
Regressions in the 21
st
 Century – Tools for

Global Surveillance

David Crutchfield
CAD Engr Sr Principal

Cypress Semiconductor

Lexington, KY 40507

daac@cypress.com

Tushar Grupta
CAD Engr

Cypress Semiconductor

Bangalore, India

tugu@cypress.com

Frank Roberts
CAD Engr Sr

Cypress Semiconductor

Lexington, KY 40507

jfro@cypress.com

Venkataramanan Srinivasan
CAD Engr Sr Staff

Cypress Semiconductor

Bangalore, India

vse@cypress.com

Abstract-Verification of highly configurable and reusable IP and systems often falls into the critical path of the

development cycle. Higher scrutiny is placed on verification to provide information about status, coverage, trends, and

path to closure. This leads to metrics gathering within and among projects throughout a given company to provide

management pertinent data for making proper decisions with regards to resource allocation, hardware infrastructure,

and license utilization. This paper describes a system built and utilized at Cypress Semiconductor to gather metrics

across projects company-wide and make them available by anyone on demand. The paper will discuss how the metrics

are gathered, where they are stored, and how they are accessed.

I. INTRODUCTION

Shrinking technology nodes have caused complexity in semiconductor designs to increase substantially. At the

same time, the time-to-market window is shrinking due to product delivery requirements. These trends create

marketing and management challenges. Every activity in the design cycle must be as efficient as possible to meet the

requirements of the business. Verification tasks have a pivotal role in design development cycles; ensuring quality

silicon is delivered as quickly as possible. Verification often falls into the critical path and is scrutinized for status

and progression throughout the process. An agile semiconductor company must track verification activities as

closely as possible to ensure best in class verification process, resource management, compute infrastructure, and

license management. These systems and processes buttress growing business needs and shrinking time to market.

In a multi–national company, verification teams may be scattered around the world. These verification teams are

responsible for ensuring the quality of design projects for multiple business units, and running hundreds of

regressions that contain thousands of test cases to cover a wide range of functionality. Without metrics gathering

tools, verification engineers must manually process a huge amount of regression data, including logs, metrics, status,

and coverage, in order to generate high-level reports, trends, and statistics for tracking verification efficiency. High-

level reports, trends and data are necessary to provide proper feedback and drive continuous improvement. The

amount of data becomes overwhelming and unmanageable as the number of products, regressions, and tests grow.

What is needed is a centralized, web-based, verification monitoring and reporting system automated to provide

quick access to all process metrics to help answer any question that could arise while trying to improve the overall

verification process.

II. DEFINITION OF TERMS

JSON JavaScript Object Notation – A text-based object description format, often used for passing data

between programs.

LDAP Lightweight Directory Access Protocol – Stores user information and handles authentication for

most of Cypress’ online systems.

LSF Platform Load Sharing Facility – Workload management platform, job scheduler, for distributed

HPC environments.

SQL Structured Query Language – A language for specifying operations on a relational database.

UCDB Unified Coverage DataBase – A single persistent form for various kinds of verification data,

notably: coverage data of all kinds, and some other information useful for analyzing verification

results. The UCDB is used natively within Questa SIM.

Questa VM Questa Verification Management – Functionality within Questa SIM that offers a wide variety of

features for managing the regression. These features are built upon the UCDB.

VMS Verification Management System – Internally developed tool for gathering design and test bench

file information, compilation arguments, simulation arguments and test information, launching

each task, and collecting regression information and status.

Questa VRM Questa Verification Run Management – Mentor’s tool for launching verification tasks within a

regression.

III. SYSTEM

Fig. 1 highlights the entitled work environment for verification engineers within Cypress. Verification teams

from around the globe are executing regressions on sub-projects that will eventually be used to build higher level

systems including products for different customer applications. By storing information from those regressions in a

centralized database, project progress can be followed from anywhere within Cypress. Ideally, any data can be

accessed by authorized personnel through web queries. This data can be used to create charts and trends over time

to ultimately make educated decisions about current project delivery and better position the company for future

success through proper planning. This section discusses the make-up of the system.

Web Queries

Board of Directors

Engineering - CAD

Verification & Design

TeamsRnD

API

Server

WebServer

Regression

Metric DB

Trends & Charts

Verification Teams

Verif
icatio

n Teams

Internal Systems

Figure 1: Verification Monitoring & Reporting Entitlement

A. Existing Verification Framework

Years ago Cypress developed VMS (Verification Management System) to manage logic verification regressions

across the entire company. Along with the VMS tool, the project created a standard for design and test bench

organization, specification of tool arguments, test list creation, regression status reports, and coverage information.

VMS leverages Mentor Graphics’ Questa VRM (Verification Run Management) tool to launch compilation and

simulation jobs through a load sharing facility (LSF), and to generate and merge functional coverage information.

Development of the existing system helped standardize the functional verification work flow, but it did not solve

the problem of collecting and storing regression data. Tools to analyze and present regression data had been

developed on a per-project basis, but regression data was not readily available to engineers or managers not already

familiar with a particular project, and it was not easily accessible outside of the site where it was created.

Presentation of the data was still a manual process, and required engineers to manually generate trend plots of

coverage, pass/fail status, license usage, and hardware utilization for each project review. The process was very time

consuming, and often fell in the critical path of development.

To address these problems VMS 2.0 was created to automatically gather and store important project metrics for

each regression. The system gathers metrics to a central database, and provides a web interface that allows any

employee in the company access to regression data and trend plots for every verification project.

B. Overview of VMS 2.0

VMS 2.0 consists of a web application backed by a database of regression metrics. This application is build on

the Ruby on Rails web framework. Regressions executed through VMS have metrics automatically uploaded to the

database after each regression. The regression database organizes regression data by project, and associates

measurements of each metric with either a specific regression run or a specific simulation from that regression. In

addition to runtime metrics, such as coverage, license usage, and CPU usage, VMS 2.0 integrates data from other

Cypress systems to provide data related to project schedules and project defect tickets among other things.

The web interface allows users to browse projects and view a default set of trend plots, as well as raw data. Users

may view data from the project level, the regression level, or at the level of individual tests. Users can generate

custom trend plots of any regression metric, and may even plot multiple metrics on the same plot. Through the web

interface users can set up a custom landing page, a “dashboard”, that shows information only for projects they select.

Fig. 2 shows the architecture of VMS 2.0 and its various sources of information. Sources include the Verification

Management System (VMS), the Project Management System, and the Defect Tracking System. Data gathered will

be stored in the VMS 2.0 Database (VMS 2.0 DB), which is accessed through the VMS 2.0 Web Interface. VMS

2.0 utilizes Cypress LDAP servers to authenticate users, so that users may log into the VMS 2.0 system using the

same credentials as they would for other Cypress systems.

VMS 2.0

Ruby on

Rails

Project Management

System

H
T

T
P

Defect Tracking

System

LDAP

VMS 2.0 DB

SQL

H
T

T
P

VMS 2.0 Web

Interface

JSON /
HTTP

SQL

VMS

UCDB Tests

LSF
IC

Manage

CodeChurn

Figure 2: Application Architecture

C. Gathering Information

A major source of metric information is contained within a Unified Coverage Database (UCDB). This file is

native to Mentor Graphics’ Questa Simulator and is a single persistent form for various kinds of verification data,

notably: coverage data of all kinds, and test specific metrics useful for analyzing and recreating verification results.

A UCDB is generated for each individual test. In addition to standard metrics collected by Questa, VMS adds

information important to track project progress. For instance, the amount of changed code of the IP each week is

desirable. The overall picture of project closure is easier to see when coverage, number of passing and failing tests,

and the amount of code changing can be seen together. If coverage is increasing, the number of failures is

decreasing, and code is stabilizing, then project completion is believable. The opposite of any of these would push

out project completion.

Other information is gathered from various sources, such as, LSF, IC Manage, project management system, and

change and defect tracking system. Each of these is discussed below:

1. LSF – A parallel process within VMS actively monitors LSF for compute usage throughout the regression.

Queries to LSF gather metrics in addition to job status, including max active jobs, max pending jobs,

pending reason and wait time, and load statistics on the compute farm due to the regression. Data extracted

or derived from LSF is added to the regression level UCDB.

2. IC Manage– Cypress uses IC Manage for its IP repository. VMS obtains variant and configuration

information for the project being verified from IC Manage and stores it in the regression level UCDB.

VMS 2.0 uses this to tie data to a project revision.

3. Project Management System – An in-house web system that facilitates in managing design projects,

tracking planned and forecasted milestones, provides up-to-date project status like active, hold, deleted, etc.

It also provides information about key people involved in a design project, such as, chip lead and

verification lead.

4. Defect Tracking – An in-house developed web system that helps engineers track each defect identified by

cross-functional teams on a design throughout the company. This system provides information about how

many bugs are identified by a verification team on a particular design project and how many have been

closed by design teams on a weekly basis. Management teams from both design and verification use this

information to trend defect closure.

5. LDAP – Cypress uses LDAP to authenticate user access for all systems. By using LDAP VMS 2.0 allows

users to use the same login credentials as other Cypress applications. Additionally, user customized

dashboards are provided based on user login. Modifications to certain project information are limited

based on differing user privileges.

Once a full regression has completed a collection script within VMS is launched to gather desired metrics from all

sources that it has access to. Additionally, VMS 2.0 queries the Project Management and Defect Tracking Systems

for Cypress specific project information. This is depicted in Fig 3. The collection script creates a regression object,

extracts data from each source through different methods specific to each source, and updates the regression object

with found data. Finally it stores the regression object to a file. An interface script loads the regression object,

converts it to a JavaScript Object Notation (JSON) object, and sends the new object to the VMS 2.0 system using a

JSON-based API through the HTTP protocol.

Figure 3: Data Sources for VMS 2.0

Below are two tables listing metrics gathered by VMS and uploaded to the regression database for extraction

when needed. Table 1 includes regression level metrics. Table 2 provides metrics gathered for individual tests.

Table 1: Regression Level Metrics

Metric Description

passing Number of passing tests per regression

failing Number of failing tests per regression

new passing Number of newly passing tests vs. the last run

new failing Number of newly failing tests vs. the last run

tests warning Number of tests with warning status

tests unknown Number of tests with an unknown status

tests new warning Number of new tests with warning status vs. the last run

tests new unknown Number of new tests with unknown status vs. the last run

of tests Total number of tests contained in this regression

Functional coverage Total functional coverage achieved in this regression

Assertion coverage Total assertion coverage achieved in this regression

Code coverage Total code coverage achieved in this regression

Total coverage Total combined coverage of all coverage types achieved in

this regression

unique tests Total number of unique tests (no seed replication)

Number of tests Total number of tests including all seeds

RTL codechurn Amount of changed code of the RTL within the last week

TB codechurn Amount of changed code of the test bench within the last

week

Regression comments Comments stored for this regression

Run time Total run time of the regression

VMS 2.0

H
T

T
P

VMS 2.0 DB JSON /

HTTP

S
Q

L

VMS

UCDB Tests

LSF
IC

Manage

CodeChurn

SQL
Ruby on

Rails

Project Management

System

Defect Tracking

System

ICM workspace configuration IC Manage configuration for the workspace

CPU hours per regression Total number of CPU hours consumed by the regression

License-seconds per regression Total number of seconds licenses were consumed for the

regression

Average concurrent licenses per regression Average number of concurrent licenses for the regression

Max number concurrent licenses per regression Maximum number of concurrent licenses for the regression

Average CPU hours per project Average regression time in CPU hours for the regression

Wall clock time per-regression Total wall clock time for the regression

Set of hosts used per-regression List of hosts used from LSF for the regression

Table 2: Test Level Metrics

Metric Description

Functional coverage Total functional coverage achieved for a test

Assertion coverage Total assertion coverage achieved for a test

Code coverage Total code coverage achieved for a test

Total coverage Total combined coverage of all coverage types achieved for a

test

Simulation mode Simulation mode for a test

Test completion status Status of test at completion time

Run time Total run time for a test

Launch time Launch time on LSF for a test

Completion time Completion time of a test

CPU hours per test Number of CPU hours consumed by a test

Average per-test time waiting on resources Average amount of time a test waited on resource availability

Virtual memory per test Amount of virtual memory allocated for a test

Memory consumed per test Actual memory consumed by a test

Host used by each test LSF host used by a test

Elaboration time per-test Total simulation elaboration time for a test

Pending time per-test Total pending time for a test

D. Storing Information

The JSON data sent from the collection script is received in the server and stored as a hash of information. In this

implementation the hash has data stored at both the regression level as well as test level. Within the regression hash,

individual test hashes are stored containing each test level item. Once the server receives this hash, an API is called

to create the regression and test level objects in the database and store the corresponding data at the appropriate

level. Additionally, links are created from each test to the regression database. Similarly, it links the regression to

the project under which it has been uploaded. This database is constantly updated with project information

throughout the company as regressions are completed. Once a new project is created, an automated email is sent to

the project lead requesting additional input with regards to roles associated with the project. Fig 4. provides a

simple overview of a project and its regression hashes. In this case Project1 has 1 through N regression hashes.

Each regression hash has 1 through N tests. For each test hash, test code coverage, simulation time, and CPU time

are shown as elements of the hash. In a real regression all elements in Tables 1 and 2 would be included for each

test. These metrics may be accessed and plotted as needed.

 Figure 4: Simple Hash Representation

E. Extracting Information

Users access VMS 2.0 through the web interface. The VMS 2.0 web interface is built using Ruby on Rails. Ruby

on Rails is a web development framework that implements a Model-View-Controller (MVC) paradigm. Fig. 5

provides a high level representation of the relationship. A model is a software representation of a database table. In

VMS 2.0, Projects, Regressions, Tests, and Users all have models. The model represents the structure of the data

associated with each of these objects. A view is a web page template that Ruby on Rails fills in with information

from the models and then sends to a client web browser. A controller is the code responsible for processing model

information so that it is ready to insert into a view.

Figure 5: MVC Architecture of Ruby on Rails

Project 1

Regression
1 Hash

Test 1

Test 2

Test N

Regression
2 Hash

Test 1

Test 2

Test N

Regression
N Hash

Test 1

Test 2

Test N

Test 1 Hash

code cov

sim time

CPU
time

Test 2 Hash

code cov

sim time

CPU
time

Test N Hash

code cov

sim time

CPU
time

code cov

X

sim time

Y

CPU time

Z

When a user requests a certain page from VMS 2.0 (via a web browser), say “project_1/regressions/RTL_reg_50”,

Ruby on Rails routes the request to the Regressions controller, and passes along the project name “project_1” and

the regression name, “RTL_reg_50”. The Regressions controller instantiates a project model (for project_1) and a

regression model (for RTL_reg_50). Ruby on Rails automatically retrieves data for these two models from the

database. The Regressions controller then loads the single regression view (a template page for showing

information on a single regression), and renders the view based on information from the project_1 and RTL_reg_50

models. The final rendered version of the view is in HTML and Javascript, which can both be parsed and displayed

by the web browser. Ruby on Rails sends the rendered view back to the web browser to complete the request.

IV. PRESENTATION

Once data has been gathered and stored in the database it is accessible throughout the company using the VMS

2.0 Web Interface as shown in Fig. 6. Through HTTP queries VMS 2.0 is directed to extract certain information

from the database.

Figure 6: VMS 2.0 Database Access

Once a user has logged in, their User Dashboard will be displayed and all projects they have subscribed to are

visible. Users can subscribe or unsubscribe to projects as desired. Through LDAP authentication users may be

limited to exactly what they have permission to view. Fig. 7 shows an example User Dashboard. Here Code

Monkey has three projects that he has subscribed to and they are listed as project_1, project_2 and project_3.

Milestone dates and progress are indicated as IPSX columns.

Figure 7: Initial User Dashboard

The tab “All IP Projects” is a link that the user can select to see all currently tracked projects in VMS 2.0. This is

shown in Fig. 8. For each of these projects, if desired, the user can enable subscription by selecting “Subscribe” for

a given project. By doing so, enables the selected project to be listed by default on the User Dashboard. The

columns for each project listed are the same as that of the User Dashboard.

VMS 2.0

Ruby on

Rails

VMS 2.0 DB HTTP
VMS 2.0 Web

Interface SQL

Figure 8: IP Project Dashboard

From the User Dashboard in Fig. 7 there is another tab, “All Chip Projects”, that allows the user to see products

that are being tracked through VMS 2.0. This is shown in Fig. 9. As with the IP Project Dashboard a user can select

which products they would like to subscribe to. Once selected, each subscribed product will automatically be

provided in the User Dashboard when they return to that page.

Figure 9: Chip Project Dashboard

In any of the project dashboards a user can select links provided for each project or product. Selecting the link

routes the user to regression information for the selected project. Fig. 10 shows results for Project 1 listed in the IP

Project Dashboard. At this point VMS 2.0 has stored fifty regressions for this project. Default columns of this

dashboard are Total Coverage, Total Tests, Max Concurrent Jobs, Max Concurrent Licenses, Design Churn, TB

Churn, Config Used, Total Regression Time, Work Week of Upload, and Comments. As can be seen, RTL_reg_46

has 131 tests and generated 98.65% Total Coverage. RTL_reg_47 added two more tests and generated 99.36%

Total Coverage.

Figure 10: Project 1 Regression Dashboard

On the same web page as the Regression Dashboard a default plot of passing tests, coverage and regression run

times over the life of the project is given. Fig. 11 presents the plot. In this example 50 regressions were executed to

close coverage of 100%. Regression run times were over 100 min at the last data point.

Figure 11: Project 1 Regression History Plot

Each regression is listed as a link and can be followed to get test information. Selecting the link RTL_reg_1

opens the dashboard shown in Fig. 12. In this dashboard each test for the regression is provided along with test

specific metrics. Currently listed metrics are Test Mode, Status, Seed, Elab Time, Sim Time, Sim Memory, Sim

V.Memory, LSF ID, Host, CPU Time, Real Time, and Wait Time.

 Figure 12: RTL_reg_1 Test Dashboard

V. USAGE

Regression metrics and historical data are used in several ways at Cypress. Some of the use cases are listed in

Table 3. The main goals for any historical data collection are to deliver projects predicatively on time and properly

set customer expectations. Here usage is divided into three main categories. First, during project planning,

historical data is important in accurately predicting what the development cycle will be for comparable projects. By

looking at calendar time, the number of man weeks of effort (how many engineers for how long), license

consumption over time, and hardware consumption, project managers and leads make informed decisions when

allocating valuable resources. They can take this data and determine if the number of licenses will suffice, if better

license allocation among projects would help, if more hardware is needed, or if more engineers are needed to meet

certain targets. Knowing which knobs to turn based on historical data can be invaluable to setting and meeting

customer expectations.

Second, during a project it is important to measure resource usage. Data being tracked includes the number of

engineers contributing, licenses consumption, hardware consumption, and hardware efficiency. As stated with

project planning, it is important to know which knobs to turn when trying to control schedule. If a project schedule

is slipping due to license shortages, hardware issues, or other resource constraints then action can be taken early if

regression metrics are readily available.

Finally, throughout project development, multiple status meetings with verification and design teams take place

within Cypress. In the past verification engineers have been required to provide weekly status memos identifying

the number of new tests created, how many tests are passing and failing, how many planned tests have not been

completed, and what the current attained coverage is. In addition to weekly status meetings data was required for

major milestones. For each of these data was manually collected by project leads and used to create trends. This

step is all but eliminated with VMS 2.0. Data is always available for project leads or management to view and

extract as needed. Furthermore, meetings that are required are shortened as ambiguity can no longer be argued

when raw data is readily available.

Table 3: Metrics/Regression Data Usage

Usage Category Metrics Entitlement

Project Planning Past project performance:

calendar time

Accurately predict the development cycle based on past

performance

Set and meet customer expectations

Resource usage:
man weeks of effort

license consumption

hardware consumption

Understand what knobs to turn to improve future performance:
number of licenses

license allocation

more hardware
hardware distribution across sites

more engineers

Current Projects in Progress Resource usage:
Number of engineers

License consumption

Hardware consumption
Hardware efficiency

Understand what knobs to turn to improve current performance:
get more licenses

better license allocation

more hardware
is hardware working properly

is hardware fully utilized

more people needed

Status Meetings Rate of progress:
New test development

Tests passing

Tests failing
Tests yet to be completed

Coverage closure trend

Accurately track when a project will close

Validate predicted milestones

Eliminate weekly status documentation (memos)

Reduce data collection at major milestones (dashboards are

automated)

Minimize required status meetings with entire team (data is
always available)

Shorter meetings (data is king, no ambiguity)

VI. Conclusion

Cypress historically has struggled to take a data-based approach to verification project planning. Data

from previous verification projects was spread out across multiple projects on multiple continents, and no

means for making the data readily available to the organization as a whole. Even when access to regression

metrics was available, no standard set of analysis methods or presentation formats existed, making the data

difficult to interpret consistently.

VMS 2.0 solves these problems. By integrating with the verification run management tool (VMS),

regression metrics can be collected to a single, central database. The VMS 2.0 web interface provides a

consistent presentation format for the data, and the plotting functionality provides the same set of analysis

tools to everyone that uses the application. VMS 2.0 is accessible by anyone with a Cypress LDAP login

and access to a computer on the Cypress network, which includes nearly every single employee.

VMS 2.0 is a critical tool in the verification planning process. VMS 2.0 allows project planners to be

better informed when making decisions about the time and resources required to complete a verification

project. The ability to track progress on verification projects is much improved, as it is no longer a manual

process. Management can access up to date information about project progress at any time, for any project,

without requiring interaction from the project owner. Tracking and analyzing resource usage for each

project, enables better decisions when adjusting resource allocations, and provides a better understanding of

how the adjustment may impact project schedules.

The intent in this paper is not only to show how a particular problem was solved within the Cypress

verification organization, but also to provide a model that other organizations can use to solve similar

problems. This paper provides a high-level description of the problem and a specific solution. In the interest

of assisting others to implement similar systems, we have included a more detailed description of the Ruby

on Rails application design in the appendices to this paper. These descriptions, in combination with a good

Ruby on Rails tutorial (Michael Hartl’s at www.railstutorial.org recommended), should provide one with a

good starting point for developing a similar application.

http://www.railstutorial.org/

Appendix A – Ruby On Rails Models

Although this appendix includes a basic description of how to interpret the data it contains, it will

be much easier to understand with the context of a Ruby on Rails tutorial (try the one at

www.railstutorial.org). We recommend that you at least read section 1.3.3, which explains the Model-View-

Controller (MVC) paradigm, before reading this appendix.

A model is the Ruby (software) representation of a table in a database. The model includes all of the

columns in the associated table (fields), as well as information on relationships that an entry in the table has

with entries in other tables.

1) Project

Fields: name, ips1, ips2, ips3, ips4, latest_cdt_report

Relationships: Has many regressions, has many CDT reports, may belong to a parent IP, has 0 or more

subordinate IP.

2) Regression

Fields: name/tag, func_cov, assert_cov, code_cov, total_cov, # pass, # fail, # warning, # unique tests, #

new pass, # new fail, # new warning, # contributing, # non-contributing, # with random seed,

code_churn, ws_config, comments, CPU hours, licenses used, hosts used, license seconds

Relationships: belongs to a project, has many tests

3) Test

Fields: name, mode, seed, status, LSF id, LSF host, cpu time, real time, sim time, sim vmem, sim mem,

completion time, time spent waiting on resources, elaboration time

Relationships: belongs to a regression

4) User

Fields: name, role, initials

Relationships: has many projects, has many regressions, has many custom views, has one preferred

view, has many custom plots

Appendix B – Ruby on Rails Controllers

Although this appendix includes a basic description of how to interpret the data it contains, it will be

much easier to understand with the context of a Ruby on Rails tutorial (try the one at www.railstutorial.org).

We recommend that you at least read section 1.3.3, which explains the Model-View-Controller (MVC)

paradigm, before reading this appendix.

Controllers are the “brains” of a Ruby on Rails application. A controller consists of a set of methods,

each of which knows how to assemble the information necessary to render a certain page view. This

appendix provides high level descriptions of the methods implemented for each controller in VMS 2.0. In

this context, a word prefixed with the “@” symbol indicates the name of a Ruby instance variable. For

example, @projects may refer to the list of projects that a controller pulls from the database to satisfy a

particular web request.

1) UsersController Methods:

index: Redirect to the user’s preferred dashboard page.

show: Retrieve specified user data and set @user for the view.

new: Set @user to a new instance of the User model.

create:

Attempt LDAP lookup for user

If lookup is successful, create new user instance and save it to the DB.

If the save is successful, sign in and redirect the user to the default user dashboard.

If either the lookup or the save is unsuccessful, redirect the user to the default index page.

2) ProjectsController Methods:

index: Retrieve all projects. Set @projects for projects index view.

show: Retrieve the specified project. Set @project for the Project summary page.

new: Set @project to a new instance of the Project model.

edit: Retrieve the specified project. Set @project for the project edit view.

create: Create a new project instance, fill in info, and save the project to the DB.

update: Retrieve the project, fill in changed info, and save the project o the DB.

destroy: Remove the specified project from the DB (requires authentication).

3) RegressionsController Methods:

index: Retrieve recent regressions. Set @regressions for the regressions index page.

show: Retrieve the specified regression. Set @regression for the regression summary view.

destroy: Remove the specified regression from the database. (requires authentication)

4) TestsController Methods:

index: Retrieve recent tests. Set @tests for the tests index page.

show: Retrieve the specified test. Set @test for the test summary page.

destroy: Remove the specified test from the database. (requires authentication)

5) PlotsController

index: redirect to create

new: Set @custom_plot to a new plot object for the custom plot creation page.

create: Save the new custom plot to the database.

show: Set @custom_plot for use by the custom plot rendering page.

edit: Set @custom_plot to a new plot object for the custom plot editing view.

update: Update the selected custom plot with new information.

destroy: Delete the selected custom plot object.

Appendix C – JSON API Controllers

Although this appendix includes a basic description of how to interpret the data it contains, it will

be much easier to understand with the context of a Ruby on Rails tutorial (try the one at

www.railstutorial.org). We recommend that you at least read section 1.3.3, which explains the Model-View-

Controller (MVC) paradigm, before reading this appendix.

In addition to the standard web-browser interface, VMS 2.0 provides a JSON/HTTP API to allow other

scripts and applications to access information from the VMS 2.0 database. The API is implemented as part of

the Ruby on Rails application, but has a separate set of controllers from the web interface. The most

important difference between these controllers and the web interface controllers is that these controllers

convert the data into JSON to send to the client, instead of using a Ruby on Rails view to render HTML.

1) ProjectsController

create: Instantiate a new project object with supplied information. Save to the DB.

show: Retrieve the specified project and render it to JSON.

update: Retrieve the specified project object, add/replace data, and save it to the database.

lock: Disallow updates by unauthenticated API sessions.

unlock: Allow updates by unauthenticated API sessions (requires authentication).

destroy: Delete the specified project object (requires authentication).

2) RegressionsController

create: Instantiate a new regression object with supplied information. Save to the database.

show: Retrieve the specified regression object and render it to JSON.

update: Retrieve the specified regression object, add/replace data, and save it to the database.

lock: Disallow updates by unauthenticated API sessions.

unlock: Allow updates by unauthenticated API sessions. (requires authentication)

destroy: Delete the specified regression object (requires authentication, must be admin to remove

regression with tests).

3) TestsController

create: Instantiate a new test object with supplied information. Save to the database.

show: Retrieve the specified test object and render it to JSON.

update: Retrieve the specified test object, add/replace data, and save it to the database.

lock: Disallow updates by unauthenticated API sessions.

unlock: Allow updates by unauthenticated API sessions (requires authentication).

destroy: Delete the specified test object (requires authentication).

4) UsersController

create: Instantiate a new user object with the supplied information. Fails if LDAP lookup is not

successful (requires authentication and admin).

show: Retrieve the specified user object and render it to JSON.

update: Retrieve the specified user object, add/replace data, and save it to the database (requires

authentication).

destroy: Delete the specified user object (requires authentication and ownership or admin).

Appendix D – Ruby on Rails Views

Although this appendix includes a basic description of how to interpret the data it contains, it will be

much easier to understand with the context of a Ruby on Rails tutorial (try the one at www.railstutorial.org).

We recommend that you at least read section 1.3.3, which explains the Model-View-Controller (MVC)

paradigm, before reading this appendix.

Each Ruby on Rails model has a set of associated views, that is, Ruby template files that generate

HTML for a web page.

1) Project

index: Lists all available projects.

summary/show: Displays the project summary page for this project.

edit: View/edit project information.

2) Regression

index: Shows a list of recent regressions on all projects.

summary/show: Displays the regression summary page for this regression.

3) Test

index: Shows a list of recently completed tests.

summary/show: Displays details for this test.

