RegAnalyzer -A tool for programming
analysis and debug for verification and
validation

Suresh Vasu
Engineering Manager and Senior Technical Lead
Suresh.Vasu@intel.com
Intel Technology India Pvt Limited, No 23/56-P, Outer Ring Road, Bellandur, Bengaluru — 560103

Abstract- As the technology node is shrinking, more and more IPs are getting integrated in single System-on-chip. In
the System-on-chip, verification is getting more tedious, time consuming and challenging task. Based on case study on
different internal and third-party IP’s, realized that there are no mechanism nor internal / external tools available for
doing the quick debug by understanding the test cases and its programming. Verification Engineers are putting manual
effort to understand the IP programming in the test cases and there is no direct way to map the register programming to
the Technical Reference Manual / Programmers model. This paper presents a tool RegAnalyzer which resolves this
problem.

I. INTRODUCTION
As the technology node is shrinking, more and more IPs are getting integrated in single system on chip. There are lot
of industry standard or company in house developed RTL integration tools available for integrating the RTL. But in
the System-on-chip, verification is becoming a more tedious, time consuming and challenging task. It involves a lot
of third-party IP’s and internal IP’s for which different issues are encountered.
The presence of third-party IP in SOC has simplified the design while complicating the verification for the end user.
The IP vendors generally don’t share much design or architecture information with the end user hence making the
job of verifying and understanding such IP’s even more tedious and bound to dependent on the IP vendor to
understand and resolve the issues. There are lots of manual efforts (from days to weeks) put in day-to-day
verification activities which is consuming time and bandwidth of verification Engineers which directly affects the
production cycle.
Based on case study on different internal and third-party IP’s, we realized that there are no mechanism nor internal /
external tools available for doing the quick debug and understanding of test cases. Verification Engineers are putting
manual effort to understand the IP programming in the test cases and there is no direct way to map the register
programming to the Technical Reference Manual or Programmers model. RegAnalyzer is the tool which is built to
overcome the issues faced by the verification engineers and assist them for their debug.

Il. VERIFICATION CHALLENGES
Figure 1 shows the percentage of total IC/ASIC project time spent in verification [1]. From the case study and
analysis done by the team from Mentor, the complexity for doing the verification has increased significantly for past
few years and the design size has also grown many folds. Due to many IP’s are getting integrated in the SOC,
verification engineers are facing lots of challenges in day-to-day debugging.

mailto:Suresh.Vasu@intel.com
mailto:Suresh.Vasu@intel.com

ASIC: Percentage of Project Time Spent in Verification

2012: Average 55% —2012
2014: Average 57% —2014
2016: Average 54%
2018: Average 53%

—2016

—2018

196-20% 21%-30% 31%-40% 41%-50% 519%-60% 6197006
Percentage of ASIC Project Time Spent in Verification

s/ Venficaton Sty & Mentor Graphis Corparaoon Menilor

Figure 1. Percentage of IC/ASIC Project Time Spent in verification tl]

Figure 2 shows where verification engineers spend their time (on average). [1]. The study from the Mentor team
shows that the verification engineer is spending more time in debugging during the chip development compared to
all other verification tasks like test planning, testbench development, creating test cases, running simulation and
support works. From the verification and validation engineer’s experience, one of the aspects is for more debug time

is due to not understanding the IPs register programming.

ASIC: Where Verification Engineers Spend Their Time

44%
m Test Planning
m Testbench Development
= Creating Test and Running Simulation
= Debug
u Other
o v Mentor, A Sernens Busniess, 2018 Functonal Verdficaton Study " Hentor Graphics Corporatior nior

Figure 2. Where IC/ASIC Verification Engineers Spend their Time [1]

. IP-XACT
IP-XACT is a standardization which is developed and maintained by the Accellera. IP-XACT is developed to
capture the IP details in a standard specification and its written in a standard data exchange format (XML), which is
human readable. Figure 3 describes about the format in which the register name, its offset and the register
descriptions are defined in the IP-XACT file.

<ipxact:register>

<ipxact :nar fipxact :name>
<ipxact :d 3 register. Collection of Statuns flags inclnding interrupt statuos
before enabling</ip
<ipxact :addre faet>" hi</ipxact:address0ffset>
<ipxact: »32</ipxact:size>
<fipxact:register>

Figure 3. Component Register in IP-XACT [2]

Figure 4 shows the format in which the register field name, its description, value and its offset are defined in the IP-
XACT XML file. For more details about the IP-XACT and its details, the user guide is added in the reference [2].

Figure 4. Component Register Field in IP-XACT

IV. REGANALYZER (3A - AUTOMATE, ANALYZE & ASSIST)

The RegAnalyzer tool uses the power of IP-XACT Component Memory Maps and Registers [2] and automation
done on top of that. Figure 5 summarizes the problems in today’s debug methodology. All the third-party IP’s test
cases, Validation collaterals, post silicon debug, issues reported by the software team and customers are getting
resolved after decoding all the IP’s programming manually. There is no straightforward way to understand the
functionality verified or the intent of the testing scenarios. Figure 6 shows that RegAnalyzer can use test case logs or
register dump or enter register values read through trace32 debugger, decodes it field by field and provides the
report with its description also. Also, you can decode the programmed values different from IP’s reset values to
exactly know the feature enabled in the test cases / register dumps / values read through trace32.

N

Third Party IP delivery
(Val collaterals & test
cases)

- @@
Silicon bring up debug L
(Lauterbach —read L
register contents) - Decode the Refer HTML file
register field (e)
—_— values Architecture spec /
N TRM
Programming register

contents (dump from FW/
SW team)

- @@

What is verified in this IP’s test case?
What is programmed?
How do | debug?

Figure 5. Manual efforts in Verification & Validation debug

Third Party IP delivery
(Val collaterals & test
cases)

RegAnalyzer Tool

Silicon bring up debug L

(Lauterbach — read L -
register contents) - «

Programming register
contents (dump from FW/
SW team)

Figure 6. RegAnalyzer (Automate, Analyze & Assist)

A. RegAnalyzer Implementation Details

The RegAnalyzer tool requires three inputs - one of them is the IP-XACT XML file for an IP, log file / trace file /
test case which has all register programming information and the address map. Figure 7 shows the RegAnalyzer
GUI tool and its features. Figure 8 shows the one of the examples of the input which contains the register
programming.

Test Log File
RML | #| Reload | Selected=ML #| Clear |IP's Base Address Register Address Regsiter Value [i Read | Write | 1= Reset Values Open Report Exit |
X
1 ||
R TR WORD (ErOD000004 |, 0ROGOGDOD0) § I b--Rogistor. view /SpotLight 0000000 / 1800C000
WRITE_WORD (0xCO0000008 ., 0x00000400) 3 N - R 5 5] ©O000010/01600900
WRITE_WORD (0x00000008 , Ox00000400) ; = 08004DFO0 #1(o 00000014/1000187C
WRITE_WORD (0200000008 , O0x000000S0) ; = R11 o 00000018/ 0001A141
WRITE WORD (0xO00QO0O000c . OX28004000) - 0300‘508 Q 0000001e s 0000003F

00000020/ 00000000
00000024/ 00000000
00000028/ 00000000
0000002c /00000000
00000030/ 00000000

[c:020002410 #Fnd... | _Moddy... | | 00000034/ 00000000
T 5 DFg rrreeeh - 00000038/ 00000000
SD:20002418 -l 0000003c /00000000
ggg&;zgg Sxx 1:%) 0800-"”7 k! =] 00000040/ 02031890
5D:200024 30 08004E0C = 00000044/ 05050304
gg%gig 29995000 =i 00000048/ 00000404

3 ET] B = 0000004c /10907001

00000050/ 04030404
00000054/ 04040507
00000058/ 77020100
0000005c/11111510
00000060/ 00000001
00000064,11111130
00000068, 00000111

paflh S S 3l S S S S S S S ST S SR S S S S S S A o S 3

Figure 8. Test case / T32 output / Trace file which contains the register programming

Once we load both the IP-XACT file and the log file which contains the register programming, the tool extracts
all the register name, address offset, register fields and its description information from the IP-XACT file and dumps
an intermediate file. Then, it unpacks all the 32 bits register programming values, packs the values depends on the
register field size maps to the field offset and its fields description.

This tool provides the following features.

e Simple GUI interface

e Decodes the register programming from register dump (source may be from customers, silicon validation or
software teams), display its register and field descriptions with programmed values

e Test Simulation log file / trace file analysis, mapping the register read or write to the individual register fields
and their description.

e Option to decode only the programming field values which is different from the reset values and display it
with description.

e Option to choose WO/RO/RW/ALL register’s attributes.

e Option to choose the Read / Write access from the test log file.

e Option to open the report file

e Option to pass the IP’s Base Address as per the SOC address map in case if the log file has a different base
address.

e Option to enter the single register address and its programmed values. This will be useful in post silicon
validation in which we read the register values using Lauterbach.

XML |dcexml ﬂ Reload |Sel=cledxML dec.xml ﬂ Clear |IP's BaseAddressIEA‘JUUOﬂq _| Read W Write | Reset . RO - WO ., RW 4 ALL OpenReport | Exu
Register Name Address Resetvalue Value Register Description N

DIF_ID 0xE4300008 0xE7134306 0x00000001 . The identification register ollows identify the module, the module version and the
used configuration.

Register Field Name rield width Reset Value Actual Value Register Field Description

CONFIG 16 0xf713 0x0 Bit 0 serial interfaceBit 1 parallel interfaceBit 2 RGB interfaceBit 3 MVI interfaceBit 4 Mr
PI DEI interfaceBit 5 TVout i t & t 7 Camera i t 8 Line/Rect commandsBit 9 BitBlt/scroll/Move t 10 BitBlt2 t 11 Triangle t 12 Rotatels o
ommandsit 13 DrawImage dsit 1d Update t 15 Schedulevpdate/StartUpdats : F703m

MOD_NUMBER 16 0xd306 ox1 The first part (0x41) corresponds to module DCC. The second part is a version. 0x00 = xG213/

618 =s1 (1.4.0/2.0.0). 0x01 = xe213 Es2 (2.5.0). 0x02 = xG6l8 =s2/Paracelsus (2.9.0). 0x03 = xG223 (3.4.0). 0x04 = XG631, 0x5=XG632, 0x6=XG642

DIF_con 0%E4900020 0300000000 0%55555555 . The register is used for configquration of the display interfaces, especially the se
rial display interface. It contains a control field for all display interfaces with standard pads in case of tristate usage.

Ragister Fisld Name Field width Reset value Actual Value Register Fiald Description

READ_CS2 1 0x0 ox1 IE this bit is set and the corresponding bit in CrossRefz is set then halfduplex readingwill be
performed during seria 1 transmission.

READ_CD 1 030 0xl If this bit is set and the corresponding bit in Crossrefz is set then halfduplex readingwill be
performed during serial transmissicn.

READ] 0x0 oxa

By s ax0 ox15

] 1 ax0 0x1

HE 1 0x0 ox1

TRI 2 ax0 ox1

DIF_PERREC 0xE4500022 0x00000000 0x00002434. The register contains one hot coded bits te select the DIF module mode, i.e. serial | f

Figure 9. RegAnalyzer tool output

B. Results

The RegAnalyzer tool is implemented to decode the test cases during the latest chip development. There are lots
of third party and internal IP’s used in the SOC. For some of the complex Media IPs, we can run the IP delivered
test cases, loaded the log files in the RegAnalyzer tool and generated the report on the programming details with the
register fields description. Also, by using the no reset values feature, we generated the report of the programming
register and fields which are different from the register reset values. By analyzing the report, we can understand the
verification intent of the test case and features enabled in that test case. For some of the subsystem test cases, it

involves more that one IPs programming details. We provide the IPs address space details according to the SOC
address map to the RegAnalyzer tool and all the IP-XACT XML files for those IPs. The tool analyzes the log file,
finds out the register address from all the intermediate files generated from the IP-XACT XML files and finally
generates the report. We have saved a lot of debug time while verifying these IPs in the SOC and it helped us
immensely to understand the IP functionality by analyzing the programming details.

RegAnalyzer Results

COMPLEX MEDIA IP (30TC)

MMU IP (12 TC)

o 2 4 6 8 10 12 14 16

RegAnalyzer (No of days) = Manual (No of days)

Figure 10. RegAnalyzer Results

V. CONCLUSION
RegAnalyzer is an effective GUI tool which will help in day-to-day verification activities, reduce the manual
efforts drastically and save debug time. This tool will help during the design pre-silicon verification and post silicon
validation to understand the register programming and its details. By using all the different features supported by
this tool, verification and validation Engineers can make tremendous progress and reduce the overall debug time
during Silicon-On-Chip development.

REFERENCES
[1] https://semiengineering.com/the-weather-report-2018-study-on-ic-asic-verification-trends/
[2] https://www.accellera.org/images/downloads/standards/ip-xact/IP-XACT_User_Guide_2018-02-16.pdf
[3] http://trace32.com/wiki/index.php/LDR_and_STR,_data width
[4] https://www.design-reuse.com/articles/19895/ip-xact-xml.html

https://semiengineering.com/the-weather-report-2018-study-on-ic-asic-verification-trends/
https://semiengineering.com/the-weather-report-2018-study-on-ic-asic-verification-trends/
https://www.accellera.org/images/downloads/standards/ip-xact/IP-XACT_User_Guide_2018-02-16.pdf
https://www.accellera.org/images/downloads/standards/ip-xact/IP-XACT_User_Guide_2018-02-16.pdf
http://trace32.com/wiki/index.php/LDR_and_STR,_data_width
http://trace32.com/wiki/index.php/LDR_and_STR,_data_width
https://www.design-reuse.com/articles/19895/ip-xact-xml.html
https://www.design-reuse.com/articles/19895/ip-xact-xml.html

