
February 28 – March 1, 2012

Register This! Experiences Applying UVM
Registers

by
Kathleen Meade

Verification Solutions Architect
Cadence Design Systems

Register Package: Motivation
• Almost all devices have registers

– Hundreds (even thousands) of registers is not uncommon

• In verifying a DUT, one needs to control, observe and check register
behavior
– Randomize a configuration and initialize register values
– Execute transactions to write/read registers and memories
– Check registers and compare to a reference model
– Collect coverage of device modes

• Much of the DUT configuration is done at the register level!

Kathleen Meade, Cadence Design Systems, Inc 2 of 105

UVM_REG
• UVM_REG is the register and memory package that is included in UVM

– Streamlines and automates register-related activities
– Used to model registers and memories in the DUT

• Features
– Built on top of UVM base classes
– Access APIs – to write, read, update, peek, get reg values
– front-door and back-door access to registers and fields
– Hierarchical architecture
– Built-in sequences for common register operations

Kathleen Meade, Cadence Design Systems, Inc 3 of 105

4 of 105

APB UVC

Configuring the DUT with uvm_reg

master
agent

driver

seqr Register Model

Register Block

0x1000 mode0
mode1
mode2
mode3
status

0x0000

0x0FFF

memory
(4K)

0x1001
0x1002
0x1003
0x1010

. . .
mon

A register model is created to
shadow the registers, and

memories in the DUT

Register sequences execute
register operations

The DUT configuration
determines initial
register values Master UVC drives

bus transactions

Register
SequenceAdapter converts

register operations to
bus transactions Adapter

dut

memctl
mode0

mode2
mode1

mode3
status

mem_inst

memory
32x4096

apb_if

Virtual
Sequencer

Virtual Sequencer
executes register

operations and bus
transactions

Kathleen Meade, Cadence Design Systems, Inc

APB UVC

Register Monitoring and Checking

master
agent

driver

seqr Register Model

Register Block

0x1000 mode0
mode1
mode2
mode3
status

0x0000

0x0FFF

memory
(4K)

0x1001
0x1002
0x1003
0x1010

. . .
mon

Register model contains address maps
and is placed in the testbench. Also
holds attributes and expected values

Functional coverage
is sampled in the
register model

A bus monitor captures
transactions on the bus

and sends them via TLM

Predictor
Component

Adapter converts
transactions back to
register operations

Adapter

dut

memctl
mode0

mode2
mode1

mode3
status

mem_inst

memory
32x4096

apb_if

Predictor receives
transactions
Predictor:
write: update the model
read: compare (and update)
the register model

5 of 105Kathleen Meade, Cadence Design Systems, Inc

The Register Model
• Defines fields, registers, register blocks and memories for the DUT

– Includes attributes for registers and register fields
(size, reset value, compare mask and access)

– Also tracks the expected values for checking

• Register operations are used for register-related stimulus
– Separating register operations from bus protocols

• Don’t need to learn protocol-specific details
• Can easily change underlying protocol

• Registers and blocks can be reused within and between projects
– Configuration sequences can be packaged and reused

Kathleen Meade, Cadence Design Systems, Inc 6 of 105

• IP-XACT is the Accellera XML standard format to capture the
register model (driven by the IPXACT sub-committee)

Creating the UVM_REG Model
Following the IP-XACT Hierarchy

IP-XACT

Register
Generator

Utility Reg classes
and DB

Generated SV code extends
from UVM base classes

UVM config
sequences

testbench

Place inside a testbench
for randomizing, checking,
and coverage

Provided by Vendors UVM_reg
base classes

Users capture their project
Register model in IPXACT

User manually creates reusable
UVM configuration sequences

7 of 105Kathleen Meade, Cadence Design Systems, Inc

Kathleen Meade, Cadence Design Systems, Inc

<spirit:register> <!– MODE REGISTER -->
<spirit:name>mode_reg</spirit:name>
<spirit:addressOffset>0x0000</spirit:addressOffset>
<spirit:size>8</spirit:size>
<spirit:access>read-write</spirit:access>
<spirit:reset>

<spirit:value>0x00</spirit:value>
<spirit:mask>0xff</spirit:mask>

</spirit:reset>
</spirit::register>

IP-XACT Register Format (XML)

8

<spirit:register> <!– CONFIG REGISTER -->
<spirit:name>config_reg</spirit:name>
<spirit:addressOffset>0x0010</spirit:addressOffset>
<spirit:size>8</spirit:size>
<spirit:reset> <spirit:value>0x00</spirit:value>
<spirit:mask>0xff</spirit:mask> </spirit:reset>
<spirit:field> <!– FIELD DEFINITIONS -->

<spirit:name>f1</spirit:name>
<spirit:bitOffset>0</spirit:bitOffset>
<spirit:bitWidth>1</spirit:bitWidth>

<spirit:access>read-write</spirit:access>
</spirit:field>

<spirit:field> <spirit:name>f2</spirit:name>
<spirit:bitOffset>1</spirit:bitOffset>

<spirit:bitWidth>1</spirit:bitWidth>
<spirit:access>read-only</spirit:access>

</spirit:field>
. . .
</spirit:register>

config_reg
0267

f1f2f3f4

mode_reg
07

data

Vendor extensions can be used
in the XML file to capture
additional register and field
dependencies (backdoor path,
constraints or coverage info)

8 of 105

Kathleen Meade, Cadence Design Systems, Inc

class config_reg_c extends uvm_reg;
rand uvm_reg_field f1;
rand uvm_reg_field f2;
rand uvm_reg_field f3;
rand uvm_reg_field f4;

virtual function void build();
f1 = uvm_reg_field::type_id::create(“f1");
f1.configure(this, 1, 0, "RW", 0, ‘h0, 1, 1, 1);
f2 = uvm_reg_field::type_id::create("f2");
f2.configure(this, 1, 1, "RO", 0, ‘h0, 1, 1, 1);
f3 = uvm_reg_field::type_id::create(“f1");
f3.configure(this, 4, 2, "RW", 0, ‘h0, 1, 1, 1);
f4 = uvm_reg_field::type_id::create("f2");
f4.configure(this, 2, 6, “WO", 0, ‘h0, 1, 1, 1);

endfunction

`uvm_register_cb(config_reg_c, uvm_reg_cbs)
`uvm_set_super_type(config_reg, uvm_reg)
`uvm_object_utils(config_reg_c)

function new (input string name="config_reg_c");
super.new(name, 8, UVM_NO_COVERAGE);

endfunction : new
endclass : config_reg_c

config_reg fields

Constructor specifies width and
coverage options

Generated Register Definition

Callback and derivation support

config_reg
0267

f1f2f3f4

In the build() method, each field
is created, and then configured

9
9 of 105

class memctl_rf_c extends uvm_reg_block;

rand mode_reg_c mode_reg;
rand config_reg_c config_reg;

virtual function void build();
mode_reg = mode_reg_c::type_id::create(“mode_reg“, get_full_name());
config_reg = config_reg_c::type_id::create(“config_reg“, get_full_name());
mode_reg.configure(this, null, “ctl.mode_reg”);
mode_reg.build();
config_reg.configure(this, null, “ctl.config_reg”);
config_reg.build();
// define address mappings
default_map = create_map(“default_map”, 0, 1, UVM_LITTLE_ENDIAN);
default_map.add_reg(mode_reg, ‘h0, “RW”);
default_map.add_reg(config_reg, ‘h10, “RW”);

endfunction

`uvm_object_utils(memctl_rf_c)

function new (input string name=“memctl_rf_c");
super.new(name, UVM_NO_COVERAGE);

endfunction
endclass

Registers (can also contain fields)

hdl_path for backdoor access

Address offset

Register File/Model Declaration

In the build() method, each register
is created, and then configured

A default map is created with
address offset information

The register model is similarly
hierarchical and contains register
files, memories and also registers

10 of 105Kathleen Meade, Cadence Design Systems, Inc

Testbench

Instantiation and Hook-up

APB UVC
master
agent

driver mon

seqr

Adapter

Virtual
Sequencer

Predictor
Component

Register Model
Register Block

0x1000 mode0
mode1
mode2
mode3
status

0x0000

0x0FFF

memory
(4K)

0x1001
0x1002
0x1003
0x1010

. . .

Register
Sequencer

Create an adapter and
implement the reg2bus
and bus2reg functions

Add a predictor

Place components in the
testbench and connect

Connect the
predictor to the
APB monitor

Create a register
sequencer

dut

memctl
mode0

mode2
mode1

mode3
status

mem_inst

memory
32x4096

apb_if

11 of 105Kathleen Meade, Cadence Design Systems, Inc

Accessing the Register Model
• Each register field holds three copies of data:

– Mirrored: What we think is in the HW
– Value: A value to be randomized
– Desired value: A desired value for the field for reference and

comparison

• Has an associated access policy (RW, RO, WO, W1C, etc)

config_reg
0267

f1f2f3f4

mode_reg
07

data

RWRO

12 of 105

Access APIs for Registers, Fields
and Memories

write()/read() Write/read immediate value to the DUT
set()/get() Sets or gets desired value from the register model
randomize() Randomizes and copies the randomized value into the desired

value of the mirror (in post_randomize())
update() Invokes the write() method if the desired value (modified using

set() or randomize()) is different from the mirrored value
mirror() Invokes the read() method to update the mirrored value based

on the read back value. Can also compare the read back value
with the current mirrored value before updating it. (for
checking)

Use UVM_BACKDOOR mode to directly access the DUT (via HDL path)

randomize(), update() and mirror() can be called on a container (block) too

13 of 105

UVM_REG write() API
• An example of the task signature for write is:

• Usage of write() inside a sequence looks like this:

Kathleen Meade, Cadence Design Systems, Inc 14 of 105

virtual task write(output uvm_status_e status,
input uvm_reg_data_t value,
input uvm_path_e path = UVM_DEFAULT_PATH,
input uvm_reg_map map = null,
input uvm-sequence_base parent = null,
input int prior = -1,
input uvm_object extension = null,
input string fname = “”,
input int lineno = 0);

model.block.mode_reg0.write(status, 8’h34, UVM_BACKDOOR, .parent(this));
model.block.config_reg.write(status, 8’h20, UVM_FRONTDOOR, .parent(this));

bound by name
instead of position

default is
FRONTDOOR

• Use the register database API to configure the DUT and update the
register model

• To maximize automation and reuse use UVM sequences for
configuration

• Advantages:
– Registers are great candidates for vertical reuse
– Sequences are the most natural way for UVM users
– Leverage built-in sequence capabilities: grab, lock, priorities, etc
– Easy system-level control via virtual sequences

Configuring Your DUT Using
uvm_reg

15 of 105Kathleen Meade, Cadence Design Systems, Inc

class config_wr_rd_seq extends uvm_reg_sequence;

memctl_rf model;

rand logic [31:0] mode0, config;

virtual task body();
uvm_status_e status;
model.mode0_reg.write(status, mode0, .parent(this));
model.config_reg.write(status, config , .parent(this));
model.mode0_reg.read(status, mode0, UVM_BACKDOOR, .parent(this));
model.config_reg.read(status, config, UVM_BACKDOOR, .parent(this));

endtask : body

`uvm_object_utils(config_wr_rd_seq)
function new (string name=“config_wr_rd_seq“);

super.new(name);
endfunction : new

endclass

Configuration Sequences

Frontdoor Writes

Backdoor Reads

register model

The `uvm_do actions are hidden
by the read/write routines

16 of 105Kathleen Meade, Cadence Design Systems, Inc

What about Checking?

Checking for Correctness
• Register checking and coverage is useful

– Register field values map to DUT operation modes and designers
can observe the combinations of configurations that were exercised

• Consistency checking against a mirror/reference can identify errors
regardless of the testbench implementation or DUT complexity

• Where do I place the monitoring logic? Directly in sequences where I
want to check? or a passive monitor?

• UVM_REG supports two types of monitoring: implicit and explicit

Kathleen Meade, Cadence Design Systems, Inc 17 of 105

Checking: Implicit Monitoring

• Implicit monitoring
– The sequence automatically updates the desired value
– Easy to set up but dangerous, not reusable (no support for passive),

no support for other activity on the bus
– To activate: my_reg_model.default_map.set_auto_predict(1)

• Use the mirror() method n a sequence body and enable the check:
// Read and check the mode register via back-door access
model.mode0_reg.mirror(status, UVM_CHECK, UVM_BACKDOOR, .parent(this));

model.mirror(status, UVM_CHECK, UVM_FRONTDOOR, .parent(this));

Can also mirror() the register
model or any sub_container

18

Checking: Explicit Monitoring
• Explicit Monitoring:

– The bus monitor and a predictor are used for monitoring and
checking

– Much safer and more reusable
– Checking logic needs to be added to module UVC

• Separation of the injection and monitoring paths is one of the basic
concepts of UVM

• We recommend passive monitoring – independent capture of
transactions on the bus that can be recognized as bus operations.

• Note: It’s OK to have a check in a sequence body if that is the purpose
of the sequence, but want to be able to do independent checking too

19

• The register model can include functional coverage
– Details of coverage points, bins are left to generator
– Coverage model can be very large, so instantiate/cover only what

needs to be covered
• UVM_REG pre-defined coverage models

– Register bits (all bits have been read/written)
– Address maps (addresses have been accessed)
– Field values (specific values are covered)

• A register generator creates a coverage model for you.
– Uses IP-XACT vendor-extensions to enable coverage at the field-level
– Also allows command-line option to enable/disable register-level

functional coverage generation

Coverage Model in UVM_REG

21

Questions?

Kathleen Meade, Cadence Design Systems, Inc 23 of 105

Thank You!

	Register This! Experiences Applying UVM Registers
	Register Package: Motivation
	UVM_REG
	Configuring the DUT with uvm_reg
	Register Monitoring and Checking
	The Register Model
	Creating the UVM_REG Model�Following the IP-XACT Hierarchy
	IP-XACT Register Format (XML)
	Generated Register Definition
	Register File/Model Declaration
	Instantiation and Hook-up
	Accessing the Register Model
	Access APIs for Registers, Fields and Memories
	UVM_REG write() API
	Configuring Your DUT Using uvm_reg
	Configuration Sequences
	Checking for Correctness
	Checking: Implicit Monitoring
	Checking: Explicit Monitoring
	Coverage Model in UVM_REG
	Questions?

