
Register Verification: Do We Have Reliable Specification?

NamDo Kim, Samsung Electronics Co., Ltd., nd.kim@samsung.com
JunHyuk Park, Samsung Electronics Co., Ltd., jh23.park@samsung.com
Byeong Min, Samsung Electronics Co., Ltd., byeong.min@samsung.com
Wesley Park, Mentor Graphics Corporation, wesley_park@mentor.com

Abstract
We propose a new register verification method that leverages
formal verification to automatically generate a complete access
policy specification for IP memory-mapped registers. While
traditional register verification uses simulation to check IP
compliance with a manually written specification, our method
uses formal verification to automatically generate an IP
compliant specification that designers manually check against
their design intent. We introduce a register model that overcomes
limitations in the expressiveness of the predefined UVM and IP-
XACT access polices. And, we present results from the successful
application of our method to the register verification of three
industrial designs.

1. INTRODUCTION
IP designs contain many externally accessible registers, referred
to as memory-mapped registers, that are used to control behavior,
check status, and transmit and receive data. The implementation
complexity of memory-mapped registers is relatively low
compared with other design elements. Hence, register verification,
the verification of memory-mapped registers, is mostly done by
directed or lightly randomized simulation test benches and is
viewed as a tedious job.

Accessing memory-mapped registers is often no different from
accessing general-purpose memory. Techniques used to verify
general-purpose memory are a good starting point for register
verification. However, to improve efficiency, memory-mapped
registers can have complex access policies. For example, a read-
to-clear policy automatically clears the content of a register after
reading it. The contents of a memory-mapped register may also be
modified by internal operations. These complicate the task of
register verification.

Another practical difficulty is the lack of a reliable specification.
The specification documents not uncommonly omit details, such
as precisely when a memory-mapped register can be modified by
internal operations. Developing a quality verification environment
from an insufficient specification is a painful task: designers and
verification engineers will be frustrated by many test failures
resulting from undocumented behavior. To complete the
verification task, they may mask or ignore failures. In the best
scenario, the verification environment will be tediously updated
until no more failures are observed.

In this paper, we use formal verification to overcome the practical
challenges of producing a reliable specification. We start register
verification assuming no specification is available. Instead of
verifying a target design based on a given specification, we use
formal verification to explore all possible behaviors for each
memory-mapped register. To embrace the wide-range of register

behaviors, we developed a register model based on four aspects of
register behavior. A small program post-processes the formal
verification results and determines how each register behaves.
Then, it identifies the access policies consistent with that
behavior. If the identification matches the designer’s intention, the
verification is already done, since formal verification has
thoroughly verified all possible behaviors. If it doesn’t match,
then there is either a design bug or an overlooked aspect of the
registers’ behavior.

In Section 2, we give an overview and describe the benefits of our
proposed register verification method. The implementation is
introduced at a high-level in Section 3. In Section 4, we show a
few different approaches to developing properties for formal
verification, and discuss the implementation and the instantiation
of the properties. The post-processing required after formal
verification is described in Section 5. We present results in
Section 6 and conclude in Section 7.

2. OVERVIEW
Figure 1 shows the steps in our verification flow. A target design
is all that is needed to start the register verification; no
specification of the memory-mapped registers in the design is
required. The Register Verification Package (RVP) binds a set of
properties that explores the register behavior of the target design.
We call this type of property an exploration property. Formal
verification exhaustively explores the design and determines
which exploration properties are satisfied.

For the post-processing step, we developed a small program to
interpret the formal verification results and produce
comprehensive information on register behavior in a form of high-
level specification. Because formal verification is exhaustive, the
information produced in this step reflects the implementation of
the individual memory-mapped registers in the design. We call
this the implemented specification. If the designer sees that the
implemented specification is exactly aligned with his design
intent, register verification is complete. The implemented
specification can be treated as the concrete intended specification.
If designer sees a mismatch, it is either a design bug or an
overlooked aspect of the register behavior.

The ability to detect overlooked register behavior is a key benefit
of our method. It is difficult to manually maintain a good quality
specification because of frequent design changes and complicated
register behaviors. When verification is performed using an
incomplete or unreliable specification, bugs are much more likely
to escape to silicon. Our method leverages the exhaustive analysis
of formal verification to avoid this common pitfall.

3. HIGH-LEVEL IMPLEMENTATION
To easily expand support to a variety of interfaces, we structured
the implementation of our RVP into two layers: Bus Layer and
Register Layer, as depicted in Figure 2.

Bus Layer directly interfaces with the target design and converts
the interface protocol of the design into a standard interface we
use for Register Layer. This isolates the Register Layer from the
design interface. For a design with an AMBA (Advanced
Microcontroller Bus Architecture) APB (Advanced Peripheral
Bus) [1] interface for memory-mapped register access, Bus Layer
translates the APB transactions and generates corresponding
Register Layer interface signals. Figure 3 shows the interface of
RVP for AMBA APB interface and an example of binding it to a
design using SystemVerilog ‘bind’ command.

The exploration properties are located in Register Layer. The
interface protocol of Register Layer is designed to enable efficient
modeling of exploration properties. The exploration properties are
designed to explore the behavior of a single bit of a memory-
mapped register. Hence, Register Layer is instantiated for every
individual bit of a target design.

The Register Layer interface is depicted in Figure 4. The ports are
all input ports because they monitor the transactions of the target
design and are used for implementing the exploration properties.
‘write’ is high only at the clock cycle that a write transaction from
the interface performs a write operation on a targeted bit of the
register. ‘write_data’ contains the data to be written when ‘write’
is high. For read transactions and data, there are similarly ‘read’
and ‘read_data’ ports. These four ports are the basic signals used
in the exploration properties. As will be discussed in Sections 4.2
and 4.6, a few additional interface ports also need to be added,
depending on the observation method.

4. REGISTER LAYER DESIGN
This section describes the exploration properties we use with
formal verification to identify register behavior. The designs used
in our experiments were thought to have simple memory-mapped
registers and had been verified under UVM (Universal
Verification Methodology) environments. UVM has well defined
register verification methodologies [2] and our approach starts
from exploring register behavior based on the UVM register
access policies. To overcome limitations in these predefined
access policies, we created a register model for specifying register
behavior that is automatically extracted by a program. We call the
register model Atomic Register Behavior Model (ARBM) and
explain it in Section 4.3.

4.1 UVM-based Front-door Implementation
UVM has total 25 predefined access policies for commonly
designed memory-mapped registers. For example, it defines RW
access policy for normal read and write access. To verify whether
a write operation updates the value to the expected value, the
value stored in a target register must be observed. Front-door
access uses the same bus interface for observing operations. This
is commonly used in simulation-based register verification
because it does not require an additional interface for observation.
In contrast, back-door access uses a different interface for
observation -- usually direct access to registers. Back-door access
enables efficient observation, but requires the use of an additional
interface.

To implement a property that uses front-door access, two steps are
required. The first step is to initiate a bus transaction that sets the

value of a target register to an expected value. The next step is to
read the target register value using another bus transaction. By
comparing the read value to the expected value of the first step, a
property can verify whether the bus transaction in the first step
actually set the target register to the expected value. Between
these steps, any number of operations or idle cycles are allowed,
except of course bus transactions that alter the register value. This
enables complete verification of a given access policy.

Figure 5 shows an example property that verifies RW access
policy. The assert property, ‘a_access_policy_RW’, corresponds
to the second step explained above. ‘nd_written’ is a wire in the
modeling layer that indicates whether the first step has been
completed: a specific write operation to a target register. It
remains high once asserted. Since formal verification is
exhaustive and the specific write operation is non-
deterministically selected, all possible write operations are
analyzed. ‘read’ signal becomes high only at the cycle when a
read operation is applied to the target register and the read value is
available for verification. ‘read_data == written_data’ compares
the read data to the expected value. Although this property is
designed to verify RW access policy for one write operation at a
time, non-determinism in conjunction with formal verification
extends it to cover all possible write operations. ‘c_write’ is a
constraint property that disallows any subsequent bus transactions
that would alter the register value: once a write operation of
interest occurs, there must be no other write operations that can
alter the previously written value before it is observed in the
second step.

Front-door implementation is commonly used for register
verification because all the control and observation operations go
through the same bus interface. However, it has inherent
limitations. Access policies such as WO have no way to read back
the written value from a register because read operations have no
effect and cannot observe the register value. Likewise, RO access
policy cannot determine whether the read value is correct because
write operations have no effect and cannot set expected values to
the register.

4.2 UVM-based Back-door Implementation
The limitations of front-door implementation can be addressed
with direct access to a register. With direct access, called back-
door access, observation can be done immediately by reading the
value directly from a register. WO access policy can be verified
by directly reading values using back-door access after write
operations, without relying on read operations over the bus
interface to verify the written values. RO access policy also can be
verified by reading the expected values directly via back-door.
Furthermore, back-door access produces simpler properties.
Compared to back-door access, verifying an access policy using
front-door access requires an extra bus transaction to observe the
value of a register.

Back-door access requires the hierarchical HDL path to the
register. Adding an additional port, ‘register’, to the Register
Layer and connecting it to the HDL path of a register, is sufficient
to enable back-door access to the register. Figure 6 shows
examples of exploration properties implemented using back-door
access. ‘a_read’ property verifies if a read transaction reads the
current value of a register. As shown in the example, when ‘read’
occurs, the property compares the read data, ‘read_data’, to the
current register value, ‘register’, directly from the register itself.
Likewise, ‘a_write’ property verifies whether the write data is
written to a register by comparing ‘write_data’ to ‘register’. Here

it is implemented as comparing the previous value of ‘write_data’
because by definition the register value is updated one cycle after
a write transaction.

As shown in Figure 6, the properties use no bus transactions other
than the bus transaction being verified. This simplifies debugging
for design and verification engineers when formal verification
produces a counterexample. The counterexamples are more
compact than counterexamples generated by front-door properties.

4.3 Atomic Register Behavior Model
The predefined access policies in the UVM register model do not
reflect all the register behaviors that can exist in a design. IP-
XACT predefines more behaviors than UVM, but is still limited.
Both UVM and IP_XACT allow user-defined extensions [3] to
work around these limitations. But, it is also important to report
coverage information, such as whether both 0 and 1 values can be
written to a register or just one value is allowed. This kind of
coverage information is not represented well using UVM or
IP_XACT. We found the need for a more concise and complete
specification format than UVM and IP_XACT offered. Hence,
we defined our own register model, ARBM.

ARBM splits register behavior into four components: bus
transaction type, bus transaction data, register value before bus
transaction, and register value after bus transaction. If a register
can be modified only through the external interface, the effects of
transactions are immediate, and each bit behaves independently,
then all the behaviors can be compactly represented. For bus
interfaces that have only read and write operations, sixteen
combinations of the four components are possible: {2 bus
transaction types: read, write} x {2 bus transaction data values: 0,
1} x {2 register values before bus transactions} x {2 register
values after bus transactions}.

When appropriate, we use symbols to express the relationship
between components.

1. A symbol represents the possibility of both 0 and 1
values. If a number is used instead of a symbol, the
component covers only that specific value.

2. If the same symbol is used in multiple components, the
components are related to each other and have the same
value.

3. If a symbol appears as an uppercase letter, the
component is related, but has the opposite value of the
symbol appearing as a lowercase letter.

Based on the above symbol assignment rules, we define atomic
access policies using a 5-character format that expresses the
possible register behaviors based on relationships between the
components.

1. The first character represents the bus transaction type.
The letter is ‘R’ if a bus transaction is to read from a
register. ‘W’ if it is to write to a register.

2. The second character represents the bus transaction data.
It can be 0, 1, or a symbol.

3. For readability, the third character is ‘_’.

4. The fourth character represents the register value before
bus transaction. It can be 0, 1 or a symbol.

5. The fifth character represents the register value after bus
transaction. It can be 0, 1 or a symbol.

For example, ‘Rx_xx’ represents a normal read: let the register
value before a read transaction be ‘x’; the read data will be ‘x’ and
the register value after the read transaction will also be ‘x’. Since
the symbol ‘x’ covers both values, 0 and 1, the register is capable
of storing any value. In the same manner, ‘Wy_xy’ represents a
register with normal write: let the register value before a write
transaction be ‘x’ and write data is ‘y’; the register value after the
write transaction will be ‘y’. This implies that write data is
independent to the previous register value; the register will be
written with the write data regardless of the register value before
the write transaction. For a complete description of register
behavior, we use ‘+’ symbol to combine multiple atomic access
policies. This creates ARBM access policies. For example, ‘Rx_xx
+ Wy_xy’ access policy represents a register that complies with
UVM’s RW access policy.

The implementation of exploration properties for ARBM access
policies uses back-door access and is similar to UVM-based back-
door implementation. Figure 7 shows properties for R0_00 and
W0_00. We do not generate properties for access policies with
symbols. Instead, we synthesize access policies with symbols by
post-processing the results of properties for access policies
without symbols. For example, Rx_xx is implied when the sanity
checks [4] of the properties for R0_00 and R1_11 access policies
are covered and the sanity checks for R0_01, R0_10, R0_11,
R1_00, R1_01, and R1_10 are provably uncoverable. By
exploiting the sanity checks, we reduced the number of properties
required from 48, one per atomic access policy, to 8.

Another benefit of using sanity results is coverage information.
When formal verification directly proves properties for access
policies with symbols such as Rx_xx, we cannot know whether
both 0 and 1 are covered; perhaps read operations always return 1.
However, if both sanity of R0_00 and R1_11 are proven to be
coverable, then we can clearly represent that the register follows
Rx_xx access policy.

4.4 Modifier Indicators
In Section 4.3, we defined ARBM access policies based on three
assumptions: a register is modified only through the external
interface, the effects of transactions are immediate, and each bit
behaves independently. However, memory-mapped registers that
violate these assumptions are not uncommon. Volatile registers
[3] update their values without any external bus transaction to
reflect the internal states of a design. To address any register
behavior beyond the above assumption, we developed modifier
indicators that represent which operation can alter the register
value.

If a register can be modified when the assumptions are violated,
the modifier indicator uses the letter U to represent the
unidentified source of the modification. If a register is modified
satisfying the assumptions, the modifier indicator represents the
specific operation that alters the register value. R indicates that
read transactions alter the register value. W is used for write
transactions, W0 for write with data value 0, and W1 for write
with data value 1. If a register cannot be modified, the modifier
indicator C represents the constant register value. If a register can
be modified only once by the first operation after a global reset,
the modifier indicator uses letter O. Figure 8 shows example
properties for the modifier indicator R and O.

ARBM access policies are written with modifier indicators in
front and explicitly represent which operation can modify the
register value. Multiple modifier indicators can be combined. For
example, ‘RW + Rx_x0 + Wy_xy’ represents an access policy

similar to UVM’s WRC access policy. However, ‘RW’ indicates
that the register can only be modified by read or write transactions
and ‘Rx_x0 + Wy_xy’ indicates that the register can have all
possible values.

4.5 Reset Value Exploration
Register reset value verification is relatively simple. However, we
found some cases where the actual reset value cannot be observed
using front-door access; the register updates its value before any
read bus transactions are possible. To identify this register
behavior, we applied both back-door and front-door accesses for
reset value exploration properties. Back-door access identifies the
actual reset value. Front-door access reads the register value at the
earliest possible bus transaction after reset. To represent these two
values in access policies, we combine them with comma. For
example, ‘0,X’ indicates the actual reset value is 0 but the earliest
possible read operation might read 1 instead of 0.

4.6 Local Reset Exploration
The reset value verification explained in Section 4.5 is focused on
the global reset of a design. A register, however, can have other
type of resets that are generally known as local resets. Different
from global resets, local resets are applied during normal
operations, possibly multiple times, to a subset of a design.
Because of local resets, many register are identified as volatile.
We isolate the local reset behavior from other register behaviors
by developing exploration properties for local resets. The goals of
these exploration properties are:

1. For each register, identify whether it is reset by a local
reset. If it is, then also identify the reset value, the
polarity of the local reset signal, and whether it is
asynchronous or synchronous reset.

2. For a volatile register with a local reset, determine
whether it can be a non-volatile register if the local reset
remains inactive.

To observe local reset behavior, we added a back-door access port,
‘local_reset’, to the interface of Register Layer. Figure 9 shows
the implementation of the local reset exploration properties. Using
SystemVerilog generate statement, 4 different combinations of
‘local_reset_polarity’ and ‘local_reset_async’ values are applied
to generate total 8 properties of ‘a_local_reset_value_0’ and
‘a_local_reset_value_1’.

To achieve the second goal, the exploration properties for ARBM
access policies are also modified. The ‘disable iff’ condition
considers not only global reset but also local resets.

To describe local reset behavior in ARBM access policies, we use
the format: ‘V:AP:NAME’. ‘NAME’ indicates the name of the
local reset. ‘V’ represents the reset value, 0 or 1. ‘AP’ is a two
character code where the first character indicates whether the reset
is ‘A’synchronous or ‘S’ynchronous, and the second character
indicates the polarity, active ‘H’igh or active ‘L’ow.

4.7 Instantiating Properties
When the RVP is bounded to a target design, the Bus Layer is
instantiated only once. However, the Register Layer needs to be
instantiated multiple times by the Bus Layer, once for each
register bit that is to be verified. For UVM-based front-door
exploration properties, this instantiation is accomplished by
SystemVerilog ‘generate’ statement. The necessary information:
address range and bit width, is passed via parameters as shown in
Figure 3.

However, the SystemVerilog ‘generate’ statement cannot be used
for connecting back-door signals. For UVM-based back-door and
ARBM exploration properties, we developed a small script that
instantiates the Register Layers and connects back-door signals to
the interface ports. This script reads relevant information from a
file, called ‘register information file’. As shown in Figure 10, it
has a list of registers along with the address and bit information.
Local reset signals can be included as well.

When a property is instantiated for a register, a special naming
rule is used for post-processing. The instance of a property
includes the address and bit information in its instance name. If
local reset exploration is applied, the instance name also includes
local reset name and values for polarity and asynchronous
variables. After the property instances are verified by formal
verification, post-processing reads the results and parses the
instance names to recognize which property is verified with which
register.

5. POST-PROCESSING
After formal verification analyzes the exploration properties
developed in Section 4, a post-processing step examines the
results for each register and determines the register’s behavior.
For the UVM-based properties, the post-processing program
reports the identified behavior based on the predefined UVM
access policies. For the ARBM properties, the report uses the
ARBM access policies.

Because we developed properties to correspond to access policies,
if a property is proven, it implies that the register always complies
with the corresponding access policy. In many cases, more than
one property is proven for a register. If two proven properties
represent orthogonal access policies, both are reported; otherwise,
post-processing selects the access policy that best represents the
register. For example, a register with UVM RW access policy will
have its ‘a_read’ and ‘a_write’ properties proven. Its ‘a_W1S’ and
‘a_W0C’ properties will also be proven, because normal writes
will set the register value to 1 if the write data is 1 and clear it to 0
if the write data is 0. Post-processing distills these results into RW
access policy, hiding the property details.

Figure 11 is a decision table that maps the property results to the
most appropriate access policy. The post-processing program uses
this decision table to report the UVM predefined access policies.
If formal verification results do not match any entry in the
decision table, a new entry is added. New entries are named
UNDEF0, UNDEF1, UNDEF2, and so forth.

Post-processing the results of ARBM exploration properties starts
by determining the global reset value for a register. From the
instance name of a proven property, we can identify the reset
value and the register. If no global reset exploration properties are
proven, post-processing reports an ‘X’; either the register is not
reset by a global reset or the reset value is variable.

The next post-processing step determines whether a register has a
local reset. For each local reset and register pair, 8 properties are
instantiated. If one of the properties is proven, the post-processing
program parses the instance name of that property to identify
which local reset is applied, its polarity, whether it is
asynchronous or synchronous, and the register reset value. Once
the local reset is identified for a register, properties which do not
have the local reset in ‘disable iff’ are ignored. This is necessary
to isolate the effects of the local reset from other register behavior
as explained in Section 4.6.

After identifying local resets and focusing on the appropriate set
of exploration properties, the post-processing program identifies
modifier indicators and ARBM access policies. The access
policies are identified by applying the symbol assignment rules to
the sanity check results of the properties for ARBM access
policies.

6. RESULTS
We applied our register verification methodology to three
different industrial designs, all of which are implemented in
silicon. We used Questa Formal, an industrial model checking
tool, to formally explore the register behavior with the exploration
properties. These designs use AMBA APB interface for memory-
mapped registers. We compare the register verification results
from UVM-based back-door exploration and ARBM against the
original specification documents.

Figure 12 shows the log of the ARBM post-processing program.
‘read_rpt’ command shows some brief statistics. ‘read_reg_info'
reads a register information file. ‘verify_reg’ analyzes the formal
verification results and identifies each register’s behavior.
‘report_reg’ reports the access policies in various formats. ‘-uniq’
is an option to store only the registers with a unique behavior. We
generate all the logs with ‘-uniq’ option to review only the unique
behaviors. ‘-verbose’ is an option to display the sanity information
along with the report.

As shown in the log, total 320 bits are verified in 10 addresses for
design A. For each bit, 30 ARBM properties are instantiated to
explore the register behavior: 4 for global reset, 2 for local reset, 8
for modifier, 8 for read operation, and 8 for write operation. 2
local reset properties are instantiated as safety-empty [5] in design
A because design A has no local reset.

Figure 13 shows the log from the post-processing program for
UVM-based back-door exploration. The third column represents
the identified access policies. The extra columns are provided to
show which properties are proven; these are useful when a
predefined access policy cannot be identified (e.g. UNDEF0).
RA0 and RA1 properties stand for Read Always 0 and 1,
respectively. UBA stands for Updated By Access, which checks if
only read or write operations can modify a register. These
properties are added to help understand the behaviors of
undefined access policies.

The register of address 0000 and bit 0 has normal read and write
access behavior. UVM-based back-door and ARBM explorations
identify it as RW and W + Rx_xx + Wy_xy, respectively. ARBM
also reports other aspects of the register with the identified access
policies. First, by reading the register information file, it can tell
the name of the actual register in the design. If the actual register
exists, R column indicates it as ‘Y’. If it doesn’t, ‘N’ will be used
to indicate that the register is accessible by bus transactions but
does not have an actual signal in the design. G_RST column
shows access policies in terms of the global reset value. L_RST
column shows access policies for local resets. Since design A
doesn’t have local resets, this column remains empty for all
registers.

The register of address 0000 and bit 7 has UNDEF0 by UVM-
based back-door exploration because the property results do not
match any condition of the decision table. The proven properties
are read, RC, WC, W1C, W0C, RA0, and UBA. What we can
interpret from this is that no matter which bus transactions
occurred before a read bus transaction, it always reads 0. Since the
UVM predefined access policies do not have a specific entry for a

constant register, the identification is resulted in UNDEF0. In
contrast, ARBM exploration clearly shows this behavior in a
comprehensive form, C + R0_00 + Wx_00: the read value is
always 0 and the register remains constant 0.

The register of address 000c and bit 0 is the almost the same as
the register of address 0000 and bit 0 except the reset value. The
register of address 001c and bit 0 is identified as UNDEF1 by
UVM-based back-door exploration. Since UBA is fired, we can
interpret this one as a volatile register but it’s very limited to
understand further behavioral information. ARBM exploration is
able to identify the behavior precisely. Rx_x0 indicates that read
operations read the current register value correctly. But the
register value is always cleared to 0 after read operations. ‘x’
indicates that both value 0 and 1 are covered. Wx_00 shows that
any write bus transactions are ignored. By reviewing the design,
we found that this identification is exactly aligned with the actual
design intention: This register is a status register which updates its
value at the read access, then the value is cleared to 0 until the
next read access occurs. Because it updates the value at the read
access, not after the read access, modifier is identified as ‘U’
instead of ‘R’.

ARBM also reports the comprehensive behavioral information for
the register of address 0000 and bit 0 in design B as shown in
Figure 14. UVM-based exploration in Figure 15 has only two
proven properties, read and UBA, and identify as RO. It is
insufficient to understand all the behaviors and even misleading.
However, ARBM identifies as W + Rx_xx + WX_xy + Wx_xx.
While read is normal, write shows uncommon behavior: If the
write data is the same as the register value, the register remains
unchanged. If the write data is opposite to the register value, the
register can have an uncorrelated value, that is, regardless of the
write data, the register can be either 0 or 1. After taking a look at
the design, we confirmed that ARBM exploration successfully
discovered the correct design behavior: if the write data is
opposite to the register value, the design conditionally accepts the
data and, hence, the register value sometimes can change to the
new value or remain the same.

The register of address 0000 and bit 8 has no actual register signal
in the design. UVM-based exploration has only RA0 proven and
mapped into UNDEF0. ARBM results in R0_xy + Wy_xz. Since
there is no actual register, G_RST back-door value and Modifier
have ‘–’. The only meaningful information here is the read data
and G_RST front-door value, which are always 0.

The register of address 0030 and bit 0 is one of the common
implementations for an interrupt status register. It reflects the
pending status of an interrupt: when an interrupt is received, the
register is set to 1. It remains 1 until write operation with data 1
comes to clear the register. R0_0x + R1_11 explains that read data
is correct but the register value after read operation can change
from 0 to 1 conditionally. Wx_0y + W0_11 + W1_1x reflects all
the possible combinations for ‘write 1 to clear’ plus situations that
the register value remains or changes to 1 when a new interrupt
comes. UVM-based exploration has no row for this register. It is
because only ‘read’ property is proven for this register and it is
not unique any more.

Design C has one local reset, ‘NRESET’. From L_RST column in
Figure 16, we can clearly understand that ‘NRESET’ is effective
only for specific registers and it always clears the corresponding
registers to 0 by acting as an asynchronous and active low reset.
Since ARBM exploration can isolate this local reset behavior
from register behavior, we get W + Rx_xx + Wy_xy for registers

like address 0000 and bit 1; the access policy implies that, if the
effective local reset remain inactive, this register behaves as a
normal read write register. If the local reset exploration is not
applied, the identified access policy would have been U + Rx_xx
+ W0_x0 + W1_xy or anything with U.

For all three designs, we compared the results from our register
verification methodology with the specification documents. We
found small mistakes, such as a register field being mis-specified
as [6:0] instead of [7:0]. But we also found many serious errors
where the access policies are incompletely described, such as RO
or RW when the actual behavior is more complex. We measured
the number of mis-specified bits in the specification documents:
out of the 992 bits verified in the three designs, 145 bits were mis-
specified, or 14.6% of the total memory-mapped register bits.

7. CONCLUSION
Quality verification cannot be achieved without quality
specification. However, it is very difficult to maintain a good
quality specification. For register verification, we presented a new
methodology that explores the register behavior using formal
verification and post-processes the results to automatically
generate a specification. We defined a set of comprehensive
access policies based on ARBM and a concise specification
format, which specifies the possible register values. We developed
exploration properties for UVM-based front-door, UVM-based
back-door and ARBM. We applied our methodology to three
industrial designs. ARBM was able to identify complex behaviors
that were not identified with the UVM-based property sets. With
the ARBM access policies, it was possible to precisely describe
all the behaviors. When we compared our automatically generated
specification with the original, manually written design
specification, we were able to identify many inaccuracies in the
original documentation. By automatically generating an
implemented specification from the design, verification is reduced
to the straightforward task of checking that the specification
matches the designer’s intent.

8. REFERENCES
[1] AMBA™ Specification Rev 2.0, http://www.arm.com/

[2] Universal Verification Methodology (UVM) 1.1 User’s Guide,
http://www.uvmworld.org/

[3] IEEE Standard for IP-XACT, Standard Structure for
Packaging, Integrating, and Reusing IP within Tool Flows,
http://standards.ieee.org/

[4] IEEE Standard for SystemVerilog – Unified Hardware Design,
Specification, and Verification Language,
http://standards.ieee.org/

[5] Questa® Formal User Guide, http://www.mentor.com/

Figure 1. The flow of proposed register verification method
(Green ovals denote either input or output of a process. Blue
rectangles denote processing steps.)

Figure 2. Block diagram of a target design and Register
Verification Package for formal verification

Figure 3. The interface of Register Verification Package for
AMBA APB interface and an example of a bind statement

Figure 4. The interface of Register Layer

Figure 5. Example exploration properties of UVM-based
front-door implementation

Figure 6. Example exploration properties of UVM-based
back-door implementation

Figure 7. Example properties for Atomic Register Behavior
Model

Figure 8. Example properties for modifier indicators

Figure 9. Example properties for local reset exploration

Figure 10. Example of a register information file

Figure 11. A decision table to determine the best access policy from UVM-based back-door exploration results

(Columns correspond to each exploration property as conditions. Rows correspond to the UVM predefined access policies as
determined policies. If a cross section is green, proof is expected for the condition property. If it is red, violation is expected. If it
is white, the condition is don’t-care.)

Figure 12. An example log generated by ARBM post-processing program with design A

Figure 13. An example log generated by the post-processing program for UVM-based back-door exploration with design A

Figure 14. An example log generated by ARBM post-processing program with design B

Figure 15. An example log generated by the post-processing program for UVM-based back-door exploration with design B

Figure 16. An example log generated by ARBM post-processing program with design C

Figure 17. An example log generated by the post-processing program for UVM-based back-door exploration with design C

