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Abstract 
We propose a new register verification method that leverages 
formal verification to automatically generate a complete access 
policy specification for IP memory-mapped registers. While 
traditional register verification uses simulation to check IP 
compliance with a manually written specification, our method 
uses formal verification to automatically generate an IP 
compliant specification that designers manually check against 
their design intent. We introduce a register model that overcomes 
limitations in the expressiveness of the predefined UVM and IP-
XACT access polices. And, we present results from the successful 
application of our method to the register verification of three 
industrial designs. 

1. INTRODUCTION 
IP designs contain many externally accessible registers, referred 
to as memory-mapped registers, that are used to control behavior, 
check status, and transmit and receive data. The implementation 
complexity of memory-mapped registers is relatively low 
compared with other design elements. Hence, register verification, 
the verification of memory-mapped registers, is mostly done by 
directed or lightly randomized simulation test benches and is 
viewed as a tedious job. 

Accessing memory-mapped registers is often no different from 
accessing general-purpose memory. Techniques used to verify 
general-purpose memory are a good starting point for register 
verification. However, to improve efficiency, memory-mapped 
registers can have complex access policies. For example, a read-
to-clear policy automatically clears the content of a register after 
reading it. The contents of a memory-mapped register may also be 
modified by internal operations. These complicate the task of 
register verification. 

Another practical difficulty is the lack of a reliable specification. 
The specification documents not uncommonly omit details, such 
as precisely when a memory-mapped register can be modified by 
internal operations. Developing a quality verification environment 
from an insufficient specification is a painful task: designers and 
verification engineers will be frustrated by many test failures 
resulting from undocumented behavior.  To complete the 
verification task, they may mask or ignore failures. In the best 
scenario, the verification environment will be tediously updated 
until no more failures are observed. 

In this paper, we use formal verification to overcome the practical 
challenges of producing a reliable specification. We start register 
verification assuming no specification is available. Instead of 
verifying a target design based on a given specification, we use 
formal verification to explore all possible behaviors for each 
memory-mapped register. To embrace the wide-range of register 

behaviors, we developed a register model based on four aspects of 
register behavior. A small program post-processes the formal 
verification results and determines how each register behaves. 
Then, it identifies the access policies consistent with that 
behavior. If the identification matches the designer’s intention, the 
verification is already done, since formal verification has 
thoroughly verified all possible behaviors.  If it doesn’t match, 
then there is either a design bug or an overlooked aspect of the 
registers’ behavior.  

In Section 2, we give an overview and describe the benefits of our 
proposed register verification method. The implementation is 
introduced at a high-level in Section 3. In Section 4, we show a 
few different approaches to developing properties for formal 
verification, and discuss the implementation and the instantiation 
of the properties. The post-processing required after formal 
verification is described in Section 5. We present results in 
Section 6 and conclude in Section 7. 

2. OVERVIEW 
Figure 1 shows the steps in our verification flow. A target design 
is all that is needed to start the register verification; no 
specification of the memory-mapped registers in the design is 
required. The Register Verification Package (RVP) binds a set of 
properties that explores the register behavior of the target design. 
We call this type of property an exploration property. Formal 
verification exhaustively explores the design and determines 
which exploration properties are satisfied.  

For the post-processing step, we developed a small program to 
interpret the formal verification results and produce 
comprehensive information on register behavior in a form of high-
level specification. Because formal verification is exhaustive, the 
information produced in this step reflects the implementation of 
the individual memory-mapped registers in the design. We call 
this the implemented specification. If the designer sees that the 
implemented specification is exactly aligned with his design 
intent, register verification is complete. The implemented 
specification can be treated as the concrete intended specification. 
If designer sees a mismatch, it is either a design bug or an 
overlooked aspect of the register behavior.  

The ability to detect overlooked register behavior is a key benefit 
of our method. It is difficult to manually maintain a good quality 
specification because of frequent design changes and complicated 
register behaviors. When verification is performed using an 
incomplete or unreliable specification, bugs are much more likely 
to escape to silicon. Our method leverages the exhaustive analysis 
of formal verification to avoid this common pitfall. 



3. HIGH-LEVEL IMPLEMENTATION  
To easily expand support to a variety of interfaces, we structured 
the implementation of our RVP into two layers: Bus Layer and 
Register Layer, as depicted in Figure 2.   

Bus Layer directly interfaces with the target design and converts 
the interface protocol of the design into a standard interface we 
use for Register Layer. This isolates the Register Layer from the 
design interface. For a design with an AMBA (Advanced 
Microcontroller Bus Architecture) APB (Advanced Peripheral 
Bus) [1] interface for memory-mapped register access, Bus Layer 
translates the APB transactions and generates corresponding 
Register Layer interface signals. Figure 3 shows the interface of 
RVP for AMBA APB interface and an example of binding it to a 
design using SystemVerilog ‘bind’ command. 

The exploration properties are located in Register Layer. The 
interface protocol of Register Layer is designed to enable efficient 
modeling of exploration properties. The exploration properties are 
designed to explore the behavior of a single bit of a memory-
mapped register. Hence, Register Layer is instantiated for every 
individual bit of a target design. 

The Register Layer interface is depicted in Figure 4. The ports are 
all input ports because they monitor the transactions of the target 
design and are used for implementing the exploration properties. 
‘write’ is high only at the clock cycle that a write transaction from 
the interface performs a write operation on a targeted bit of the 
register. ‘write_data’ contains the data to be written when ‘write’ 
is high. For read transactions and data, there are similarly ‘read’ 
and ‘read_data’ ports. These four ports are the basic signals used 
in the exploration properties. As will be discussed in Sections 4.2 
and 4.6, a few additional interface ports also need to be added, 
depending on the observation method. 

4. REGISTER LAYER DESIGN 
This section describes the exploration properties we use with 
formal verification to identify register behavior. The designs used 
in our experiments were thought to have simple memory-mapped 
registers and had been verified under UVM (Universal 
Verification Methodology) environments. UVM has well defined 
register verification methodologies [2] and our approach starts 
from exploring register behavior based on the UVM register 
access policies. To overcome limitations in these predefined 
access policies, we created a register model for specifying register 
behavior that is automatically extracted by a program. We call the 
register model Atomic Register Behavior Model (ARBM) and 
explain it in Section 4.3.  

4.1 UVM-based Front-door Implementation 
UVM has total 25 predefined access policies for commonly 
designed memory-mapped registers. For example, it defines RW 
access policy for normal read and write access. To verify whether 
a write operation updates the value to the expected value, the 
value stored in a target register must be observed. Front-door 
access uses the same bus interface for observing operations. This 
is commonly used in simulation-based register verification 
because it does not require an additional interface for observation. 
In contrast, back-door access uses a different interface for 
observation -- usually direct access to registers. Back-door access 
enables efficient observation, but requires the use of an additional 
interface. 

To implement a property that uses front-door access, two steps are 
required. The first step is to initiate a bus transaction that sets the 

value of a target register to an expected value. The next step is to 
read the target register value using another bus transaction. By 
comparing the read value to the expected value of the first step, a 
property can verify whether the bus transaction in the first step 
actually set the target register to the expected value. Between 
these steps, any number of operations or idle cycles are allowed, 
except of course bus transactions that alter the register value. This 
enables complete verification of a given access policy. 

Figure 5 shows an example property that verifies RW access 
policy. The assert property, ‘a_access_policy_RW’, corresponds 
to the second step explained above. ‘nd_written’ is a wire in the 
modeling layer that indicates whether the first step has been 
completed: a specific write operation to a target register. It 
remains high once asserted. Since formal verification is 
exhaustive and the specific write operation is non-
deterministically selected, all possible write operations are 
analyzed.  ‘read’ signal becomes high only at the cycle when a 
read operation is applied to the target register and the read value is 
available for verification. ‘read_data == written_data’ compares 
the read data to the expected value. Although this property is 
designed to verify RW access policy for one write operation at a 
time, non-determinism in conjunction with formal verification 
extends it to cover all possible write operations. ‘c_write’ is a 
constraint property that disallows any subsequent bus transactions 
that would alter the register value: once a write operation of 
interest occurs, there must be no other write operations that can 
alter the previously written value before it is observed in the 
second step. 

Front-door implementation is commonly used for register 
verification because all the control and observation operations go 
through the same bus interface. However, it has inherent 
limitations. Access policies such as WO have no way to read back 
the written value from a register because read operations have no 
effect and cannot observe the register value. Likewise, RO access 
policy cannot determine whether the read value is correct because 
write operations have no effect and cannot set expected values to 
the register. 

4.2 UVM-based Back-door Implementation 
The limitations of front-door implementation can be addressed 
with direct access to a register. With direct access, called back-
door access, observation can be done immediately by reading the 
value directly from a register. WO access policy can be verified 
by directly reading values using back-door access after write 
operations, without relying on read operations over the bus 
interface to verify the written values. RO access policy also can be 
verified by reading the expected values directly via back-door. 
Furthermore, back-door access produces simpler properties. 
Compared to back-door access, verifying an access policy using 
front-door access requires an extra bus transaction to observe the 
value of a register. 

Back-door access requires the hierarchical HDL path to the 
register. Adding an additional port, ‘register’, to the Register 
Layer and connecting it to the HDL path of a register, is sufficient 
to enable back-door access to the register. Figure 6 shows 
examples of exploration properties implemented using back-door 
access. ‘a_read’ property verifies if a read transaction reads the 
current value of a register. As shown in the example, when ‘read’ 
occurs, the property compares the read data, ‘read_data’, to the 
current register value, ‘register’, directly from the register itself. 
Likewise, ‘a_write’ property verifies whether the write data is 
written to a register by comparing ‘write_data’ to ‘register’. Here 



it is implemented as comparing the previous value of ‘write_data’ 
because by definition the register value is updated one cycle after 
a write transaction. 

As shown in Figure 6, the properties use no bus transactions other 
than the bus transaction being verified. This simplifies debugging 
for design and verification engineers when formal verification 
produces a counterexample. The counterexamples are more 
compact than counterexamples generated by front-door properties. 

4.3 Atomic Register Behavior Model 
The predefined access policies in the UVM register model do not 
reflect all the register behaviors that can exist in a design. IP-
XACT predefines more behaviors than UVM, but is still limited.  
Both UVM and IP_XACT allow user-defined extensions [3] to 
work around these limitations. But, it is also important to report 
coverage information, such as whether both 0 and 1 values can be 
written to a register or just one value is allowed. This kind of 
coverage information is not represented well using UVM or 
IP_XACT.  We found the need for a more concise and complete 
specification format than UVM and IP_XACT offered.  Hence, 
we defined our own register model, ARBM. 

ARBM splits register behavior into four components: bus 
transaction type, bus transaction data, register value before bus 
transaction, and register value after bus transaction. If a register 
can be modified only through the external interface, the effects of 
transactions are immediate, and each bit behaves independently, 
then all the behaviors can be compactly represented. For bus 
interfaces that have only read and write operations, sixteen 
combinations of the four components are possible: {2 bus 
transaction types: read, write} x {2 bus transaction data values: 0, 
1} x {2 register values before bus transactions} x {2 register 
values after bus transactions}. 

When appropriate, we use symbols to express the relationship 
between components. 

1. A symbol represents the possibility of both 0 and 1 
values. If a number is used instead of a symbol, the 
component covers only that specific value. 

2. If the same symbol is used in multiple components, the 
components are related to each other and have the same 
value. 

3. If a symbol appears as an uppercase letter, the 
component is related, but has the opposite value of the 
symbol appearing as a lowercase letter. 

Based on the above symbol assignment rules, we define atomic 
access policies using a 5-character format that expresses the 
possible register behaviors based on relationships between the 
components. 

1. The first character represents the bus transaction type. 
The letter is ‘R’ if a bus transaction is to read from a 
register. ‘W’ if it is to write to a register. 

2. The second character represents the bus transaction data. 
It can be 0, 1, or a symbol. 

3. For readability, the third character is ‘_’. 

4. The fourth character represents the register value before 
bus transaction. It can be 0, 1 or a symbol. 

5. The fifth character represents the register value after bus 
transaction. It can be 0, 1 or a symbol. 

For example, ‘Rx_xx’ represents a normal read: let the register 
value before a read transaction be ‘x’; the read data will be ‘x’ and 
the register value after the read transaction will also be ‘x’. Since 
the symbol ‘x’ covers both values, 0 and 1, the register is capable 
of storing any value. In the same manner, ‘Wy_xy’ represents a 
register with normal write: let the register value before a write 
transaction be ‘x’ and write data is ‘y’; the register value after the 
write transaction will be ‘y’. This implies that write data is 
independent to the previous register value; the register will be 
written with the write data regardless of the register value before 
the write transaction. For a complete description of register 
behavior, we use ‘+’ symbol to combine multiple atomic access 
policies. This creates ARBM access policies. For example, ‘Rx_xx 
+ Wy_xy’ access policy represents a register that complies with 
UVM’s RW access policy.  

The implementation of exploration properties for ARBM access 
policies uses back-door access and is similar to UVM-based back-
door implementation. Figure 7 shows properties for R0_00 and 
W0_00. We do not generate properties for access policies with 
symbols. Instead, we synthesize access policies with symbols by 
post-processing the results of properties for access policies 
without symbols. For example, Rx_xx is implied when the sanity 
checks [4] of the properties for R0_00 and R1_11 access policies 
are covered and the sanity checks for R0_01, R0_10, R0_11, 
R1_00, R1_01, and R1_10 are provably uncoverable. By 
exploiting the sanity checks, we reduced the number of properties 
required from 48, one per atomic access policy, to 8. 

Another benefit of using sanity results is coverage information. 
When formal verification directly proves properties for access 
policies with symbols such as Rx_xx, we cannot know whether 
both 0 and 1 are covered; perhaps read operations always return 1. 
However, if both sanity of R0_00 and R1_11 are proven to be 
coverable, then we can clearly represent that the register follows 
Rx_xx access policy. 

4.4 Modifier Indicators 
In Section 4.3, we defined ARBM access policies based on three 
assumptions: a register is modified only through the external 
interface, the effects of transactions are immediate, and each bit 
behaves independently. However, memory-mapped registers that 
violate these assumptions are not uncommon. Volatile registers 
[3] update their values without any external bus transaction to 
reflect the internal states of a design. To address any register 
behavior beyond the above assumption, we developed modifier 
indicators that represent which operation can alter the register 
value. 

If a register can be modified when the assumptions are violated, 
the modifier indicator uses the letter U to represent the 
unidentified source of the modification. If a register is modified 
satisfying the assumptions, the modifier indicator represents the 
specific operation that alters the register value. R indicates that 
read transactions alter the register value. W is used for write 
transactions, W0 for write with data value 0, and W1 for write 
with data value 1. If a register cannot be modified, the modifier 
indicator C represents the constant register value. If a register can 
be modified only once by the first operation after a global reset, 
the modifier indicator uses letter O. Figure 8 shows example 
properties for the modifier indicator R and O. 

ARBM access policies are written with modifier indicators in 
front and explicitly represent which operation can modify the 
register value. Multiple modifier indicators can be combined. For 
example, ‘RW + Rx_x0 + Wy_xy’ represents an access policy 



similar to UVM’s WRC access policy. However, ‘RW’ indicates 
that the register can only be modified by read or write transactions 
and ‘Rx_x0 + Wy_xy’ indicates that the register can have all 
possible values. 

4.5 Reset Value Exploration 
Register reset value verification is relatively simple. However, we 
found some cases where the actual reset value cannot be observed 
using front-door access; the register updates its value before any 
read bus transactions are possible. To identify this register 
behavior, we applied both back-door and front-door accesses for 
reset value exploration properties. Back-door access identifies the 
actual reset value. Front-door access reads the register value at the 
earliest possible bus transaction after reset. To represent these two 
values in access policies, we combine them with comma. For 
example, ‘0,X’ indicates the actual reset value is 0 but the earliest 
possible read operation might read 1 instead of 0. 

4.6 Local Reset Exploration 
The reset value verification explained in Section 4.5 is focused on 
the global reset of a design. A register, however, can have other 
type of resets that are generally known as local resets. Different 
from global resets, local resets are applied during normal 
operations, possibly multiple times, to a subset of a design. 
Because of local resets, many register are identified as volatile. 
We isolate the local reset behavior from other register behaviors 
by developing exploration properties for local resets. The goals of 
these exploration properties are: 

1. For each register, identify whether it is reset by a local 
reset. If it is, then also identify the reset value, the 
polarity of the local reset signal, and whether it is 
asynchronous or synchronous reset. 

2. For a volatile register with a local reset, determine 
whether it can be a non-volatile register if the local reset 
remains inactive. 

To observe local reset behavior, we added a back-door access port, 
‘local_reset’, to the interface of Register Layer. Figure 9 shows 
the implementation of the local reset exploration properties. Using 
SystemVerilog generate statement, 4 different combinations of 
‘local_reset_polarity’ and ‘local_reset_async’ values are applied 
to generate total 8 properties of ‘a_local_reset_value_0’ and 
‘a_local_reset_value_1’. 

To achieve the second goal, the exploration properties for ARBM 
access policies are also modified. The ‘disable iff’ condition 
considers not only global reset but also local resets. 

To describe local reset behavior in ARBM access policies, we use 
the format: ‘V:AP:NAME’. ‘NAME’ indicates the name of the 
local reset. ‘V’ represents the reset value, 0 or 1. ‘AP’ is a two 
character code where the first character indicates whether the reset 
is ‘A’synchronous or ‘S’ynchronous, and the second character 
indicates the polarity, active ‘H’igh or active ‘L’ow.  

4.7 Instantiating Properties 
When the RVP is bounded to a target design, the Bus Layer is 
instantiated only once. However, the Register Layer needs to be 
instantiated multiple times by the Bus Layer, once for each 
register bit that is to be verified. For UVM-based front-door 
exploration properties, this instantiation is accomplished by 
SystemVerilog ‘generate’ statement. The necessary information: 
address range and bit width, is passed via parameters as shown in 
Figure 3. 

However, the SystemVerilog ‘generate’ statement cannot be used 
for connecting back-door signals. For UVM-based back-door and 
ARBM exploration properties, we developed a small script that 
instantiates the Register Layers and connects back-door signals to 
the interface ports. This script reads relevant information from a 
file, called ‘register information file’. As shown in Figure 10, it 
has a list of registers along with the address and bit information. 
Local reset signals can be included as well. 

When a property is instantiated for a register, a special naming 
rule is used for post-processing. The instance of a property 
includes the address and bit information in its instance name. If 
local reset exploration is applied, the instance name also includes 
local reset name and values for polarity and asynchronous 
variables. After the property instances are verified by formal 
verification, post-processing reads the results and parses the 
instance names to recognize which property is verified with which 
register. 

5. POST-PROCESSING 
After formal verification analyzes the exploration properties 
developed in Section 4, a post-processing step examines the 
results for each register and determines the register’s behavior. 
For the UVM-based properties, the post-processing program 
reports the identified behavior based on the predefined UVM 
access policies. For the ARBM properties, the report uses the 
ARBM access policies. 

Because we developed properties to correspond to access policies, 
if a property is proven, it implies that the register always complies 
with the corresponding access policy. In many cases, more than 
one property is proven for a register. If two proven properties 
represent orthogonal access policies, both are reported; otherwise, 
post-processing selects the access policy that best represents the 
register. For example, a register with UVM RW access policy will 
have its ‘a_read’ and ‘a_write’ properties proven. Its ‘a_W1S’ and 
‘a_W0C’ properties will also be proven, because normal writes 
will set the register value to 1 if the write data is 1 and clear it to 0 
if the write data is 0. Post-processing distills these results into RW 
access policy, hiding the property details. 

Figure 11 is a decision table that maps the property results to the 
most appropriate access policy. The post-processing program uses 
this decision table to report the UVM predefined access policies. 
If formal verification results do not match any entry in the 
decision table, a new entry is added. New entries are named 
UNDEF0, UNDEF1, UNDEF2, and so forth. 

Post-processing the results of ARBM exploration properties starts 
by determining the global reset value for a register. From the 
instance name of a proven property, we can identify the reset 
value and the register. If no global reset exploration properties are 
proven, post-processing reports an ‘X’; either the register is not 
reset by a global reset or the reset value is variable. 

The next post-processing step determines whether a register has a 
local reset. For each local reset and register pair, 8 properties are 
instantiated. If one of the properties is proven, the post-processing 
program parses the instance name of that property to identify 
which local reset is applied, its polarity, whether it is 
asynchronous or synchronous, and the register reset value. Once 
the local reset is identified for a register, properties which do not 
have the local reset in ‘disable iff’ are ignored. This is necessary 
to isolate the effects of the local reset from other register behavior 
as explained in Section 4.6.  



After identifying local resets and focusing on the appropriate set 
of exploration properties, the post-processing program identifies 
modifier indicators and ARBM access policies. The access 
policies are identified by applying the symbol assignment rules to 
the sanity check results of the properties for ARBM access 
policies. 

6. RESULTS 
We applied our register verification methodology to three 
different industrial designs, all of which are implemented in 
silicon. We used Questa Formal, an industrial model checking 
tool, to formally explore the register behavior with the exploration 
properties. These designs use AMBA APB interface for memory-
mapped registers. We compare the register verification results 
from UVM-based back-door exploration and ARBM against the 
original specification documents. 

Figure 12 shows the log of the ARBM post-processing program. 
‘read_rpt’ command shows some brief statistics. ‘read_reg_info' 
reads a register information file. ‘verify_reg’ analyzes the formal 
verification results and identifies each register’s behavior. 
‘report_reg’ reports the access policies in various formats. ‘-uniq’ 
is an option to store only the registers with a unique behavior. We 
generate all the logs with ‘-uniq’ option to review only the unique 
behaviors. ‘-verbose’ is an option to display the sanity information 
along with the report. 

As shown in the log, total 320 bits are verified in 10 addresses for 
design A. For each bit, 30 ARBM properties are instantiated to 
explore the register behavior: 4 for global reset, 2 for local reset, 8 
for modifier, 8 for read operation, and 8 for write operation. 2 
local reset properties are instantiated as safety-empty [5] in design 
A because design A has no local reset. 

Figure 13 shows the log from the post-processing program for 
UVM-based back-door exploration. The third column represents 
the identified access policies. The extra columns are provided to 
show which properties are proven; these are useful when a 
predefined access policy cannot be identified (e.g. UNDEF0). 
RA0 and RA1 properties stand for Read Always 0 and 1, 
respectively. UBA stands for Updated By Access, which checks if 
only read or write operations can modify a register. These 
properties are added to help understand the behaviors of 
undefined access policies.  

The register of address 0000 and bit 0 has normal read and write 
access behavior. UVM-based back-door and ARBM explorations 
identify it as RW and W + Rx_xx + Wy_xy, respectively. ARBM 
also reports other aspects of the register with the identified access 
policies. First, by reading the register information file, it can tell 
the name of the actual register in the design. If the actual register 
exists, R column indicates it as ‘Y’. If it doesn’t, ‘N’ will be used 
to indicate that the register is accessible by bus transactions but 
does not have an actual signal in the design. G_RST column 
shows access policies in terms of the global reset value. L_RST 
column shows access policies for local resets. Since design A 
doesn’t have local resets, this column remains empty for all 
registers. 

The register of address 0000 and bit 7 has UNDEF0 by UVM-
based back-door exploration because the property results do not 
match any condition of the decision table. The proven properties 
are read, RC, WC, W1C, W0C, RA0, and UBA. What we can 
interpret from this is that no matter which bus transactions 
occurred before a read bus transaction, it always reads 0. Since the 
UVM predefined access policies do not have a specific entry for a 

constant register, the identification is resulted in UNDEF0. In 
contrast, ARBM exploration clearly shows this behavior in a 
comprehensive form, C + R0_00 + Wx_00: the read value is 
always 0 and the register remains constant 0. 

The register of address 000c and bit 0 is the almost the same as 
the register of address 0000 and bit 0 except the reset value. The 
register of address 001c and bit 0 is identified as UNDEF1 by 
UVM-based back-door exploration. Since UBA is fired, we can 
interpret this one as a volatile register but it’s very limited to 
understand further behavioral information. ARBM exploration is 
able to identify the behavior precisely. Rx_x0 indicates that read 
operations read the current register value correctly. But the 
register value is always cleared to 0 after read operations. ‘x’ 
indicates that both value 0 and 1 are covered. Wx_00 shows that 
any write bus transactions are ignored. By reviewing the design, 
we found that this identification is exactly aligned with the actual 
design intention: This register is a status register which updates its 
value at the read access, then the value is cleared to 0 until the 
next read access occurs. Because it updates the value at the read 
access, not after the read access, modifier is identified as ‘U’ 
instead of ‘R’. 

ARBM also reports the comprehensive behavioral information for 
the register of address 0000 and bit 0 in design B as shown in 
Figure 14. UVM-based exploration in Figure 15 has only two 
proven properties, read and UBA, and identify as RO. It is 
insufficient to understand all the behaviors and even misleading. 
However, ARBM identifies as W + Rx_xx + WX_xy + Wx_xx. 
While read is normal, write shows uncommon behavior: If the 
write data is the same as the register value, the register remains 
unchanged. If the write data is opposite to the register value, the 
register can have an uncorrelated value, that is, regardless of the 
write data, the register can be either 0 or 1. After taking a look at 
the design, we confirmed that ARBM exploration successfully 
discovered the correct design behavior: if the write data is 
opposite to the register value, the design conditionally accepts the 
data and, hence, the register value sometimes can change to the 
new value or remain the same.  

The register of address 0000 and bit 8 has no actual register signal 
in the design. UVM-based exploration has only RA0 proven and 
mapped into UNDEF0. ARBM results in R0_xy + Wy_xz. Since 
there is no actual register, G_RST back-door value and Modifier 
have ‘–’. The only meaningful information here is the read data 
and G_RST front-door value, which are always 0.  

The register of address 0030 and bit 0 is one of the common 
implementations for an interrupt status register. It reflects the 
pending status of an interrupt: when an interrupt is received, the 
register is set to 1. It remains 1 until write operation with data 1 
comes to clear the register. R0_0x + R1_11 explains that read data 
is correct but the register value after read operation can change 
from 0 to 1 conditionally. Wx_0y + W0_11 + W1_1x reflects all 
the possible combinations for ‘write 1 to clear’ plus situations that 
the register value remains or changes to 1 when a new interrupt 
comes. UVM-based exploration has no row for this register. It is 
because only ‘read’ property is proven for this register and it is 
not unique any more.  

Design C has one local reset, ‘NRESET’. From L_RST column in 
Figure 16, we can clearly understand that ‘NRESET’ is effective 
only for specific registers and it always clears the corresponding 
registers to 0 by acting as an asynchronous and active low reset. 
Since ARBM exploration can isolate this local reset behavior 
from register behavior, we get W + Rx_xx + Wy_xy for registers 



like address 0000 and bit 1; the access policy implies that, if the 
effective local reset remain inactive, this register behaves as a 
normal read write register. If the local reset exploration is not 
applied, the identified access policy would have been U + Rx_xx 
+ W0_x0 + W1_xy or anything with U. 

For all three designs, we compared the results from our register 
verification methodology with the specification documents. We 
found small mistakes, such as a register field being mis-specified 
as [6:0] instead of [7:0]. But we also found many serious errors 
where the access policies are incompletely described, such as RO 
or RW when the actual behavior is more complex. We measured 
the number of mis-specified bits in the specification documents: 
out of the 992 bits verified in the three designs, 145 bits were mis-
specified, or 14.6% of the total memory-mapped register bits. 

7. CONCLUSION 
Quality verification cannot be achieved without quality 
specification. However, it is very difficult to maintain a good 
quality specification. For register verification, we presented a new 
methodology that explores the register behavior using formal 
verification and post-processes the results to automatically 
generate a specification. We defined a set of comprehensive 
access policies based on ARBM and a concise specification 
format, which specifies the possible register values. We developed 
exploration properties for UVM-based front-door, UVM-based 
back-door and ARBM. We applied our methodology to three 
industrial designs. ARBM was able to identify complex behaviors 
that were not identified with the UVM-based property sets. With 
the ARBM access policies, it was possible to precisely describe 
all the behaviors. When we compared our automatically generated 
specification with the original, manually written design 
specification, we were able to identify many inaccuracies in the 
original documentation. By automatically generating an 
implemented specification from the design, verification is reduced 
to the straightforward task of checking that the specification 
matches the designer’s intent. 
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Figure 1. The flow of proposed register verification method 
(Green ovals denote either input or output of a process. Blue 
rectangles denote processing steps.) 

 

 
Figure 2. Block diagram of a target design and Register 
Verification Package for formal verification 
 



 

Figure 3. The interface of Register Verification Package for 
AMBA APB interface and an example of a bind statement 
 

 
Figure 4. The interface of Register Layer 
 

 
Figure 5. Example exploration properties of UVM-based 
front-door implementation 
 

 
Figure 6. Example exploration properties of UVM-based 
back-door implementation 
 

 
Figure 7. Example properties for Atomic Register Behavior 
Model 
 

 
Figure 8. Example properties for modifier indicators 
  

 
Figure 9. Example properties for local reset exploration 
 

 
Figure 10. Example of a register information file 
 
 



 
 
 

 
 

 

 
Figure 11. A decision table to determine the best access policy from UVM-based back-door exploration results 

(Columns correspond to each exploration property as conditions. Rows correspond to the UVM predefined access policies as 
determined policies. If a cross section is green, proof is expected for the condition property. If it is red, violation is expected. If it 
is white, the condition is don’t-care.) 

 

 
Figure 12. An example log generated by ARBM post-processing program with design A 
 

 
Figure 13. An example log generated by the post-processing program for UVM-based back-door exploration with design A 
 



 
Figure 14. An example log generated by ARBM post-processing program with design B 
 

 
Figure 15. An example log generated by the post-processing program for UVM-based back-door exploration with design B 
 

 
Figure 16. An example log generated by ARBM post-processing program with design C 
 

 
Figure 17. An example log generated by the post-processing program for UVM-based back-door exploration with design C 
 


