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Abstract -With the advancement in the technology, the size and complexity of SoC is ever increasing. At the same time 

the power constraints on those SoC are getting more stringent. The low power designs are getting more and more 

complex with large number of power domain, supplies and power states. This makes the job of low power SoC 

verification overwhelmingly complex, tedious and sophisticated. It is the need of the hour to develop a reliable verification 

methodology which is easy to build, easy to understand and easy to modify. UPF 3.0 – The IEEE standard to specify the 

low power intent, has introduced a concept of low-power information model which can be useful to address the complex 

verification challenges. This paper introduces the key concepts of UPF 3.0 information model which are useful from low-

power verification point of view. The paper proposes a low-power coverage methodology based on the UPF 3.0 

information model HDL package. The paper also includes relevant case studies and examples using the proposed 

methodology to solve low-power verification problems. It also discusses the benefits of this approach and its advantages 

over conventional low-power verification approaches. There are still some areas like analog and mixed signal low power 

verification where the proposed coverage methodology cannot be used. 
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I. INTRODUCTION 

 
With the advancement in the technology, low-power designs and its verification is becoming more complex. 

Today’s chips have multiple power domains each having multiple operating power modes and dynamically 

changing voltage levels. The power architecture is controlled with help of a power management unit which issues 

proper control sequences to different elements of the power architecture. It is important to ensure that all and proper 

test vectors are generated by this unit to verify all power elements and it is even more important to verify the 

complex interactions between these elements at a higher abstraction level. A plan to closure approach for low-power 

verification requires coverage of power objects (all possible states and transitions). However power-aware coverage 

closure is hard and complex in nature. 

 

It is important to note that there is no standardized methodology for low-power coverage, as UPF 2.1 doesn’t 

provide anything to address this. With the help of current UPF standards, verification engineers have taken the ad-

hoc approach to achieve coverage of some constructs and their interactions with each other e.g. power states etc. 

One such technique is cross-coverage of power states. However it is prone to state explosions and it involves low 

level intricate efforts to write the covergroups and coverbins for the cross-coverage. Verification engineer needs to 

be well aware of the UPF to figure out the supplies and signals to track. Moreover this whole process is tedious and 

dependent on verification tools and EDA vendors. The whole process is error prone and highly time consuming. So 

a faster and direct approach to address low power coverage is a need of the hour. 

 

To keep pace with that, IEEE 1801 standard is expanding its gamut of constructs and commands to include more 

scenarios of low-power verification and implementation. In this paper, we will discuss and propose a methodology 

by which effective coverage of low-power verification can be achieved using UPF 3.0. With the help of relevant 

examples and case studies we will also demonstrate that with the help of this methodology, the coverage closure can 

be achieved in much efficient way thereby significantly saving the verification effort and time. 
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A. Power Intent Specification and Basic Concepts of UPF 

IEEE Std 1801™-2015 Unified Power Format (UPF) allows designers to specify the power intent of the design. It is 

based on Tcl and provides concepts and commands which are necessary to describe the power management 

requirements for IPs or complete SoCs. A power intent specification in UPF is used throughout the design flow; 

however it may be refined at various steps in the design cycle. Some of the important concepts and terminology used 

in power intent specification are the following:  

 Power domain: A collection of HDL module instances and/or library cells that are treated as a group for 

power management purposes. The instances of a power domain typically, but do not always, share a 

primary supply set and typically are all in the same power state at a given time. This group of instances is 

referred to as the extent of a power domain.  

 Power state: The state of a supply net, supply port, supply set, or power domain. It is an abstract 

representation of the voltage and current characteristics of a power supply, and also an abstract 

representation of the operating mode of the elements of a power domain or of a module instance (e.g., on, 

off, sleep).  

 Isolation Cell: An instance that passes logic values during normal mode operation and clamps its output to 

some specified logic value when a control signal is asserted. It is required when the driving logic supply is 

switched off while the receiving logic supply is still on.  

 Level Shifter: An instance that translates signal values from an input voltage swing to a different output 

voltage swing.  

 Retention: Enhanced functionality associated with selected sequential elements or a memory such that 

memory values can be preserved during the power-down state of the primary supplies. 

II. MOTIVATION FOR METHODOLOGY 
 

In order to achieve comprehensive low-power verification, a verification engineer is interested in a number of 

questions, such as: 

 

 If all the test vectors are generated by power management unit ensuring that all control sequences are 

covered 

 Are all complex interactions between power domains are covered? 

 Are all the desired power states are reached or not? 

 Are all desired power state transitions reached or not? 

 Is there any illegal power state reached? 

 Is there any illegal power state transition occurred? 

 

These kinds of questions are easily addressed by coverage-driven verification. But, it becomes a challenge to capture 

the coverage information of UPF objects and power states due to following reasons: 

 Power states are written in an abstract manner in UPF, and 

 There is no pre-defined coverage metric to capture power states and their transitions. 

 The Unified Coverage Interoperability Standard (UCIS) defines various standard metrics related to 

coverage items. However, it does not provide any metric to capture power intent (power states, etc.).  

 

Tool-generated coverage metric are used widely for low-power verification. However they may not be useful or 

exhaustive in all the designs, as highlighted by the reasons below:  

 A design can have a very specific requirement which is not being provided by the tool-generated coverage. 

 The low-power technology is still evolving and hence a new set of protocol appears every now and then, 

which may require a different set of coverage that is not yet provided by the tool vendor.  

 

These requirements can be easily met through SystemVerilog functional coverage features. The covergroup 

construct of SystemVerilog samples the activities of a signal/property at desired sampling points and one can 

distribute these sample points under different coverpoints and bins. These coverpoints and bins can be effectively 



used to collect coverage numbers of power states and their transitions. Covergroups also offer a generous syntax to 

handle a wide range of complex sampling scenarios especially the wildcard feature for handling state transitions 

when multiple states are true at the same time.  

 

Due to the above reasons the user may want to write custom coverage items using the System Verilog coverage 

features. These items can be grouped in a checker module, and this checker module can be instantiated into the 

design using UPF command “bind_checker”. However the method of instantiation of such a checker module is 

not trivial because: 

 

 These low-power assertions/coverage items require access to power objects. However, at the early stages of 

verification these power objects are only present in the UPF file and do not exist in the design. It is 

therefore not straightforward to pass these UPF objects to a checker instance.  

 No clear way to describe coverpoints and bins to capture coverage of power states and their transitions 

using the handles obtained 

 Some of the property-checking requires access to design/power signals spanning across multiple domains. 

Such a task is highly error prone and time consuming.  

 As the scope and the inputs of these checkers instances are defined in UPF, any change in the UPF or 

design might break these checkers and they need to be re-written. 

We propose a modeling style using covergroups and UPF’s information model query commands command to 

address these challenges. 

 

III. UPF 3.0 INFORMATION MODEL 
 

UPF 3.0 has introduced the low power information model to represent the low power objects created in UPF e.g. 

power domain, power state, supply sets etc. It also provides the detailed list of various properties which those 

objects have. These properties can be a simple information e.g. the name of the object, the file/line information of 

the object or a relatively complex information e.g. the power states of a power domain. For some objects there is 

also dynamic properties associated with them. For example the current_state of a power domain, or the current 

voltage value of a supply net. UPF 3.0 information model provides an API interface to access the objects and its 

properties. There are two kinds of API interface provided in UPF 3.0  

- Tcl interface; to use the information model APIs in a Tcl script or UPF file 

- HDL interface; to access and manipulate information model objects/properties in a testbench or simulation 

model 

With respect to the paper, HDL interface and the dynamic properties of the objects are more relevant. There are two 

key concepts of information model which can be used to leverage it to develop a low power coverage methodology 

which can be random in construction and directed in approach to target specific low power scenarios. 
 
A. Native HDL representation 

UPF 3.0 defines the native HDL representation for the objects which have the dynamic properties. The native HDL 

representation is the struct/record type in HDL that contains two fields. 

- A value field corresponding to dynamic property of the object. 

- A handle or reference to the UPF object. To allow access of other properties of the object. 

Following HDL types are supported with a native HDL representation: 

 

Table 1. 

Type Name SV Representation 

upfPdSsObjT struct { 

    upfHandleT handle; 

    upfPowerStateObjT current_state; 

} upfPdSsObjT 



upfPowerStateObjT struct { 

    upfHandleT handle; 

    upfBooleanT is_active; 

} upfPowerStateObjT 

upfBooleanObjT struct { 

    upfHandleT handle; 

    upfBooleanT current_value; 

} upfBooleanObjT 

upfBooleanObjT struct { 

    upfHandleT handle; 

    upfSupplyTypeT current_value; 

} upfSupplyObjT 

 

In the Table 1 above the field representing the dynamic property of the object has been highlighted in bold. E.g. for 

a power domain or supply set the associated dynamic property is the current power state of the power domain which 

is represented by the current_state field of the struct in SV native representation of upfPdSsObjT type. The other 

field is a handle to the low power object which has all the static information about the object e.g. object name, its 

creation scope, file/line information etc. 

 

Following table 2 summarizes the UPF 3.0 information model objects with native HDL information. The HDL types 

defined in table 1 are used to represent the dynamic properties of these objects. 

 

Table 2 

Low Power Object Type Dynamic Property Low Power Idea 

Represented 

Native HDL Type 

upfPowerDomainT  current_state Current power state upfPdSsObjT 

upfSupplySetT current_state Current power state upfPdSsObjT 

upfCompositeDomainT current_state Current power state upfPdSsObjT 

upfPstStateT is_active Is the PST currently active upfPowerStateObjT 

upfPowerStateT is_active Is the power state currently 

active  

upfPowerStateObjT 

upfAckPortT current_value Logic value at the port upfBooleanObjT 

upfExpressionT current_value Value of the expression upfBooleanObjT 

upfLogicNetT current_value Logic value of the net upfBooleanObjT 

upfLogicPortT current_value Logic value of the port upfBooleanObjT 

upfSupplyNetT current_value Value of the supply net upfSupplyObjT 

upfSupplyPortT current_value Value of the supply port upfSupplyObjT 

 

B. HDL package functions 

UPF 3.0 provides a number of HDL package functions which are used to access the low power objects and their 

properties. These are broadly classified in the following five different class of functions. 

 

1. HDL access functions – These are the basic functions to access the low power objects and properties. E.g. 

following access function can be used to get the handle of an object. 

upfHandleT pd = upf_get_handle_by_name("/top/dut_i/pd") - returns the handle of the power domain ‘pd’. 

One of the key HDL access function is the “upf_query_object_properties”.  

upfHandleT upf_query_object_properties(upfHandleT object_handle,upfPropertyIdE attr); 

This function returns the handle to a property corresponding to an enumerated value passed as property. 

E.g. upfHandleT scope = upf_query_object_properties(pd, UPF_CREATION_SCOPE) - returns the 

creation scope of power domain with handle ‘pd’. 

 



2. Immediate read access HDL functions: All the objects in UPF 3.0 information model allow read access to 

its properties. In case of dynamic properties these functions return the current dynamic value/state or that 

property when this function is called. E.g. 

 

upfHandleT ps = upf_get_handle_by_name("/top/dut_i/pd.power_state_on") 

upfHandleT ps_active_hndl = upf_query_object_properties(ps, UPF_IS_ACTIVE ) 

integer ps_on_value = upf_get_value_real(ps_active_hndl) 

 

3. Immediate write access HDL functions: Some objects of the information model allow the immediate write 

access only if they don’t have an existing driver. This allows the manipulated of low power objects from 

testbench or simulation model. E.g. supply_on(“supply_net_name”, value). Following objects which allow 

immediate write access 

a. upfPowerStateT 

b. upfLogicNetT 

c. upfLogicPortT 

d. upfSupplyNetT 

e. upfSupplyPortT 

In the context of this paper write access functions are not much relevant, although they are a powerful tool for 

users to manipulate low power objects during simulation from testbench. 

 

4. Continuous access HDL functions – These functions enable continuous monitoring of dynamic values of an 

object in the information model. It enables user to trigger an always block or process statement using 

dynamic values of the low power objects. 

E.g. upfSupplyObjT vdd_monitor; 

       upf_create_object_mirror("/top/dut_i/vdd", "vdd_monitor"); 

 

5. Utility functions: These functions are general utility function to assist users. 

E.g. upfClassIdE upf_query_object_type(upfHandleT handle) – returns the type of a handle, using this user 

can find out if the object is a power domain, supply set or some other low power object 

  

IV. PROPOSED LOW POWER COVERAGE METHODOLOGY 

 
The UPF 3.0 HDL functions can be combined with System Verilog coverage constructs to devise an efficient and 

directed low power coverage methodology. The aim of such low power coverage methodology is to enable the users 

to write fast and reliable low power coverage infrastructure. It allows users to do the random (testing scenarios can 

be developed by some generic script) and directed (it can cover a very specific scenario) low power verification. In 

this paper we will propose a methodology to use the UPF 3.0 package functions to achieve fast and effective low-

power coverage using relevant examples and case studies 

 

The proposed coverage methodology involves getting the handle of low-power object in HDL using the information 

model and querying the properties of that object. These properties are then further passed to the coverage module as 

port mapping. The coverage module has the covergroups/coverbins to represent the coverage data of low-power 

strategies of that domain or dynamic information like the current power state of the domain can be queried in 

testbench. 

 
Steps involved in the proposed methodology: 

 

1. Low power object handle: First step is to get the handle of the low power object. This can be achieved by 

using the HDL package function “upf_get_handle_by_name”. A property which is a list can be iterated 

through the HDL access function “upf_iter_get_next”. Following SV code illustrates the usage of these 

basic function to access low power objects. 

 
upfHandleT pd = upf_get_handle_by_name("/tb/dut/pd") 



upfHandleT pd_state_list = upf_query_object_properties(pd, 

UPF_PD_STATES) 

upfHandleT pd_state = upf_iter_get_next(pd_state_list); 

 

2. Dynamic property(value) of low power object: Get the dynamic value of the property of interest e.g. user 

might be interested in knowing the current power state of a power domain and he intends to check the state 

of this power domain w.r.t. the current power state of some other power domain. Also user may use UPF 

3.0 continuous access HDL package function to continually monitor the power state of the power domain 

and may use assertions for the cases of interest/anomaly.  
 

 

upfPdSsObjT pd_hdl; 

      upf_create_object_mirror(“/tb/dut/pd”, “pd”); 

      upfPowerStateObjT pwr_state = pd.current_state; 

      upfHandleT pd_name = upf_query_object_properties(pd.handle, UPF_NAME); 

      upfHandleT state_name = upf_query_object_properties(pwr_state.handle,  

        UPF_NAME); 

      always@(pd)     

    $display( "Power domain %s, is in Power State: %s,  

 upf_get_value_str(pd_name), upf_get_value_str(state_name));  

 

3. Coverage details: Once we have the handle of a low-power object and its dynamic value it is further passed 

to a coverage module. The coverage module can be modeled in system Verilog and compiled together with 

the design. This module is instantiated in the testbench.  The low-power object extracted from information 

model and its dynamic properties are passed in the interface of this coverage instance.  We can instantiate 

as many coverage instances as required.  

o Coverage properties (covergroups/coverpoints) are defined inside this coverage module to 

calculate the coverage metrics.  
 

module covIsoModule (int dynamicValue, string objName)  

reg cov_clk = 0; 

covergroup LOW_POWER_STATE_COVERAGE(posedge @cov_clk)  

ACTIVE_LEVEL: coverpoint isovalue { bins ACTIVE = 1; } 

ACTIVE_LOW: coverpoint isovalue { bins ACTIVE = 0; }  

endgroup 

… 

endmodule 

 

V. CASE STUDIES AND EXAMPLES 
  

A. Coverage of Isolation strategies 

 

In a large SoC design comprising of several power domains, each with a number of strategies defined on them, can 

often result in a scenario where multiple strategies affect a domain crossing. This can result in the placement of 

multiple isolation cells in the design. It becomes critical to ensure that all the possible states of isolation strategies 

are covered. This boils down to checking that all possible values of isolation control are covered.  

 

Following is an example how a user can get the isolation control of a signal without going deep into UPF to find the 

isolation control. This is further passed onto a coverage module to calculate coverage. We first describe the coverage 

module which is used to calculate coverage of isolation control. This coverage module is written separately and 

compiled together with the design.  

 

UPF 

 
set_isolation iso –domain pd –isolation_signal isoCtrl \ 

–applies_to outputs –clamp_value 0 …  



 

Coverage module  

 
module covIsoModule (int isovalue, string isoName)  

covergroup ISO_SIG_STATE_COVERAGE(@isovalue)  

ACTIVE_LEVEL: coverpoint isovalue { bins ACTIVE = 1; } 

ACTIVE_LOW: coverpoint isovalue { bins ACTIVE = 0; }  

       endgroup 

… 

endmodule 

 

The above covergroup contains two coverpoint; ACTIVE_LEVEL is reached when the isolation control is “1” and 

ACTIVE_LOW is reached when isolation control is “0”. 

 

Following is the hdl code which has to be modeled in the testbench. The first step is to get the handle of isolation 

strategy and thus its isolation control. Next is to monitor the value of isolation control. We can instantiate multiple 

coverage instances for each isolation strategy and pass the value of isolation control to these coverage instances. 

 

HDL Code (modeled in testbench)  

 
upfHandleT iso = upf_get_handle_by_name("/top/chip_top/u_mod/pd.iso");  

upfHandleT iso_ctrl = upf_query_object_properities(iso,  

 

UPF_ISOLATION_CONTROLS); 

upfHandleT ctrl_value_hndl =  

upf_get_object_properties(iso_ctrl,UPF_CURRENT_VALUE);  

integer ctrl_value = upf_get_value_int(ctrl_value_hndl); 

 

// passing the properties to coverage module  

covIsoModule covPdIso(ctrl_value, "/top/chip_top/u_mod/pd.iso");  

 

 

B. Coverage of Power States 

In typical low-power designs with multiple power domains, each domain can transition into multiple power states. 

As a result the total number of power states in a design can be very high. It becomes critical to ensure that all the 

power states of every power domain have been active at least once during the entire simulation. Also it is important 

to ensure that all the valid power state transitions have been covered. As the power states are defined in an abstract 

manner in UPF file, it is difficult to do coverage of power states. Moreover there is no standard way defined for 

capturing the coverage of power states.  

 

Let’s consider the following example where we have a camera domain (PD_CAMERA) with three power states 

“ON, SLEEP, OFF” and a video domain (PD_VIDEO) with three power states “ON, SLEEP, OFF”. These power 

state definitions are defined in UPF using the “add_power_state” command.  

 
add_power_state PD_CAMERA \ 

-state ON {-logic_expr {primary == ON} } }  

… 

 
First step is to extract the handles of power states of PD_CAMERA and get the state variable for these states which 

gets active when the particular power state is high. This is achieved with following Information model API calls 

defined in testbench. These state variable are then passed on to the coverage instance.  
 

// Native HDL objects for power states 

upfPowerStateObjT ps_state_ON;   

upfPowerStateObjT ps_state_OFF; 

upfPowerStateObjT ps_state_SLEEP; 



 

// Handle to hold active state 

upfHandleT state_ON_active; 

upfHandleT state_OFF_active; 

upfHandleT state_SLEEP_active; 

 

//integer values of active states, 1 indicates active 

integer state_ON; 

integer state_OFF; 

integer state_SLEEP; 

 

// continuous access of power states 

upf_create_object_mirror (“/tb/chip_top/PD_CAMERA.ON”, “ps_state_ON”)  

upf_create_object_mirror (“/tb/chip_top/PD_CAMERA.OFF”, “ps_state_OFF”)  

upf_create_object_mirror (“/tb/chip_top/PD_CAMERA.SLEEP”, “ps_state_SLEEP”)  

 

 

 

always @(ps_state_ON, ps_state_OFF, ps_state_SLEEP) begin 

 state_ON_active = upf_get_object_properties (ps_state_ON.handle,  

UPF_IS_ACTIVE) 

state_OFF_active = upf_get_object_properties (ps_state_OFF.handle,  

UPF_IS_ACTIVE) 

state_SLEEP_active = upf_get_object_properties (ps_state_SLEEP.handle,  

UPF_IS_ACTIVE) 

 

 state_ON = upf_get_value_int(state_ON_active); 

 state_OFF = upf_get_value_int(state_OFF_active); 

 state_SLEEP = upf_get_value_int(state_SLEEP_active); 

end  

 

These state variables state_ON, state_OFF, state_SLEEP are used to collect state coverage information. In order to 

collect transition coverage information we define an array with state variables as elements; we call this an array 

transition variable. Any change in any of the state variables will trigger a clock which will act as the sampling event 

for state and transition coverage. State determining logic in our sample example looks like: 

 

Coverage module  

 
module covPowerStateModule (int state_ON, state_OFF, state_Sleep, string 

StateName)  

wire [2:0] curr_state; 

reg cov_clk = 0; 

assign curr_state = {state_OFF, state_ON, ……}; 

 

always @(state_OFF, state_ON, ……) 

cov_clk = 1'b1; 

 

always @(cov_clk) 

cov_clk = 1'b0; 

endmodule 

 

We define covergroups for state and transition coverage. The covergroup modeling of the state coverage has a 

number of coverpoints that sample the state variables. The covergroup modeling of the transition coverage has a 

coverpoint with bins that sample various transitions of the transition variable. State and transition covergroups for 

our simple example appear as follows: 
 

 



// covergroup modeling of state coverage 

covergroup PD_CAMERA_STATE_COVERAGE @(posedge cov_clk); 

OFF: coverpoint state_OFF 

{ 

 bins ACTIVE = (0=>1); 

} 

ON: coverpoint state_ON 

{ 

 bins ACTIVE = (0=>1); 

} 

SLEEP: coverpoint state_SLEEP 

{ 

 bins ACTIVE = (0=>1); 

} 

…… 

endgroup 

 

PD_CAMERA_STATE_COVERAGE PS_primary = new; 

 

// covergroup modeling of state transition coverage 

covergroup primary_TRANSITION_COVERAGE @(posedge cov_clk); 

type_option.strobe = 1; 

PA_CAMERA_TRANSITION_COVERAGE:coverpoint curr_state 

{ 

wildcard bins OFF_to_ON = (3'b??1=> 3'b?1?); 

wildcard bins OFF_to_SLEEP = (3'b??1=> 3'b1??); 

wildcard bins ON_to_OFF = (3'b?1?=> 3'b??1); 

…… 

} 

endgroup 

 

In the similar manner, we can achieve the coverage of PD_VIDEO. 
 

C. Assertion with UPF 3.0 information model 

 

In the above example defined in section B, there could be a requirement that the combination of state ON for 

PD_CAMERA and state ON for PD_VIDEO cannot be true at the same time. This can be checked easily using the 

proposed coverage methodology approach.  

 

We can define an assertion module instead of a coverage module and create an instance of this module in testbench.  

 

Assertion Module 

 
module assertionPowerState (int state_ON_CAMERA, int state_ON_VIDEO) 

reg cov_clk = 0; 

always @(state_ON_CAMERA, state_ON_VIDEO) 

cov_clk = 1'b1; 

 

always @(cov_clk) 

cov_clk = 1'b0; 

 

always@(posedge cov_clk)  

assert (state_ON_CAMERA != state_ON_VIDEO) else $error(“Camera and 

Video both on at same time”); 

endmodule 

 



VI. BENEFITS OF PROPOSED POWER COVERAGE METHODOLOGY 

 
Verifications engineers can use the proposed verification approach to achieve an early low-power coverage closure. 

It is possible to do a directed scenario testing using this methodology. For example user can write a custom assertion 

or property to check if two domains should be in a mutually exclusive state by using UPF 3.0 information model 

immediate read access function. Since the methodology relies on UPF constructs, so it is consistent and usable 

across different vendor tools. Even without detailed knowledge of complex UPF constructs and semantics, 

verification engineers can write various directed verification scenarios to achieve low-power coverage closure. The 

proposed approach can be easily scaled to bigger and more complex low power design scenarios. The proposed 

approach can be compared with approach mentioned in [4] where the verification engineer needs to be aware of the 

low level details like supplies and logic values of constituents of supply and logic expressions of power states. 

Whereas in the examples presented above such low level details are not required. In the same way cross coverage of 

power states as mentioned in [3] can be easily mapped to current approach. 

 

VII. UNADDRESSED LOW POWER CHALLENGES & FUTURE WORK 

 
The current approach mentioned in this paper is versatile and robust however it lacks few fundamental things like 

ability to access analog/mixed-signal parameters from onboard regulators & voltage sources – as these are not part 

of the HDL or UPF. However it is an important part of the design and cannot be ignored. 

 

 

VIII. CONCLUSION 

 
The complexities in low power verification have greatly increased. Any ad-hoc approach is not likely to succeed and 

will result in incomplete verification. In this paper, we proposed a methodology for low-power coverage of the 

design using the UPF 3.0 HDL package functions. This methodology will help achieve verification closure in 

significantly lesser time. We presented case studies and examples to elaborate the usage of the UPF 3.0 HDL 

package functions with System Verilog coverage constructs like covergroups and coverpoints to achieve the 

coverage of some key design failure scenarios of a low power design. This paper elaborated on the benefits of using 

the proposed approach over other conventional approaches. The paper also touched briefly on the future work and 

challenges in using the proposed method. 
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