
                      Registering the standard: Migrating to the UVM_REG code base 

Sachin Patel, 

Broadcom, UK 

sachinp@broadcom.com 

 

Amit Sharma, 

Synopsys, India 

amits@synopsys.com  

 

Adiel Khan, 

Synopsys, UK 

adiel@synopsys.com  

 

 

ABSTRACT 

In June 2010, the Accellera VIP TSC released the "UVM Early 

Adopter" version of the Universal Verification Methodology 

(UVM).  Subsequently, UVM1.0 was released in the beginning of 

the year to coincide with DVCON 2011. The UVM1.0 release 

added a lot of anticipated and relevant functionalities, one of the 

most significant additions were the standardization of DUT 

register layer verification.  This was the first time the three major 

verification vendors (Cadence, Mentor, Synopsys) along with 

multiple semiconductor organizations had aligned on a single 

IEEE1800-SystemVerilog base class library implementation with 

associated methodology. For the methodology to enable horizontal 

and vertical reuse it was imperative that the industry finally 

resolve on having one standard implementation and mechanism 

for verifying DUT registers and/or memories. Therefore, it was 

crucial that the standardization effort was extended to the 

abstraction level for DUT registers verification.  

In this paper, taking the case study of a block level design under 

verification component MMU (Memory Management Unit), one 

will walk through the different steps in the migration of a legacy 

OVM RGM Register package to the standard UVM1.0 register 

model (UVM_REG). These steps will encompass the generation 

of the abstracted register model from the input specifications, 

along with connecting the UVM_REG to the verification 

environment encompassing the mapping and translation of 

different APIs to those available within the UVM_REG code base. 

The analysis and presentation of required techniques would be 

done so as to abstract away the divergences in the two different 

register-codebases so that similar techniques can be leveraged in 

the migration of verification environments using other legacy 

register packages and to ensure that engineers have the most 

efficient means of migrating their complete environment to the 

UVM standard and maximize the benefits of doing so. 

Categories and Subject Descriptors     

General Terms  

Documentation, Performance, Design, Standardization, 

Languages, Theory, Legal Aspects, Verification.  

Keywords 

 Testbench, Register Package, UVM, SystemVerilog, RAL 

1. INTRODUCTION 

Every design has host-accessible registers. These registers must be 

documented, implemented and verified.  Since they have well-

defined functionality, the process of documentation, 

implementation and verification can proceed from a common 

source. A standard register package on top of the infrastructure 

provided by a base class methodology can enable user testbenches 

to leverage the functionality already provided thus making them 

easier to implement correctly and more efficiently. With UVM-

1.0, standardization effort was extended to the abstraction layer 

for DUT registers verification.  

It has been noted that UVM quickly gained acceptance as 

organizations moved from OVM towards a UVM based flow. The 

move to UVM become more rewarding for OVM users, as they 

could migrate from their vendor or internal specific legacy register 

packages to the standard adopted by the UVM verification 

community.  Thereby, they reaped the benefits of having a 

standard view of register abstraction layer verification. As users 

migrate from non-standard packages, it is important to understand 

the challenges that arise during such a migration process. By 

documenting the efforts undergone one by successful migrations, 

one can provide a proven path for future users wishing to migrate 

towards the UVM standard register model. 

2. REGISTER PACKAGES  

When a design contains a few dozens of registers, creating—and 

more importantly maintaining—the testcases and firmware 

emulation routines can be done manually. Using symbolic values 

for addresses and bit offsets can take care of a lot of maintenance 

effort. But when the number of registers is in the hundreds, even 

in the thousands, creating—yet alone maintaining—the register 

correctness testcases and the firmware emulation routines used by 

the other functional tests becomes overwhelming. The task gets 

even more daunting when it becomes necessary to migrate 

between block-level environment, firmware emulation or tests to a 

system-level environment: the physical interface used to access 

the register may no longer be available. The Register Abstraction 

Layer isolates the upper layers of a verification environment and 

the testcases running on top of it from the implementation details 

of accessing the registers and memories in the design. The 

abstraction model would have appropriate hooks so that it can 

easily be integrated in an existing verification environment. As 

seen below, most packages would use an adapter layer to convert 

generic register transactions to that understood by the User BFM 

(figure1). The adapter would also be responsible for translating 

the transactions collected from the Bus back to a generic register 

transaction that would be fed back to the abstraction layer. 

 

Figure 1:  A Register Abstraction Layer for Register 

Verification 

Typically the register packages come with an executable spec. A 

generator would generate the Abstraction Model from the 

executable specification. Hence, the authoring of the RAL model 

by hand is not required and any change in the specification is 

translated automatically to the model by the generator.  

Not only does the RAL simplify the maintenance and verification 

of accessing registers and memories inside the design, it also 

simplifies writing the code that need to access them. And this 

simpler code is unaffected by any changes in physical interface, 

address, location or bit offset of a field as all of these non-

functional implementation details are taken care of by the 

automatic generation of the design-specific RAL model based on 

any modification to the executable specification. This benefit is 

demonstrated in Example 1 and Example 2. 

mailto:sachinp@broadcom.com
mailto:amits@synopsys.com
mailto:adiel@synopsys.com


Example 1: Directly Accessing Fields in a Register 

env.ahb.read(`MODE_CONFIG_REG_ADDR, val); 
val[`PROTECTED_MODE] = 1’b0; 
env.ahb.write(`MODE_CONFIG_REG_ADDR, vall); 

 

Example 2: Accessing Fields in a Register through RAL 

env.ral.protected_mode.write(0); 

Thus, across verification teams, it has been accepted that adopting 

a Register Abstraction Layer can significantly improve 

productivity. The benefits extend from the automatic generating of 

the model from a specification to the abstracted mechanism for 

accessing and verifying the correct operation of the registers, as 

well as using other package specific capabilities to converge on 

the register verification tasks. 

2.1 CREATION OF THE STANDARD 

The inclusion of a register package was accepted as one of the key 

requirements for UVM-1.0 The Accellera Committee performed 

its due-diligence by studying the existing OVM and VMM register 

packages. The outcome of the study was a single solution for 

register-layer verification labeled as the UVM_REG. There were 

specific features and capabilities which were deemed to be 

integral by the committee and the verification community. It was 

also desired that the base package was significantly mature and 

leveraged successfully across multiple large projects.  The base 

VMM Register Package suitably enhanced for UVM and  with 

contributions from Mentor Graphics  met all the requirements and 

was accepted as the UVM_REG package. 

 

2.2 UVM REGISTER LIBRARY 

OVERVIEW 

The UVM Register Layer is set of base classes that can be used to 

create a high-level, object oriented abstraction model of the 

registers and memories inside a design. The library of base classes 

can be leveraged to abstract the read/write operations to the 

registers and memories in a DUV. It also includes a sequence 

library which can be used to verify the correct implementation of 

the registers and memories in the design. It may also be used to 

implement a functional coverage model to ensure that every bit of 

every register has been exercised, as well as to verify the different 

combinations of values being driven to the DUT registers. One 

key aspect of the abstraction mechanism is to enable a smooth 

migration of verification environments and tests from block to 

system levels without requiring any source code modification. 

The hierarchy blocks composing of the abstraction model 

correlates to the design hierarchy. The smallest unit that can be 

used to represent a design is the block. A block generally 

corresponds to a design component with its own host processor 

interface(s), address decoding, and memory-mapped registers and 

memories.  Blocks can comprise of registers, memories and 

register files, as well as other blocks as shown below. Multiple 

fields comprise a register. The snippet in the left in figure 2a 

shows how UVM REG code will correlate to the actual design 

register hierarchy on the right. The access to the design register 

elements hence can use a very similar hierarchical path. 

 

Figure 2a: UVM Reg Code correlated to Design Hierarchy 

Figure 2b shows a pictorial representation of the abstraction model 

corresponding to the actual DUT registers in  Figure 2a. 

 

Figure: 2b : Pictorial representation of the abstraction model 

The UVM Register model is typically generated from a input 

specification. Model generators work from a specification of the 
registers and memories in a design and thus are able to provide an 
up-to-date, correct-by-construction register model. For verifying 
thousands of registers as well as maintaining them, model 
generators are a must-have in any verification setup. Without 
them, the verification engineer will have to update the Register 
Model by hand to reflect any change in the input specifications. 
This can translate to a lot of redundant activity especially during 

the initial phases of a design ne verification environment bring-up. 
The model generators themselves as well as a standard input 
specification are outside the scope of the UVM library. 
 
Once the model is generated, it must be integrated with the bus 
agents that perform and monitor the actual read and write 
operations. This is done though an adapter mechanism were the 
generic read write sequences resulting from RAL model accesses 
are converted to sequences on the host sequencer. The 

transformations are in the opposite direction for transactions on 
the bus which needs to go back to the register model. Once, 
integrated 

 

 

Figure 3: UVM REG Model integrated in a UVM environment 

The UVM Register Library provides a set of useful pre-defined 

sequences that helps to automate a lot of desired functionality   to 

verify the proper operation of the registers and memories in the 

DUV. Once integrated, the user can execute these set of pre-

defined sequences and create their own user defined sequences 

that can create accesses at a high level of abstraction as shown 

below: 

soc.ip0.ax.write(a6’hABCD); 

soc.ip1.ram.write(15, 32’h0); 

The Register Library provides the necessary API to control the 

instantiation and sampling of various coverage models though it 

doesn’t include any as a part of the specification. The model 

generator would generally generate different kind of coverage 

models based on the input specifications. 

3.  Adoption of UVM REG package 

Here is a quick overview of the steps required to generate a RAL 

model of the registers and memories in a design, integrate this 

model in a UVM verification environment and then to verify the 

implementation of those registers and memories. 



3.1 Input specification and Model Generation 

 The first step is to create the abstract model of the registers in the 

DUT. Once the registers and memories have been specified in a 

one commonly use specification called the Register Abstraction 

Layer Format (RALF) or IPXACT, the UVM Register Model 

generator, ralgen [10] is used to generate the corresponding RAL 

model. There are tools from multiple vendors which can help 

generate the UVM Register Model from multiple other input 

specifications. The following command will generate a 

SystemVerilog UVM REG model of the specified block in the file 

ral_blkname.sv: 

Command: 

% ralgen –l uvm -u –t blkname blkname.ralf 

The generated code is not designed to be read or subsequently 

manually modified. However, the structure of the generated RAL 

model demonstrates how it mirrors the register hierarchy in the 

DUV. The user can create the Register Model by hand but that is 

strictly not recommended.  

3.2 Creating the Adapter Layer 

The role of the integrator is to provide the adapter layer. This is 

one of the key steps that require user involvement when one seeks 

to leverage the UVM Register Library in a verification 

Environment. A register model is not aware of the physical 

interface used to access the registers and memories. It issues 

abstract register operations at specific addresses but these abstract 

operations need to be executed on whatever physical interface is 

provided by the DUT.  

An adapter class must be provided to translate between the 

abstract register operation issued by the register model and the 

physical transaction executed by the bus sequencer. The adapter 

must be extended from the uvm_reg_adapter class and implement 

the reg2bus() conversion method.  

 

 

Figure 4: UVM REG Adapter for hooking up the REG Model 

 

The ‘uvm_reg_adapter’ class is provided for converting between 

uvm_reg_bus_op which is a generic Register sequence to one 

which can execute on the host sequencer. Extensions of this class 

must implement the reg2bus() and bus2reg() methods to convert a 

uvm_reg_item to the uvm_sequence_item subtype that defines the 

bus transaction and vice versa . The functionality provided in the 

adapter class is specific for different physical interfaces and hence 

has to be coded appropriately.  Each abstracted register access 

function calls one of these methods implicitly when using the 

frontdoor mechanism.  

3.3 Integration the Register Model 

The register model is instantiated in the environment’s build() 

method using the UVM class factory. To enable vertical reuse, the 

register model is only instantiated if it has not already been 

specified from a higher-level environment.  

ral_block_IP model; 

… 

model = ral_block_IP::type_id::create("model",this); 

model.build(); 

 model.lock_model(); 

The next step is to associate the bus sequencer with the 

corresponding address map in the register model. This sequencer 

will provide access to the DUT’s physical interfaces. The bus 

sequencer is associated, along with the required adapter class, with 

its corresponding address map  

         reg2host_adapter reg2hsot = new; 

         model.default_map.set_sequencer(host.sqr, reg2hst); 

         model.default_map.set_auto_predict(1); 

 

This is where the ‘Adapter’ class created in the previous section is 

instantiated. The ‘set_auto_predict()’ method is called to enable 

automatic update of the Register Model immediately after any bus 

read or write operation via this map. It is the simplest prediction 

mode albeit not as reusable. The explicit prediction mode requires 

the additional integration of a monitor. Using a monitor updates 

the register model based on all observed read and write operations, 

not just those performed through the register model.  

3.4 Executing pre-defined functionality and 

creating user-defined sequences 

The Functionality delivered by pre-defined sequences include:  

reading all the register in a block and check their value is the 

specified reset value, bit bashing all registers and checking results 

based on the field access policy specified for the field containing 

the target bit and other bashing all registers, doing a memory walk 

and other such generic functionality. The user can create a test that 

runs a pre-defined sequence specified on the command line as 

specifed here : 

Command : simv+UVM_TESTNAME=cmdline_test \ 

        +UVM_REG_SEQ=uvm_reg_hw_reset_test 

 

 Some of the predefined test sequences require back-door access 

be available for registers or memories. 

 

4. MIGRATING TO UVM REG FROM 

CADENCE RGM PACKAGE: A CASE 

STUDY 

Here, we will taking the case study of a block level design under 

verification component MMU (Memory Management Unit), and  

walk through the different steps in the migration of a legacy OVM 

RGM Register package to the standard UVM register model.  

4.1 THE DESIGN UNDER TEST FEATURES 

The MMU DUT is responsible for the implementation of the 

virtual memory and translating virtual address to physical address 

before actually initiating read/write access of the physical 

memory. It has both a AXI Master and Slave Interfaces. The 

memory is connected via the MMU AXI master interface.  The 

Memory contains the various Page table entries which the MMU 

DUT reads for TLB (Translation Lookaside Buffer) misses. The 

MMU Registers are programmed through an APB interfaces. The 

important registers are:  

 MMU_control : Turns MMU on/off 

 PAGE_TABLE: This is the  base address register which 

is a pointer to base address of page table 

 TLB_clear : Clear entries of TLB buffer 

 TLB Hits/ TLB misses : Counter for number of hits and 

misses for TLB entries, 

There are other registers for Debug and Stalls 



 

4.2 OVERVIEW OF THE RGM VERIFICATION 

ENVIRONMENT 

The Original MMU Verification Environment was based in OVM 

and the Cadence supplied Register and Memory Model (RGM) 

was the primary vehicle for register abstraction and verification. 

Figure 5 depicts the UVM verification Environment leveraging 

the UVM Register Package. 

 

Figure 5: OVM MMU Verification Environment 

The programming interface is through the APB driver in the APB 

OVC. User tests invoke would register write sequences using the 

OVM RGM abstraction model which will program MMU 

registers. AXI sequences will pre-program MMU page Table 

entries in sparse memory. The sequences also read in MMU 

registers to generate valid/invalid contains of MMU page table in 

memory. There is a scoreboard for comparing contents of memory 

against actual memory read write observed on AXI master bus.  

The RGM package uses the OVM sequence mechanism to 

randomize and drive register and memory sequences. In a 

sequence, you can randomly select a register object from the 

RGM_DB, randomize it, set the access direction (read or write), 

and perform the operation.  These user sequences are executed on 

the uvm_rgm_sequencer 

4.2.1 THE BUS INTERFACE UVC 

The RGM sequencer is layered on top of an existing bus master 

sequencer which in this case was the APB sequencer. As in other 

register packages, every read and write operation is translated to 

protocol-specific bus transactions. These register operations are 

isolated from the protocol-specific bus transactions. The RGM 

sequencer which is connected to the bus monitor runs the adapter 

sequence. The adapter sequence converts the register operations to 

protocol specific bus transactions through the execute_op task [10] 

 

Figure 6: Translation of register operations to bus specific 

ones 

Similarly the adapter sequence has another method called the 

process_responses() which continuously monitors the response 

from the bus monitor, and passes it back to the RGM sequencer. 

This is the process for further comparison/operation. 

 

Figure 7: Bus transactions to RGM response transaltion 

4.2.2 THE INTERFACE UVC MONITOR AND 

THE MODULE UVC 

The APB monitor is used to detect a transaction on the APB Bus. 

At that point, the transaction information is sent to the module 

UVC/OVC. The Module UVC takes the transactions collected by 

the interface UVC monitor and decides what action to execute on 

the register and memory model. In the case of the MMU 

environment, the TLM analysis port from the APB monitor 

accepts the APB transfers and pushes the information into the 

register DB. In the case of a write access to a register or memory 

location, the shadow register is updated. When a read access is 

detected on the bus, the ‘implementation’ accesses the RGM 

model and compares that with the read result from the DUT.  

4.2.4 THE ENVIRONMENT 

The following components are instantiated in the MMU 

environment in addition to the AXI and APB OVCs: The RGM 

DB, the Register sequencer and the TLM port for updating the 

register database with APB transfers. The Bus Monitor is 

connected to the REGMEM:TLM. The RGM_sequencer is 

connected to RGM_DB. The Response port of the APB sequencer 

is connected to the Response Export of the RGM sequencer     

 

Figure 8:  RGM instantiations and connections 

 

4.3 VERIFICATION ENVIRONMENT 

MIGRATION  

The Verification environment was originally in OVM. It was 

converted to UVM-EA using the OVM_UVM_Rename.pl script 

which is a part of the Accellera UVM distribution as well the 

Synopsys UVM distribution. Simultaneously, Synopsys provided  

UVM-EA to UVM-1.0 script was used for converting 95% of the 

environment to UVM-1.0. Minimal hand modifications were 

required to complete the full migration to UVM-1.0. The next step 

was to migrate from the proprietary RGM flow to the UVM Reg 

standard. 

4.3.1 THE INPUT SPECIFICATIONS 

IPXACT based register representation was the general format 

used for RGM Model generation. If the IPXACT file is available, 

‘ralgen’ from Synopsys can generate the UVM Reg model for the 

same. However, in this case, the IPXACT file was not available. 

There were specific challenges in adding constraints to the 

generated register model, as well as creating relevant functional 

coverage models for control register fields when using IPXACT as 

an input format. Hence, the hand modified register model was the 



starting point for the migration. The RGM model also fairly maps 

the hierarchy of the DUT registers and hence for the number of 

registers in the MMU DUT, it was a trivial task to create the 

RALF file from the same. Once the RALF file is generated, the 

generation of the register model can be done with a flip of a 

switch. For larger environments, the expectation is that the input 

specification will be available. If it is IPXACT, there are no 

migration requirements of the same. Otherwise, some automation 

has to be created for the transformation if it not available already. 

Third Party tools now convert can convert from nearly all inout 

specification formats to either RALF or the UVM Reg Model. 

4.3.2 MIGRATING THE ADAPTERS 

Creating the Adapters in order to integrate Register Package is 

typically the role of the integrator. In the migration effort as well, it is 

crucial that this is done correctly. The following snippet shows how 

to adapter code will be in UVM Reg for the corresponding code in 

execute_op earlier 

 

Figure 8: Register to APB translation in UVM REG 

 

4.3.3 MIGRATING THE MODEL 

INTEGRATIONS 

Once, the adapter class is created, it is a matter of changing the 
instantiations and connections related to the Register Model. 

   

 

Figure 9: UVM Reg model instantiations and connections 

Thus, migrating the Register Model integration and connections is 

quite trivial. There are fewer connections and instantiations to be 

made. The code snippet above also has the instantiation and 

integration of the Predictor Model commented out as we felt the 

implicit mode was more relevant to our tests. Given that the fact 

that the bus monitor was available, the Predictor Model 

integration is relatively straightforward as seen above. The 

predictor model when used would accept bus transactions from the 

APB monitor and use the preconfigured adapter to obtain the 

canonical address and data from the bus operation. The map is 

used to lookup the register object associated with that address. The 

predict() method would be then  used to update the mirror. The 

explicit mode maps directly to the update model of the RGM 

package. 

 

4.3.4 MIGRATING THE REGISTER ACCESSES  

Most of the APIs which are a part of the RGM package have their 

counterparts in the UVM REG model. The important aspect to 

keep in mind is the intent behind the use of different methods. 

Then it becomes easier to map the functionality used in the 

proprietary register packages to the ones available in UVM REG. 

Most of the Register Model access in RGM is through a set of 

macros which delivers the functionality. As the RGM model is not 

purely hierarchical, it is not possible to make hierarchical access 

especially in the context of fields and the granularity is only up to 

the register level. For example, an entire register is randomized 

and written to when a `rgm_write(REG_ARG) is called. Also, the 

REG_ARG in this case is not the hierarchical name. The 

corresponding operation in UVM REG would be to randomize the 

register separately calling reg.randomize() followed by a 

reg.update(); Though these are 2 methods being called, the UVM 

REG model will only write to fields which have changed and thus 

not waste redundant BFM cycles. For more details on other access 

functionality, one can go through the respective Reference Guides 

[2], [11] In fact if desired for large projects, automation can be 

brought in to map the functionality in the access APIs to the ones 

in the UVM REG Library 

The RGM library has 6 user defined sequences and the UVM Reg 

Model has 14. Though a lot of functionality is similar, there are a 

couple of sequences like the uvm_rgm_aliasing_seq   for which 

the UVM REG user can easily model similar functionality. 

5.  RESULTS AND CONCLUSION 

The migration of the MMU block verification from using 

OVM_RGM to UVM_REG was successful. By migrating to 

UVM_REG the bulk of the verification was achieved by using the 

built-in test sequences then observing functional coverage. The 

test sequences used included hw_reset, bit-bashing and HDL path 

checking. Not all features of the UVM_REG were exploited as the 

MMU did not have a need for shared access registers, complex 

memories or virtually overlaid register spaces. 

 

Other engineers within the team have further leveraged 

UVM_REG by using ralgen [10] to automatically generate the 

functional coverage of the DUV registers. This coverage model of 

the registers is then be reused to create hierarchal cross coverage 

to observe particular DUV functionality. Additionally there was a 

lacuna in generating coverage bins for interesting values of the 

Control Registers. With the granularity extended to individual 

fields registers, we could now created user defined coverage bins 

in the field specification. This was something which was not 

possible with the legacy specification. With the coverage models 

in place, it was possible to quickly converge on the interesting 

values through a mix of pre-defined sequences and user defined 

one. The other gap that was observed in the legacy package was in 

adding constraints to the generated register model due to specific 

limitations in the automation flow. This is also addressed now as 

using UVM REG and RALF allows us to add in the constraints in 

the specification as also inline additional ones in the model. There 

were other challenges included the validation of the power up 

values for various registers, the bootup sequence and bit bashing 

reserved fields of all registers. We are now in the process of 

addressing them with UVM REG. 

To help all engineers within Broadcom there has been a flow 

developed combining the in-house register-automation with 

UVM_REG. All SW and HW register information is stored in a 

Broadcom specific format maintaining uniformity throughout the 

company. The Broadcom RDB format can is translated to RALF 

syntax using rdb2ralf script. By having such a flow we can 

maintain a single source entry for all register data and leverage the 

information for documentation, SW development, RTL coding 

and Verification purposes. The reverse flow of updating RDB files 

from RALF modifications could be developed by using RALF 

C++ API but as of yet that need has not arisen.  



There is a current task of unifying the C and RTL verification by 

using UVM_REG with a C-API. This would allow SW engineers 

to reuse UVM verification environments whilst providing them 

with a simple C read and write API to access the DUV registers. 

The move from OVM_RGM to the industry standard UVM_REG 

has been very fruitful for our projects. It has not only provided all 

the requirements for register verification but also provided 

enhanced automation. UVM_REG will continue to unify teams as 

we provide enhanced functionality to leverage the C API’s and we 

look forward to EDA companies and the vibrant UVM ecosystem 

to provide us even more automation along with tools to promote 

UVM_REG usage. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

6. REFERENCES 

[1] UVM User Guide 
[2] UVM Reference Manual 
[3]  UVM World http://www.uvmworld.org/ 
[4] VMM Martial Arts :  www.vmmcentral.org 
[5] Accellera Verification IP Technical Subcommittee (UVM 
Development Website); 

http://www.accellerea.org/apps/org/workgroup/vip 
[6] UVM Register Abstraction Layer Generator User Guide 
[7] UVM RAL Primer, Janick Bergeron 
[8] VMM application packages: the next level of productivity, 
Janick Bergeron 
[9] RGM User Guide 
[10] UVM Register Abstraction Layer Generator User Guide 
[11] RGM Reference Guide 

 

http://www.uvmworld.org/
http://www.accellerea.org/apps/org/workgroup/vip

