 
configurations since coverage cannot be disabled on a bin basis 
due to restrictions in SystemVerilog. This could also be done 
using cross coverage, but then many illegal bins would have to 
be specified for ID_SIZE=SMALL and a value of 31 cannot be 
grouped into multiple bin types. The cleanest solution is shown 
in Fig. 8. 
// Covering packet ID values within a class 
// when packet_ids is a parameterized width 
covergroup cg_packet_ids;  
  cp_small_pid: coverpoint (packet_ids)  
                      iff (id_size == small) { 
    bins min = {0}; 
    bins mid = {[1:30]}; 
    bins max = {31}; 
  } 
 
  cp_large_pid: coverpoint (packet_ids)  
                      iff (id_size == large) { 
    bins min = {0}; 
    bins mid = {[1:62]}; 
    bins max = {63}; 
  } 
endgroup 

Figure 8.  Covering Packet IDs in a Class 

2) Module-based Coverage 
Verification of behavior that affects internal logic and is not 

visible on an external bus level should be covered within a 
module. The reason: higher level classes do not know or care 

about these details. An example of this, which is seen 
frequently in SRIO, is handshaking between internal modules 
or across clock domains. When block A asserts a VALID flag, 
VALID cannot deassert until a READY response is asserted 
from block B back to block A. One required coverage point is 
that a stall condition is seen where VALID is asserted without 
the assertion of READY.  This functionality is not visible on a 
transaction level and should be written in the module to verify 
this expected functionality occurs. 

 

BLOCK BBLOCK A

VALID

READY

DATA

 
Figure 9.  Handshaking Between Two Modules 

Writing coverage within a module provides access to all 
parameters in the module. This provides the benefit of being 
able to write only valid coverage based on the current 
configuration and the ability to merge coverage across modules 
depending on vendor support. Merging across modules is 
possible because a union of all coverage pieces may be 
available (again, the merge algorithm is not defined in 
SystemVerilog).  In this case, when covering a parameterized 
bus the width is known and the coverage can be written using 
the parameters such that only valid bins are created. This 
eliminates unnecessary warnings. The example in Fig. 10 
below shows the same packet ID coverage described above, but 
where the covergroup only contains valid bins based on the 
ID_SIZE parameter. Since it is within a module, the generate 
keyword is available to exploit. 
// Covering packet ID values within a 
// module when packet_ids is a parameterized 
// width 
generate if (ID_SIZE == SMALL) begin 
  covergroup cg_packet_ids; 
    cp_small_pid: coverpoint (packet_ids){ 
      bins min = {0}; 
      bins mid = {[1:30]}; 
      bins max = {31}; 
    } 
  endgroup 
 
end else if (ID_SIZE == LARGE) begin 
  covergroup cg_packet_ids; 
    cp_large_pid: coverpoint (packet_ids){ 
      bins min = {0}; 
      bins mid = {[1:62]}; 
      bins max = {63}; 
    } 
  endgroup 
end endgenerate 

Figure 10.  Covering Packet IDs in a Module 

3) Placement Recommendation for coverage 
Understanding the issues with both module and class 

coverage can help determine where coverage should be located. 
When covering protocol requirements, it is best to cover in a 
class because this enables easy reuse of the coverage. The 



reason: parameter workarounds aren’t required. Coverage of 
implementation-specific design choices, independent of the 
testbench, should be located in a module where it has access to 
parameters and does not need to be reusable. 

C. Use Cases for parameterized coverage classes 
During development of the SRIO core, a range of problems 

and limitations were seen with SystemVerilog when 
covergroups needed to be parameter aware.  The next group of 
examples illustrates the basic set of problems and shows the 
associated solutions. 

1) Parameterized Number of Bins 
One common deficiency is how to use parameterized values 

as bins within a covergroup. In general, if a single maximum 
value is used, a parameter can be inserted into the bin 
definition. However, there is no clean way to code the coverage 
if the parameter affects the number of desired bins. For 
example, for a buffer structure, it is easy enough to specify full 
and empty as coverage values. This can even be generalized to 
any number of specific values, such as empty, quarter, half, 
three-quarters and full. If the number of values to cover based 
on the parameterized depth needs to be specified, there is no 
clean way to do this within a single covergroup because the 
number of values to cover is not known ahead of time.  One 
possible solution is to create a series of covergroups within a 
generate block (for modules) or within the new function (for 
classes) as demonstrated in Fig. 11. 
// Break a collection of values into single  
// values. Determine which values are  
// active and new the correct groups  
covergroup watermark(int value); 
  coverpoint (curr_watermark) { 
    bins hit = {value}; 
  } 
endcovergroup 
 
// Create a placeholder for the maximum  
// possible values 
watermark cg_watermark[MAX_DEPTH/16];  
 
// Create a covergroup for each value 
function new(string        name, 
             uvm_component parent); 
  ... 
  // Determine the depth from the 
  // configuration object 
  ... 
  for (int ii3

    cg_watermark[ii] = new(ii*16); 
 = 0; ii < depth/16; ii++) begin 

  end 
endfunction : new 

Figure 11.  Creating an Array of Covergroups for a Range of Values 

                                                        
3 Note the use of “ ii” for loop variables rather than “i”.  The 

amount of loops is very high in parameterized code. This coding 
guideline simplifies searching for loop variable use within the code 
since patterns like “ii”, “jj”, etc, are unlikely to be found within the 
text. At the same time, variable patterns like “ii” keep it very clear 

that the variable is loop-based rather than a signal-based. 

Note that the solution to this problem (determining which 
covergroups to construct), is very similar to the solution for the 
ID_SIZE parameter example depicted above. Whenever 
parameters dictate which bins are active, this solution can be 
used. 

2) Parameterized Bin Values 
The SRIO core uses the AXI4-Streaming protocol for ports 

and internal connections. A verification component is used for 
every interface for improved reuse. While SRIO only has a 
single bus width, the verification component is designed to be 
valid for any possible configuration; bus widths may vary from 
8 bits to 4096 bits. There is not a clean way to cover a range of 
specific literal values when dealing with a variable width bus. 
One requirement is to cover all possible combinations of the 
byte enables where the enable bits are packed to the right. 
These bins are easily coded for a constant width signal. For 
example, a 32-bit bus would have bins of {4’b1111, 4’b0111, 
4’b0011, 4’b0001} as valid byte_enables.  Figures 12-15 show 
the valid data bits in green for each of the valid byte_enable 
values. 
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Figure 12.  Valid Data Bits When byte_enables is 4’b1111 
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Figure 13.  Valid Data Bits When byte_enables is 4’b0111 
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Figure 14.  Valid Data Bits When byte_enables is 4’b0011 

[31:24] [23:16] [15:8] [7:0]
 

Figure 15.  Valid Data Bits When byte_enables is 4’b0001 

Coverage within the verification component needs to handle 
up to 4096-bit data widths. The solution used for this is to 
directly declare every possible value as shown in Fig. 16. The 
tools will throw an elaboration warning for bins that are too 
large and cover the rest normally. Unlike the packet ID 
example above, the widths that are too large will never be 
covered for a merged run since the bus width is known in 
advance. This is not a coverage hole since the excess bins are 
automatically removed because the literals are not possible 
given the signal width being covered. 

 

 

 

 

 

 

 



// cg_byte_enable_cov contains all the  
// coverage to sample from the byte_enable  
// signal 
covergroup cg_byte_enable_cov; 
  coverpoint (byte_enable) { 
    bins align[width] = bins{2’b01, 
                             2’b11, 
                             4’b0111,  
                             4’b1111, 
                             ... 
                             512’b1111_1111…}; 
  } 
  ...  
endgroup 

Figure 16.  Variable Width Byte Enable Pattern Coverage 

a) SystemVerilog Enhancements 
Mantis 2506[4], which is targeted for IEEE 1800-2012, will 

allow algorithmic bin generation once it is supported by 
vendors. The current proposal includes an algorithmic function 
on the left side of the bins statement. This will remove much of 
the headache and overhead seen with this kind of coverage 
need. Note that additional work will be needed to ensure that 
coverage has been written correctly using this new method. 
Rather than a list of easy to inspect literals, the bins are now the 
output of a potentially complex function.  This feature isn’t 
only useful for parameterized designs. It also allows large or 
complex covergroups to be coded short and succinctly as 
shown in Fig. 17. 
// cg_byte_enable_cov contains all the  
// coverage to sample from the byte_enable  
// signal 
covergroup cg_byte_enable_cov(int width); 
  coverpoint (byte_enable) { 
    // Return type must be specified if the  
    // bins returned are larger than an 
    // integer. Since the return type is  
    // passed on the configuration, the max 
    // possible width must be used. For this 
    // protocol, MAX_WIDTH = 4096/8 
    function [MAX_WIDTH-1:0]  
                        left_align(int width); 
      for (int ii = 0; ii < width; ii++) begin 
        left_align.push_back( 
                   MAX_WIDTH’({ii{1’b1}})); 
      end 
    endfunction 
 
    // byte_enable is the signal being 
    // sampled 
    bins align[] = byte_enable with   
                          (left_align(width)); 
  } 
  ... 
endgroup 

Figure 17.  Variable Width Byte Enable Using Mantis 2506 

In the actual code for this verification component, this 
covergroup has 102 lines of hand-typed code, with error-prone 
literals. Using the new syntax, there are only 10 lines of code to 
maintain. Additionally, only the correct bins are created 

removing all of the warnings generated by the work-around 
version. 

D. Parameterized Behavior 
Protocol coverage is best written in a class which allows for 

reuse throughout the testbench. This will almost always be the 
case but complications can arise when protocol functionality is 
parameterized. 

Consider the case of an arbiter where eight different packet 
types can be issued on each input port and the number of ports 
is parameterized by value N_PORTS. This is a simplified 
version of a problem encountered in the SRIO design.  These 
packets can also have variable lengths. In the common use 
case, a shared class would exist on all N_PORTS and cover all 
packet types, then cross this with all the valid packet lengths to 
guarantee all expected functionality is transmitted. Now 
consider that each of the eight packet types is enabled or 
disabled through a parameter independently for each port 
defined. For example, if N_PORTS is one, port A can have 2 to 
the power of 8 combinations of supported packet types (8 
packet types by 2 modes (on and off)). For SRIO, this arbiter 
has the added complexity that some ports are not allowed to 
send certain packet types. If packet types were not restricted to 
certain ports, all types would be covered over a merged run and 
a shared covergroup could be used. With type restrictions on 
certain ports, sharing a covergroup would result in coverage 
gaps on restricted ports even with merged coverage. 

Given the limitations of SystemVerilog, it’s difficult to find 
a clean solution to this problem since covergroups cannot be 
generated inside of a class. One solution is adding 
configuration settings for the coverage class. Based on these 
settings, the appropriate coverage is created that only covers 
the supported transactions. The shared class is still reusable 
across ports. Note this is similar to the FIFO example where the 
number of covergroups was dynamically selected. The 
downside to this is that multiple covergroups now have to 
exist, one for each possible configuration. For SRIO, packet 
type coverage needed to be crossed with various other metrics 
like packet length and spacing between packets. Combining all 
these types in one covergroup would result in gaps when a 
packet type did not exist on a port. To account for this problem, 
each packet type was defined in its own covergroup and the 
configuration setting determined which covergroups exist.   

This quickly becomes a burden as N_PORTS increases and 
additional requirements are added to each port. The 
complexity can be seen in the example below where, based on 
the additional configuration setting on the coverage class, only 
the appropriate coverage should be constructed. Fig. 18 shows 
an example of one such SRIO configuration where 
N_PORTS=3. Port A can only send READS, port B can only 
send WRITES and port C has to handle the remaining six 
packet types.  When port A is created in the testbench 
environment, the coverage configuration information will need 
to indicate READs are supported and disable all the other 
packet types. Port B will need to enable only WRITE support 
and disable all other types and port C disables READs and 
WRITEs with all other types enabled. 
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Figure 18.  Arbiter with N_PORTS=3 

Fig. 19 shows the logic used to create only valid packet 
coverage based on the configuration settings. 
 
// Construct the appropriate covergroups 
// within the new function 
function new(string        name, 
             uvm_component parent); 
  ... 
  // configured_types will be set for  
  // interfaces which disable some packet 
  // types. In this case, check what is  
  // enabled and only new those covergroups 
  
  if (configured_types) begin 
    if (read_support) begin 
      cg_read_coverage = new; 
    end  
    if (write_support) begin 
      cg_write_coverage = new; 
    end 
    ... 
    // One check for each packet type 
 
  // If no types are configured, create  
  // coverage including all packet types 
  end else begin 
    cg_all_pkt_coverage = new; 
  end 
endfunction : new 

Figure 19.  Conditional Covergroup Creation 

Originally, the SRIO transaction coverage was ~190 lines 
of code prior to packet configuration requirements. After 
parameterization allowing disabled packet types was added, 
coverage alone was ~600 lines of code. This number was 
increased even more to configure the coverage class for each 
port and select only appropriate coverage for a total of ~1200 
lines of code. 

E. Property Coverage Considerations 
Cover directives and assertions (properties), according to 

SystemVerilog, must be located within a module or interface. 
The module or interface provides direct access to parameters as 
static values. Although parameter workarounds are not 
required, additional work is needed up front in order to 
correctly write property coverage. This affects how RTL is 

written.  Generate/if blocks that exist in parameterized designs 
must be written correctly to avoid bogus assertions and false 
coverage.  

If a bind file is used, the RTL must be written such that the 
bind has access to the signals being covered. Generates will 
often be coded with local variables. This is great for coding but 
hides access to these signals from the bind file because the 
generate statement makes a new scope.  The bind is creating a 
new instance of a module or interface with the module that had 
the generate statements.  This means there are now two parallel 
scopes which can’t see each other.  If these signals are moved 
outside the generate block and thus made global variables, they 
are now visible to the bind file and can be covered. Fig. 20 
below shows module logic_block with logic_block_bind bound 
to it.  The bind file is able to access the send_ccomp signal 
located in logic_block. When localized to generate 
ccomp_logic_gen the bind cannot access it since it is in a 
parallel scope . 

logic_block

ccomp_logic_gen

logic_block_bind

no_ccomp_logic_gen

send_ccomp

send_ccomp

 
Figure 20.  Signal Access Allowed From A Bind File 

Care must be taken to ensure signals are not accidentally 
covered in an invalid configuration. Undriven signals lead to 
assertion failures and can trigger false or illegal coverage. This 
can be fixed by either initializing these signals in the else 
condition or disabling the cover property based on the 
generating parameter as done in the examples in Fig. 21 below. 

 

 

 

 

 

 

 

 

 

 

 

 

 



// Example 1: Clear undriven signals 
// for invalid configurations. 
// A clock compensation is only sent if  
// CCOMP_EN is 1 
wire send_ccomp; 
 
generate if (CCOMP_EN == 1) begin:          
                               ccomp_logic_gen 
  assign send_ccomp =  
                 (ccomp_ctr == MAX_CCOMP_CNT); 
 
end else begin: no_ccomp_logic_gen 
  // zero out when CCOMP_EN is 0 so the  
  // bind file only samples valid values  
  // and assertions on this signal do not  
  // fire incorrectly 
  assign send_ccomp = 0; 
end endgenerate 
 
// Example 2: Disable properties for 
// invalid configurations. 
cover property  
  (@(posedge clk) disable iff (!CCOMP_EN) 
     (send_ccomp)); 

Figure 21.  Global Variables for Coverage 

F. Generate Block Considerations 
Another problem with generated code is that merging 

coverage for a signal across all configurations of a design is not 
always wanted. For example, consider the case where a FIFO 
has a parameterized depth which can be set to 8 or 32 and a full 
condition needs to be covered. Covering that the full signal was 
asserted might not be sufficient because it will be merged 
whether full is seen with a depth of 8 or 32; it is possible full 
might have only ever occurred when the depth was 8. If the 
parameterization affects the implementation, it is important to 
see both settings to ensure full correct functionality. These 
decisions must be made by someone familiar with the design 
architecture. A simple solution for this example is to cross the 
values of FIFO depth with the full flag set to 1. This is shown 
below in Fig. 22, which is also an example of replicating 
parameter coverage simply to provide access to a cross. 
// cg_fifo_full covers the full signal for 
// each valid value of FIFO_DEPTH 
covergroup cg_fifo_full; 
  cp_fifo_full : coverpoint (fifo_full); 
   
  // Coverage on FIFO_DEPTH is already 
  // managed within parameter coverage but  
  // is duplicated here to allow for use 
  // in the cp_fifo_full cross. 
  cp_fifo_depth: coverpoint (FIFO_DEPTH) { 
    bins min = {8}; 
    bins max = {32}; 
  } 
 
  cross cp_fifo_full, cp_fifo_depth { 
    ignore_bins ignore = 
       binsof(cp_fifo_full) intersect {0}; 
  } 
endgroup  

Figure 22.  Crossing Parameters with Functional Coverage 

Writing properties within modules covering parameterized 
code can be greatly simplified by the use of generate 
statements, which are also available. Note that generated code 
creates implicit hierarchy. This leads to unique coverage spaces 
that will not be merged. For busses where each bit needs to be 
covered independently, only one cover property needs to be 
written in a generate statement that can be reused on all bits.  
The example in Fig. 23 shows a signal with a width of 
BUF_DEPTH which indicates free locations in a buffer.  Each 
location needs to be detected as full and empty. 
// Based on the buffer depth, see each 
// buffer location as full and empty 
reg [BUF_DEPTH-1:0] free_locations; 
... 
 
generate  
  for (int ii=0; ii < BUF_DEPTH; ii++) begin 
    covergroup cg_location; 
      coverpoint (free_locations[ii]); 
    endgroup 
  end  
endgenerate 

Figure 23.  Generate Loop for Per Bit Bus Coverage 

Another use case for a generate statement is for 
multidimensional arrays.  The SRIO core can have a serial link 
width generated based on a user’s needs. For this, the 
LINK_WIDTH parameter indicates how many lanes are valid.  
In this example, each lane needs to maintain a count of how 
many bit errors were detected on the link and thus a 
multidimensional array of counters is used.  A cover property 
can be generated for only valid links to cover the error count 
reaches its max value as done in Fig. 24. 
// Check the counter reaches its max value  
// on each lane.  
reg [3:0] error_cnt [LINK_WIDTH-1:0]; 
... 
 
generate  
  for (int ii=0; ii < LINK_WIDTH; ii++) begin   
    cover property  
      (@(posedge clk)  
         (error_cnt[ii] == MAX_ERRORS)); 
 
  end  
endgenerate 

Figure 24.  Generate Loop for Multi-Dimensional Signal Coverage 

For both examples described, it is desired to not merge 
coverage. By using generate loops, hierarchy will be provided 
and results in not merging the coverage.  

III. PARAMETERS & CODE COVERAGE 
Normally, code coverage is used as a cross-check for 

functional coverage to ensure that all coverage points have 
been defined. Gaps in code coverage without any relevant 
functional coverage can also identify dead code. As mentioned 
earlier, while formal can detect this condition early in the 
design process for standard designs, this is not possible for 
non-parameterized designs. The only way to locate dead code 
or unhittable states in a parameterized code base is to run code 



coverage and review the output. This makes the code coverage 
review phase even more critical for a parameterized design. 

One additional problem for code coverage is that it is 
additional functionality provided by the vendors and not 
specified by the SystemVerilog standard. Vendors are free to 
specify code coverage as they see fit including any 
parameterized merging behavior. Users must examine all 
merged code coverage results in order to ensure that results 
provide the information they need for their design.  

We suggest code coverage tools merge gathered coverage 
metrics across generate/for loops. For most situations, the 
code’s functionality is what is being tested; multiple copies 
don’t provide more information about the correctness of the 
code. If it is the case that specific behavior matters per loop, 
embedded functional coverage can be bound in to track this. 
Note that this requires that generate signals be declared as 
global variables as described above. 

For generate/if or generate/case constructs, we suggest that 
vendors don’t merge the branches, even when the generate 
labels are identical for each branch. Because custom code 
appears in each branch, every branch needs to be fully 
exercised in order to ensure that the code is well tested. 

IV. CONCLUSION 
Parameters are well integrated into the RTL design subset 

of SystemVerilog. This enables a clean methodology for 
designing and maintaining a single code base, while still 
delivering multiple custom netlists. The addition of keywords 
like generate have eased the burden of designing with 
parameters.  

The solutions are not as straightforward within the 
verification space of SystemVerilog. The good news is that 
testbenches can still completely verify these parameterized 
designs; the bad news is that solutions still require a lot of 
overhead.  The availability of the configuration space in 
OVM/UVM environments has simplified parameter passing 

and access. Using a container object to collect all parameter 
values makes it easy to access these values anywhere in the 
design, including functional coverage groups. 

However, there is still work to be done, particularly for 
functional coverage, where handling variable code causes 
additional overhead, as shown previously. When verifying a 
parameterized design, coverage constructs grow in size.  
Additionally, work must be duplicated in order to correctly 
ensure that every variant is covered within a configurable 
environment. 

New additions to the SystemVerilog standard will greatly 
help with the problem. Until then, the tips and techniques 
outlined above will reduce the headache from a migraine to a 
minor annoyance. 
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