
Refining Successive Refinement

Desinghu PS, Adnan Khan - ARM Ltd UK

Erich Marschner, Gabriel Chidolue – Mentor
Graphics

Agenda

• Successive refinement flow – Overview

• Successive refinement Challenges in Complex SoC
and recommended solutions

– Handling Hard Macros

– Isolation of UPF created control signals

– Effective power state definitions

• Recommendations for solving challenges

• Results of application on recent design SoC

• Questions

© Accellera Systems Initiative 2

Successive Refinement using UPF 2.0

© Accellera Systems Initiative 3

IP/Block Provider:

• Creates IP source

• Defines
low power
implementation
constraints

IP/SoC Integrator:

• Configures all IP’s
for target system

• Validates configuration

• Freezes
“Golden Source”

• Adds power mgmt implementation
detail

• Implements configuration

• Verifies implementation against “Golden
Source”

RTL

IP/Block Creation

Constraint
UPF

+

IP/System Configuration

RTL
Constraint
UPF

Configuration
UPF

+

System Implementation

RTL
Constraint

UPF
Configuration

UPF

Implementation

UPF

+

Soft IP Golden Source

S
im

u
la

ti
o
n

,
L

o
g
ic

a
l
E

q
u

iv
a

le
n

c
e
 C

h
e

c
k
in

g
,
…

Netlist

Synthesis

Implementation

UPF

Netlist

Implementation

UPF

P&R

* Used with permission

Constraints, Configuration and
Implementation UPF content

• Logical / Technology
independent UPF
– Constraints UPF

• Isolation, retention, atomic
power domains, fundamental
power states

– Configuration UPF
• Isolation & retention

strategies, supply sets, power
states

• Implementation UPF
– Supply nets, power switches,

supply expression for supply
sets, other technology
mapping info

• Separation of Concerns
– Logical vs Implementation

view of power architecture

– Allows easier retargeting

– Eases debug

• Early verification
– Static checking of

configuration UPF

– Early dynamic verification of
power architecture

© Accellera Systems Initiative 4

Successive refinement: SoC
Implementation Challenges

SOC

InterConnect SubSystem

System
Power

Control Unit

Memory
Controller

Media
Controller

Graphics Engine

Core0

L1 Memory

Core1

L1 Memory

Power Control Unit

CPU Cluster A
Power Control Unit

L2 Memory

CPU0

L1 Memory

CPU0

L1 Memory

CPU Cluster B

L2 Memory

CPU0

L1 Memory

CPU0

L1 Memory

Power Control Unit

• Successive refinement involves
incremental specification

• Bottom up implementation
complicates the flow
– RTL Subtree implemented as Hard

macros and used in soft macro context
– Hard macro integration
– UPF needs to be adjusted as a result of

subtree hardening

• New Challenges
– Subtree must be configured before

hardening (to drive implementation)
– Effective Power state Modelling
– Isolation of UPF created power controls
– Power supply considerations for

retention and isolation strategies

© Accellera Systems Initiative 5

Hard Macro Integration Challenge

• Traditional Hard Macros , exemplified by memory
– Typically supplied as HDL behavioural model

• May be non-Power Aware (PA), partially PA or fully PA

– No UPF used for implementation of macro

– Liberty defines some of its implemented power architecture
• Interface characteristics : related_supply on logic ports, pg_pins, etc

• Missing internal power states definition for macro with embedded
switch

• Need a generic integration solution for a generic memory
models
– Create a UPF Power model for the Hard macro

– Reuse in different contexts

© Accellera Systems Initiative 6

Power Model Creation

© Accellera Systems Initiative 7

proc ram_power_model {pd_name mem_instance pg_en {ret_en “no_ret”}} {

create_power_domain $pd_name –elements $mem_instance

create_supply_net my_vdd_$pd_name . . . # internal switched supply net

create_supply_set $pd_name.primary –update -function “power my_vdd_$pd_name” . . .

. . .

optional retention support

if {$ret_en ==“no_ret”} then {

add_power_state $pd_name.primary -update

-state ON “ –logic_expr {$pg_en == 0 } -supply_expr { . . . }

} else {

add_power_state $pd_name.primary –update

-state ON “-logic_expr {$pg_en == 0 && ret_en == 1} -supply_expr { . . . }

}

Define power states ON, OFF and optional RET of power domain in terms of supply_set

power states

. . .

create_power_switch sw_internal … # for internal switched supply net

. . .

Define related supplies on ports of Memories . Can override liberty

set_port_attributes –ports $mem_instance/$ports

-related_power_port $pd_name.primary.power -related_ground_port $pd_name.primary.ground

-exclude_ports “$mem_instance/PGEN $mem_instance/RET_EN”

}

Tcl procedure containing Power Model

made up of UPF commands for Memories

Power model of Hard Macro
Integration

© Accellera Systems Initiative 8

Cpu Cluster A Configuration.upf :

#Integrate Power model for L2 Memory

ram_power_model PDL2MEM $L2MEM_instance PWR_CLUS_A

RET_CLUS_A

update CPU Cluster A power state dependency in terms of

states of PDL2MEM

add_power_state PD_CLUS_A –update \

-state ON { -logic_expr {PDL2MEM == ON}} \

-state MEM_OFF { -logic_expr {PDL2MEM == OFF}} \

-state RET { -logic_expr {PDL2MEM == RET}} \

-state OFF { -logic_expr {PDL2MEM == OFF}}

• L2 Mem Power model called in Cluster A configuration UPF

• CPU Cluster A power states updated with dependencies on L2 Memory states

• Configuration UPF compatible with Implementation and Verification

Soft Macro Hardening Process
Considerations

• RTL Subtree, carved out for implementation

– Requires Self-contained UPF (constraints, configuration and
implementation UPF)

– Hardened Soft Macro

• Hardening process involves modelling external context of
the macro based on available supplies in Macro

– The rest of the SoC also needs context information of the carved
out Hardened Soft Macro for their own implementation

• Verification done at full SoC context – flat view

– Potential for Verification and implementation views to differ

© Accellera Systems Initiative 9

Soft Macro Hardening Solution
• Align RTL-Sub tree and power domains in preparation for

implementation
– Self-contained constraint/config/implementation UPF for each

RTL Sub-tree

• Three interface scenarios to handle
– Implementation of Soft Macro
– Implementation of the higher level (hierarchical) context
– Verification / non-hierarchical context

• Model external Interface context in implementation.upf

Implementation.upf:

if {$env(CORE_UPF) == 1 && $env (TOP_UPF) == 1 } then
set_port_attributes –ports $intf_ports … -driver_supply ss_set1

} elseif
set_port_attributes –ports $intf_ports … -receiver_supply ss_set1

© Accellera Systems Initiative 10

Soft Macro Hardening Solution II
Environment variables used to select appropriate condition

Constraints.upf :

if { $env(CORE_UPF) == 1 } then {

set env(CORE_UPF) $env(FLAT_DESIGN)

set regTopValue $env(TOP_UPF)

set env(TOP_UPF) 0

puts "\nINFO: Loading UPF for CPU"

load_upf cpu.upf -scope u_cpu0

set env(CORE_UPF) 1

set env(TOP_UPF) $regTopValue

}

© Accellera Systems Initiative 11

Propagate design topology

setting across nested load_upf

calls

Lower level UPF loaded

for implementation of soft macro

or for flat_view verification

Power States Challenges
• Power state definition for power domains and supply sets

can use logic_expr and supply_expr (for supply sets only)
– No restrictions on the expressions
– Complexity of expression, unintended state overlap

• Power states can be updated with unexpected side
effects
– Update semantics not clearly defined
– Potential for multiple update failure when creating

dependencies

• Can potentially define technology detail ie supply_expr
in constraints / configuration UPF
– Breaks separation of Logical view and Technology specific view

of Successive Refinement

© Accellera Systems Initiative 12

Recommendation for Power State
specification and refinement

Separate configuration and implementation concerns

Configuration UPF:

add_power_state PDA.primary \

-state ON { -logic_expr { sw_ctrl == 1}}

Implementation UPF:

add_power_state PDA.primary -update \

-state ON { -supply_expr {FULL_ON 1.0}}

Avoid redundancy and ensure clean composition
Configuration UPF:

add_power_state PDA \

-state ON { -logic_expr {PDA.primary == ON}}

© Accellera Systems Initiative 13

Power domain states

specified in terms of states of

its supply sets and states of

lower level power domains

Supply_set power state

specified in terms of power

control signals in logic_expr

supply_set power state

updated with supply_expr

Other Challenges and resolution
approach

• Isolation of UPF Created power control signal
– Needed for implementation of larger context of hardened soft macro

– Typically on the lower boundary of the power domains of the larger
context

• UPF 2.1 semantics inconsistent and limited tool support
– Command precedence and processing of set_port_attributes vs

create_logic_port

– Static checking limited when checking for level_shifter and isolation
requirements of UPF created power control signals

• User defined supply sets for Isolation and retention strategies
– DEFAULT_ISOLATION and DEFAULT_RETENTION were not used

– Better control over availability of supplies

© Accellera Systems Initiative 14

Observations and Results

• Standards based issues were fed back to p1801 working
group for clarification
– Most are addressed in IEEE p1801-2015 UPF 3.0

• Achieved reasonable multi-vendor tool flow with the UPF
subset that we ended using

• Power Aware Coverage was sign-off criteria
– Initial verification leveraged static checking to ensure sound

power architecture earlier in the process

– Coverage of power states, power state dependencies and power
state transitions

– Tool generated power state coverage augmented with
• User defined System Level power state coverage

© Accellera Systems Initiative 15

Results

• Clean static check report of
constraints/configuration/implementation UPF

– Applied waivers to static checks that did not make sense in
our design context

– Some tool issues with False negatives

• Areas of improvement :

– Tools: Language support for UPF 2.1 and interoperability
among tools

– Language : Continued Improvements to UPF LRM

© Accellera Systems Initiative 16

Questions

