
Register This! Experiences Applying UVM Registers
By Sharon Rosenberg - Cadence Design Systems

Abstract

Controlling and monitoring registers and

memories comprises a large part of typical

functional verification projects. While this task

can be managed manually for low-complexity

subsystems, most projects have thousands or

even hundreds of thousands of registers. Such

environments demand automation and reuse

and the Accellera UVM_REG register and

memory package can provide it. The UVM_REG

combines elements from multiple proprietary

solutions (e.g. Synopsys RAL, and Cadence

UVM_RGM) with new code from Mentor for

tight alignment with the UVM BCL and

methodology.

First released in March 2011, the UVM_REG has

been used in production, which has led to

several enhancements and enhanced use

models. Since the use model a team chooses

often depends on the circumstances,

perspective, and history of the team, it is

important to start with a common

understanding of the library capabilities and

some traditional and new use models. From

that foundation, this paper compares and

contrasts techniques and recommends a proven

methodology with practical guidelines gleaned

from real project experience. Among the topics

and techniques that will be detailed are the

following:

• Passive monitoring vs. checking in

sequences

• Safe parallel register operations

• Vertical reuse and registers

• Who’s afraid of IP-XACT? (Introduction

to IP-XACT)

• What to expect from a register

generator

• Debugging registers and memory

• Migrating to the UVM_REG from an

existing solution

This paper provides useful information for users

with different levels of experience and allows

them to either validate their current register

methodology or ask the right questions when

moving to the UVM_REG. This paper includes

code examples that are posted to the

UVMWorld contribution enabling readers to

implement the recommendations easily.

Keywords

UVM, Accellera Systems Initiative,

SystemVerilog, VMM, RAL, IP-XACT, reuse,

verification

1.0 The uvm_reg Usage

If the verification environment does not yet

include register and memory package support,

it is important to understand that when a

register and memory package is introduced

most of the interaction with the device’s

memory mapped registers is done via a

protocol agnostic register API.

Figure 1: Interaction of Registers and the DUT

As illustrated in figure 1, bus operations

be executed, but much of the interaction with

the DUT is done at the register level saving

test writer the need to learn the

implementation specific details. An example of

this is when write operations are performed

opposed to an AHB write transfer to a certain

address. The register write operation is later

translated into specific bus operation

register operation-to-bus translation logic is

done once per bus UVC and typically stored in

the bus UVC package.

The configuration code abstract

specifics for test writers, and becomes protocol

independent. The register operation l

be layered on top of a certain protocol and

it can be swapped to a different protocol

future while keeping the configuration

sequences intact.

Registers and register files are

vertical reuse (module-to-system) opportunity,

as sub-systems configuration logic is valid and

reusable at the system integration level.

Designs can be packaged with their

configuration sequences allowing the system

integrator smooth operations w

to learn all the sub-system configuration details.

: Interaction of Registers and the DUT

bus operations can still

much of the interaction with

at the register level saving the

the protocol and

. An example of

are performed as

opposed to an AHB write transfer to a certain

. The register write operation is later

translated into specific bus operation(s) but the

bus translation logic is

done once per bus UVC and typically stored in

abstracts away protocol

becomes protocol

register operation logic can

protocol and then

different protocol in the

the configuration

files are an excellent

system) opportunity,

systems configuration logic is valid and

reusable at the system integration level.

can be packaged with their

configuration sequences allowing the system

integrator smooth operations without the need

system configuration details.

The shadow register model is a hierarchal

reference model for a specific DUT and captures

the DUT memories and registers

attributes. It contains nested objects of

blocks, registers and their field

derived from the uvm_reg classes and

specialized to the specifications at hand

model allows the randomization of

configuration values, check

register values for correctness and

coverage. The register model is

automatically generated from

specification using a code generator.

Coding the SystemVerilog

manually is a labor intensive task that

deep knowledge of the

and is hard to maintain

changes.

While this paper can’t replace a

class, there are a few

memories, registers, and

will make the examples easier to understand

• write()/read(): Write/read immediate

value to DUT.

• set()/get()

value for the register model.

• randomize() :

method copies the randomized value in

the uvm_reg_field::value property into

the desired value of the mirr

post_randomize() method.

• update()

method if the desired value (previously

modified using set() or randomize()) is

different from the mirrored value.

• mirror()

method to update the mirrored value

The shadow register model is a hierarchal

a specific DUT and captures

DUT memories and registers structure and

nested objects of register-

registers and their field classes that are

derived from the uvm_reg classes and

specialized to the specifications at hand. The

the randomization of legal

configuration values, checking of the DUT

rrectness and collection of

The register model is often

automatically generated from a register

code generator.

SystemVerilog (SV) model class

is a labor intensive task that requires

deep knowledge of the UVM_REG base classes,

maintain if the specification

While this paper can’t replace a full training

are a few access methods for

, and register sub-fields that

make the examples easier to understand:

: Write/read immediate

 : Sets or gets desired

value for the register model.

randomize() : Using the randomize()

method copies the randomized value in

the uvm_reg_field::value property into

the desired value of the mirror by the

post_randomize() method.

 : Invokes the write()

method if the desired value (previously

modified using set() or randomize()) is

different from the mirrored value.

 : Invokes the read()

method to update the mirrored value

based on the read back value. mirror()

can also compare the read back value

with the current mirrored value before

updating it.

Note that you can mirror() and

randomize() full compound elements

such as register files in a single

operation.

The signature of the methods includes multiple

parameters and typically uses a combination of

binding by name, by position, and with default

values to simplify the method calls.

An example of the signature of write is:

virtual task write (output
uvm_status_e status, input
uvm_reg_data_t value,

 input uvm_path_e
path=UVM_DEFAULT_PATH, input
uvm_reg_map map=null,

 input uvm_sequence_base parent
= null, input int prior = -1,

 input uvm_object extension =
null, input string fname = "",

 input int lineno = 0)

and a use model can look like this:

 model.config_reg0.write(status,
‘h34, UVM_BACKDOOR, . parent (this));

The first three arguments are bound by position

and the parent field is bound by name. This

provides some background on the hierarchical

structure of the register model and it’s API.

These examples will be used again in this paper.

2.0 Considerations for Selecting a Code

Generator

As described above, the first step to leverage

the uvm_reg base classes involves transferring

a register specification to a specialized uvm_reg

register model. Unfortunately, the UVM

reference library does not include a code

generator which is a critical element in making

the register logic scalable, reusable and vendor

independent. Here are a few considerations for

selecting an existing or creating the code

generator you need.

1. Scalability - designs may include large

numbers of registers and scalability is

an important consideration. The

customized code in uvm_reg (and this is

derived from the uvm_reg

implementation) is typically large and

might create a bottleneck at compile

time or even crash the compilation due

to memory explosion. Run-time is

typically secondary but should be

observed as well.

2. Vendor independent generated code –

Large part of the SV language and the

UVM library promise involves the ability

to run-code on all simulators. Although

this wish is not feasible yet at the

language level, it is still a strong

requirement to ensure that the

generated code is supported by all

vendors and that the semantic of the

used features is consistent across

vendors.

3. Support for a standard input format –

History shows that eventually standards

overcome local initiatives and with a

few exceptions, the industry progresses

and moves forward in the right

direction. Using proprietary input

formats may disconnect your team

from the overall progress and new

upcoming solutions that are built on top

of standards.

4. Ability to replace the generator as

needed – In addition to the input

format that we discussed above, make

sure that the generator does not create

an extra API that is not part of the

standard uvm_reg. Having the

configuration logic and sequences use

such added API will limit the ability to

swap a commercial or homegrown

generator with a different one.

5. Debug-ability and self-checking of the

generated code – Typically, the

generated code is not intended to be

read by users. However, it is important

that the generated code include

construction time checkers to identify

issues in the input specifications, as well

as debug capabilities in case an issue is

discovered during compile or run-time.

6. Productized and productive solution

Given that a generator is necessary, the choices

are to create a proprietary generator or

adopting a commercial one. The benefit of

creating a proprietary generator is the flexibility

to enhance and tune it to local needs. Process-

oriented companies have proprietary

specification formats and solutions that

integrate designs, compose configuration logic,

create documentation, and more. Creating a

single automated process that results in

multiple design and verification artifacts that

are correct and consistent by construction is an

important goal to pursue to streamline and

shorten design integration process. This means

that the legacy input format must be

maintained as the UVM register package is

being adopted. Obviously, adopting a

commercial generator reduces the

development effort, checking compliance with

all simulators, maintaining the generator as the

uvm_reg classes are enhanced, and provides

access to novel capabilities requested from the

larger verification community.

A middle-ground solution involves creating an

adaptor from a proprietary input format into

the standard format that is accepted as input to

a commercial generator. This allows balanced

the creation or continued use of a proprietary

format while leveraging the maturity, low-

maintenance and support of a commercial tool.

Which option is the right one for a given

project? The solution can vary from one

company to the other. Some companies do well

with internal development. Others are stuck

with inferior solutions that may have been the

state of the art a few years ago, but have since

become inferior, buggy and an overall burden

on the company. If this is the case, the internal

support team may want to review commercial

options.

Since most project teams will use these criteria

to choose a commercial generator, it is worth

the time to explain how these features come

together in Cadence’s commercial generator as

an example. Cadence iregGen is a native IP-

XACT to UVM generator (no intermediate

formats are being created that can impact

debug). The front-end IP-XACT format has been

used in production for more than three years to

support the Cadence uvm_rgm package and

more than a year with uvm_reg. The

accumulated experience in making the

generated code concise, scalable and vendor

independent enables optimized code creation

which can run on all major simulators. The tool

supports optional IP-XACT standard extensions

that are being evaluated for the next IP-XACT

revision (a runtime argument allows identifying

non-current IP-XACT standard usage).

iregGen supports registers as well as memories,

wide range of registers such as immediate, fifo,

shared and more, and automatically creates

functional coverage. A unique capability of

iregGen is the ability to customize the front-end

to support user-defined formats to the back-

end code generator. This is important for

companies that are using a proprietary

specification format but do not want to

constantly develop and maintain their own

uvm_reg code generator.

3.0 The IP-XACT Standard Input Format

At first glance the Accellera standard IP-XACT

input format seems verbose and complicated.

The standard itself is wider in scope than just

registers, and enables other block composition

related technology. Experience shows that

complexity is a minor issue for most teams once

the work begins. Project teams that used IP-

XACT can adopt one of the many existing

technologies that standards cultivate and allow

easier viewing and editing. For example, such

editors allow compose-time checking against

the IP-XACT schema, which means that an error

will be detected as soon as you type it in the

editor. We also discovered that many users are

comfortable with using their favorite text editor

and learn to natively read and write the IP-XACT

format.

Here is a short example of a register definition

in IP-XACT.

<spirit: register > <!– CONFIG
REGISTER -->

<spirit: name>config_reg </spirit:n
ame>

<spirit: addressOffset >0x0010 </spi
rit:addressOffset>

<spirit: size >8</spirit:size>

 <spirit: reset >
<spirit:value> 0x00 </spirit:value>

<spirit: mask>0xff </spirit:mask>
</spirit:reset>

 <spirit:field> <!–
FIELD DEFINITIONS -->

<spirit: name>f1 </spirit:name>

<spirit :bitOffset >0</spirit:bitOf
fset>

<spirit: bitWidth >1</spirit:bitWid
th>

<spirit: access >RW</spirit:access>

 </spirit:field>

 <spirit:field>
<spirit: name>f2 </spirit:name>
<spirit: bitOffset >1</spirit:bitOf
fset>

<spirit: bitWidth >1</spirit:bitWid
th>
<spirit :access >RO</spirit:access>

 </spirit:field>

. . .

</spirit: register >

The standard also recognizes that it is

impossible to conceive the multiple attributes

that users may need and provides an extension

scheme to the core standard. Examples of the

extensions that users leverage in their register

models are the ability to capture field

dependencies with constraints or coverage

directives.

<spirit:vendorExtensions>

 <vendorExtensions
type>ua_cr_c</vendorExtensions:type
>

 <vendorExtensions:constraint>c1
{tx_en!= value.rx_en;}

</vendorExtensions:constraint>

</spirit:vendorExtensions>

The Accellera Systems Initiative has a

standardization effort to enhance IP

support more registers related attributes as

part of the standard.

4.0 Setting-up uvm_reg Model in the

Testbench

As described previously, the register operation

logic is layered on top of the bus API. There are

two ways to set up this layering

instantiate a register sequencer

configuration sequences on it

register sequence on top of the bus sequencer.

Both techniques require an adapter definition

that translates between register operations and

the specific protocols data items.

When executing a register sequence on top of a

bus UVC (figure 2b) the user can combine both

bus operations with register operations

same sequence body. This simplifies the ability

to embed non-register accesses with register

operations. The local bus can also be easily

grabbed as needed to serve interrupt

Figure 2a: Layering of uvm_reg S

Initiative has a

standardization effort to enhance IP-XACT to

support more registers related attributes as

up uvm_reg Model in the

As described previously, the register operation

us API. There are

two ways to set up this layering. You can

instantiate a register sequencer and execute

configuration sequences on it or execute a

register sequence on top of the bus sequencer.

an adapter definition

between register operations and

the specific protocols data items.

When executing a register sequence on top of a

the user can combine both

bus operations with register operations in the

same sequence body. This simplifies the ability

register accesses with register

can also be easily

as needed to serve interrupts.

Layering of uvm_reg Sequencer

Figure 2b: Executing a S

Bus Sequencer

In the other layering setup

dedicated sequencer for the register operation

is layered on top of the bus sequencer.

5.0 Creating Configuration Sequences

It is possible to leverage

sequences. From user

possible to call the uvm_reg read and write

functions, update, and compare register values

as needed. As far as the author was able to

research, this is the only documented

methodology for RAL (

package) users, and thus

users with VMM background

If the project is transitioning

or another proprietary methodology

important to repeat the motivation of using

sequences in the generic case and in the

context of registers. In UVM, sequences are the

main format to captur

stimuli. They introduce a lot of value such as

late generation and the ability to react to the

state of the DUT, they remove the test

need to learn and use the UVM factory as it is

automatically called by the `do` operator

define standard implementation for layering,

priorities, handling exceptions and interrupt

Executing a Sequence on top of the

equencer

layering setup (figure 2a), a

dedicated sequencer for the register operation

bus sequencer.

Creating Configuration Sequences

It is possible to leverage uvm_reg without

From user-defined tasks, it is

the uvm_reg read and write

and compare register values

the author was able to

is the only documented

methodology for RAL (the VMM register

thus might be natural for

background.

the project is transitioning to UVM from VMM

other proprietary methodology, it is

repeat the motivation of using

sequences in the generic case and in the

In UVM, sequences are the

main format to capture any kind of ordered

. They introduce a lot of value such as

late generation and the ability to react to the

they remove the test-writers

need to learn and use the UVM factory as it is

automatically called by the `do` operator, they

define standard implementation for layering,

priorities, handling exceptions and interrupts,

multi-channel system-level control and much

more. Introduced more than a decade ago, and

implemented early on in OVM, it is rare to find

a project environment that doesn’t leverage

sequences for stimuli creation. Project teams

are highly encouraged to use register sequences

for their value and for easy adoption. Here is an

example of a register configuration sequence.

class blk_seq extends
uvm_reg_sequence;

 my_rf model;

 virtual task body();

 uvm_status_e status;

 int data;

model.mode0_reg. write (status,
‘h12, .parent(this));

model.config_reg. write (status,
‘h34, UVM_BACKDOOR,
.parent(this));

model.config_reg. read (status,
data, UVM_BACKDOOR,
.parent(this));

 model.my_mem. write (status,
‘h8, ‘h1234_5678, .parent(this));

 void'(model.randomize());

 endtask : body

 `uvm_object_utils(blk_seq)

 function new (string
name=“blk_seq“);

 super.new(name);

 endfunction : new

 endclass : blk_seq

6.0 Checking for Correctness

Register checking and coverage is useful.

Register field values map nicely into DUT

operation modes and designers appreciate the

ability to observe the combinations of

configurations that were exercised. Consistency

checking against mirror/reference can identify

errors regardless of the testbench

implementation or DUT complexity.

The first questions asked include the following:

“Where do I place the monitoring logic?” and

“Is it in the sequences or passively via passive

monitor?” Separation of the injection and

monitoring paths is one of the basic concepts of

UVM, and many UVM users have strong

negative emotions about mixing stimuli with

checking and monitoring.

Monitoring and checking mixed with the stimuli

is traditionally a directed testing approach in

which updates and compares are done as part

of the directed test or sequence body. The

advantage is that it seems natural for directed

test writers that the driving and the checking

are done in the same scope thus easier to

correlate to each other.

The downsides of this approach are many. A

check that is done in a specific sequence is valid

only for this specific operation and not in other

scenarios or sequence variations that require

the same check. Also the inevitable question is

“what if the test is not driving the bus?” It could

be other VIP or even a DUT block that drives the

bus. This scenario is typical for vertical reuse in

which an external bus becomes internal in a

larger system and is no longer driven from the

testbench. Other considerations are the parallel

nature of register operations. While the

sequence body() seems like a single continuous

procedural block, it may run in parallel to other

sequences. In such cases, assumptions on

register values can grow stale quickly due to

other parallel competing sequences and a check

might fail. There are other advantages for

passive monitoring but this should be a strong

enough case to justify the recommendation to

split the stimuli from the checking. Just to

conclude the discussion, in most cases it is ok to

have a check in the sequence body but the main

location for reusable and accurate checking and

coverage should not be inside sequences.

7.0 Leveraging the Desired Value for

Checking

A register field is an instance of uvm_reg_field

with a similar data width (default 64 bits) and

holds three copies of the value: mirrored (a

reflection of what should be in the actual

hardware), value (a value to be randomized),

and desired (a desired value for the field for

reference and comparison). The original

intention was to leverage these fields for

shadowing but this also requires a discussion.

The issue with the field usage is to support

parallel register activity that can be achieved by

multiple masters that can write to a single

register or even with pipelined busses. For

example, randomizing a register would already

change the desired value. If the randomized

value was not written to the bus (e.g.

generating tasks for DMA to be scheduled to be

executed later on, an incomplete bus

transaction that may be randomized but never

make it to the DUT register, pipelines that

introduced a delay, etc.), an undesired

comparison will take place. The package

supports semaphores on registers that prevent

parallel activity such as randomization or

accesses. If a register operation is in flight on a

certain register, a second operation will be

blocked till the first one completes.

It is possible to try to leverage these capabilities

to solve the shadowing of multiple accesses

challenge. However, changing the stimuli to

enable the checking is a dangerous act that can

eliminate corner cases. For example, a project

may want to check that the DUT can handle two

register operations coming from two different

interfaces at the same time. There might be

hardware or software logic to make sense out

of this corner case, and this scenario definitely

should not be eliminated because of the

shadow model limitations. So how can the safe

monitoring of registers be handled? The values

must be monitored independently in a passive

way.

It is important to note that with respect to

coverage; many times a complete configuration

of DUT involves setting multiple registers. Make

sure that that the coverage is not sampled

before all the values are set, and that the final

configuration is indeed exercised before

marking it down as covered.

8.0 Debugging Registers Related Activities

While the concept of registers is simple and

sound, the library data structure

implementation is complex. A project team may

want to review register hierarchy and

properties, check the current values, set break-

points on register upon modifications, access or

other related events and dump values to the

waveform.

The fact that a standard exists allows different

vendors create various visualization and

debugging facilities. The screen shot in figure 3

is taken from typical register debug window.

Figure 3: Register View in Debug

The viewer allows traversing the register model

hierarchy while expanding and collapsing as

needed. Users can review the register

properties and set break points as desired.

9.0 Summary

UVM1.0 introduced the uvm_reg base classes

that finally allows cross industry convergence

on register descriptions and automation.

Multiple project teams with different

backgrounds and habits are adopting this

solution. Any interested parties are highly

encouraged to attend a training class that

follows these UVM concepts to benefit your

internal and intra-company verification

projects.

