
Reboot your Reset Methodology:
Resetting Anytime with the UVM

Reset Package
Courtney Fricano, ADI

Stephanie McInnis, Cadence
Uwe Simm, Cadence
Phu Huynh, Cadence

© Accellera Systems Initiative 1

• Reset Verification Requirements

• uvm_thread Reset Package

• A recipe with 4 steps

• Summary & Conclusions

Agenda

• A common verification requirement is to perform
reset
– At the start of the simulation

– In the middle of the DUT normal operation

• Special care is required for verification environment
during reset:
– Activities and stimulus needs to stop and possibly restart

once the reset is de-asserted

– Assertions and checkers need to shut down gracefully

– Data structures need to reset to proper initial values

Reset Requirements

Reset Challenges at ADI
• Reset is usually an afterthought that occurs during the

middle of the DV effort
– Can be very difficult to modify existing code to handle reset

• Often we end up having to compromise on reset
verification to get something running
– Turn off checks during reset
– Create separate testbench to handle reset
– Single very directed reset test

• This custom reset code usually has problems in higher
system-level testbench environments

• UVM includes three phases “related” to reset

• The Accellera UVM phasing sub-committee has been
trying to resolve how to handle resets using runtime
phases
– The solution still not user friendly
– Still contention about use models
– Phasing awareness model broken (sequences vs components)

• Our proposed methodology uses the run_phase()
– Based on the standard UVM library
– Works with existing UVCs already designed to handle reset

Reset and UVM Run-Time Phases

• Available from http://forums.accellera.org/files/file/111-
cadence-reset-example-and-package/

• Notification plus thread management instead of phases

– Integrates easily with existing components that handle reset
within the run_phase (drivers/monitors)

– Can be extended to multiple reset domains

– No changes to the UVM library are required

– Does not interfere with UVM runtime phases

uvm_thread Package

http://forums.accellera.org/files/file/111-cadence-reset-example-and-package/

UVM Thread Reset Methodology

Testbench

Reset

Monitor

Reset

Handler

Driver

Seqr

Monitor/

Collector

Interface Bus

notify(TERMINATE/ACTIVATE)

resetN

uvm_thread_imp

clean_up()

run_phase_new()

• Reset Monitor
– Monitor reset signal(s)
– Notify reset_handler of reset status

• Reset Handler
– An instance of uvm_thread, provided by the package
– Manages“reset-aware” components using their reset API:

• Reset goes away  Invokes run_phase_new()
• Reset active  Terminates threads, Invokes clean_up()

• Reset-aware components:
– Register themselves with the reset_handler
– Implement new reset APIs: clean_up() and run_phase_new()

Reset Methodology Components

A recipe with 4 steps

1. Instantiate a (uvm_thread) reset_handler

2. Implement Reset Monitoring to notify upon Reset
Changes

3. Signup for notification

4. Handle notifications

Step 1 – Instantiate a (uvm_thread)
reset_handler

© Accellera Systems Initiative 10

class wd_osc_env extends uvm_env;

...

reset_monitor reset_mon;

uvm_thread reset_handler;

function void build_phase(uvm_phase phase);

…

reset_mon = reset_monitor::type_id::create("reset_mon", this);

reset_handler = uvm_thread::type_id::create("reset_handler", this);

uvm_config_db#(uvm_thread)::set(this, "*", "reset_handler", reset_handler);

endfunction

…

endclass

Step 2: Implement Reset Monitoring to
notify upon Reset Changes

class reset_monitor extends uvm_monitor;

virtual reset_if vif;

uvm_thread reset_handler;

function void connect_phase(uvm_phase phase);

uvm_config_db#(virtual reset_if)::get(this, "", "vif", vif);

uvm_config_db#(uvm_thread)::get(this, "", "reset_handler", reset_handler);

endfunction

virtual task run_phase(uvm_phase phase);

forever begin

@(vif.resetN);

if (vif.resetN) reset_handler.notify(ACTIVATE);

else reset_handler.notify(TERMINATE);

end

endtask

endclass

Step 3: Signup for Notification

class wd_osc_drv extends uvm_driver #(wd_osc_data);

...

function void connect_phase(uvm_phase phase);

uvm_thread reset_handler;

uvm_thread_imp#(wd_osc_drv) reset_export;

reset_export = new(„reset_exp“,this);

uvm_config_db#(uvm_thread)::get(this, "", "reset_handler", reset_handler)

reset_handler.register(reset_export, uvm_thread_pkg::default_map);

endfunction

endclass

TLM-like port reset_export

for notification

In each reset-sensitive object

• Add a (uvm_thread_imp) reset_export for notification

• Register reset_export with the reset_handler

Step 4a: handle notifications

class some_driver extends uvm_driver;

virtual function void clean_up();

vif.OSC1 <= $urandom_range(1,0);

endfunction

...

endclass

(Optionally) implement clean_up() method to put
component back into “reset” state; for example:

• Scoreboard: empty internal FIFOs
• Driver: drive all pertinent signals to idle state
• Sequencer: terminate all running sequences; clear internal state

class some_seqr extends uvm_sequencer#(...);

virtual function void clean_up();

stop_sequences();

endfunction

...

endclass

• Implement run_phase_new() for

• activities to be invoked when reset goes away

• Sequencer can re-invoke the sequence(s)

• Same signature as run_phase()

Step 4a: handle notifications

class some_driver extends uvm_driver;

virtual task run_phase_new(uvm_phase phase);

get_and_drive();

endtask

...
endclass

Summary & Conclusions

• uvm_thread Reset package provides a good methodology for
adding reset verification to UVM testbenches

• Flexible and extendible
– Minimal modifications to existing UVCs

– Used as standard reset methodology across projects

– Can extend to multiple resets and adjust to different reset
configurations

– clean_up() and run_phase_new() can be implemented based on
specific UVC requirements

• Works with standard UVM library source code

Questions ?

© Accellera Systems Initiative 16

