
Qualification of Formal Properties for Productive
Automotive Microcontroller Verification

Holger Busch

Automotive Microcontroller Division
Infineon Technologies AG, Neubiberg, Germany

Tel.: +49 89 234-44307
holger.busch@infineon.com

Abstract—Industrial automotive microcontroller design
requires most advanced verification methodologies for meeting
highest quality and safety standards despite very tight project
schedules. For efficient verification project management,
appropriate metrics for measuring verification progress and
completion are essential. As modern verification environments
are heterogeneous and include directed and constraint-driven
simulation and formal property-checking being even jointly
applied to individual modules, common metrics are needed
which allow coverage which is contributed by different
verification approaches to be merged. While structural
coverage figures delivered by simulation are generally well
understood, project managers desire compatible sign-off
criteria for assessing verification results yielded by formal
property checking. This paper describes experience and results
from the qualification of proven formal properties of modules
of Infineon’s new automotive microcontroller family AURIXTM.
In this next-generation chip design project, metrics for formal
property coverage which enable code-based progress tracking
and merging with structural coverage yielded by simulation
test-cases have been applied for the first time productively.
Two alternative methods for measuring coverage of formal
properties have been used. The vast number of formal
quantification proofs needed for larger modules turned out to
be the real challenge for both methods.

This work contributes to the project RELY, 01M3091A, which is funded
by the German ministry of education and research.

I. INTRODUCTION
Formal property checking has been in established in

industrial chip design projects for many years. It is widely
acknowledged that formal property-checking ensures highest
quality of RTL modules and yields very convincing bug-
finding statistics. The advances of formal property checking
technology have rendered possible exhaustive verification of
modules of several 10,000 lines of RTL code.

For the planning of schedules and control of project
milestones project managers request easily understandable
and applicable metrics which reflect the verification progress
in percentages and allow for basic quality control of globally
distributed verification work packages, regardless of which

verification approach, formal or simulation-based, is applied
to different parts of the system-on-chip architecture. Less
than 100% coverage of a module’s functionality by one
verification approach is acceptable, if a complementary
verification approach contributes the missing coverage. For
this goal, it is necessary to apply common metrics for
measuring the quality of verification results.

Code-oriented metrics like line, branch or toggle
coverage are widely applied as minimum criteria for a design
to be sufficiently simulated. In productive projects, the
verification must not be finished before these basic coverage
criteria are fulfilled in addition to functional completeness
criteria specified in verification plans.

Two new approaches for generating coverage metrics
more directly related to the established simulative code-
coverage metrics have been tested on system-related
modules of new automotive microcontroller developments.
The first method uses a new feature provided by Onespin-
Solutions called Quantify, which computes formal line and
branch coverage of formal property sets. The second
approach is based on the test-bench qualification tool
Certitude from Synopsys.

Like in other formal coverage approaches, formal
property checking is performed in order to determine the
coverage contributions of the properties. Unfortunately, the
qualification checks in total consume considerably more run
time than the regular regression run with all properties, as
thousands of different punctual design mutations and re-
checking of property sets are iteratively performed. Typically
many of these proofs do not yield any coverage contribution,
whenever properties are checked which are not affected by
the current design mutation.

Without dedicated methodologies and routines for
optimizing the iterations with respect to the elapsed run-time
and the results yielded in each round, such qualification of
formal property sets would only be feasible on small designs.
The tool providers have already installed significant
improvements since the first experience gathered with these
formal qualification approaches. Nevertheless, in several

applications with real chip components, further potential for
optimizations has been identified.

Both methods have been applied to system control
modules of the new Infineon Microcontroller family
AURIXTM (AUtomotive Realtime Integrated NeXt
Generation Architecture) which comprises up to 3
independent 32-Bit TriCoreTM CPUs, numerous peripherals
and memories of several MB and which is designed to meet
highest safety standards and performance requirements. In
principle both approaches showed their capability of
detecting RTL code left uncovered by formal properties and
of delivering coverage data which resemble those obtained
by simulations. As the formally verified modules have
specifications of several 100 pages, several 10 k lines of
RTL code, and hundreds of properties, straightforward usage
of the basic qualification methods would have resulted in
unrealistic run times caused by a vast number of required
coverage proofs. Various enhancements of the qualification
flows have resulted in considerable efficiency gains.

The following sections of this paper are organized as
follows. Section II provides some information on the used
tools and reviews related work. Section III summarizes the
basics of the two applied quantification approaches. Section
IV describes our qualification methodology based on
OneSpin’s Quantify feature. Section V details our
integrated formal qualification flow based on Certitude.
Section VI adds experience and results achieved by applying
both approaches to system control modules. Section VII
discusses conclusions and implications.

II. BACKGROUND
In this section, qualification methodologies are summarized,
including the EDA tools used.

A. Ingredients of formal coverage methodologies
Code coverage computation of properties proven by a

formal property checker requires a facility for mutating the
design in such a way that each individual mutation is related
to another piece of code to be covered. Such mutation is
either instrumented explicitly in the RTL design, or in an
internal model of the design. Obviously, an instrumented
RTL design can be read by any verification tool, whereas the
internal model is not usable outside of the formal verification
tool. The instrumentation can be done once for the complete
qualification, if the mutation of each code location is
individually activated by an assumption added to the current
property being checked.

Some selection mechanism has to determine in each round
which property is checked with which activated mutation.
This decision is very essential for the overall efficiency. The
goal of each individual coverage proof is to check whether a
property covers a specific mutation related to a code
location, e.g. a signal assignment or branching condition. For
simplicity we here assume just 1 mutation per code location.
In general the actual instrumentation can generate several
mutations for one single code location. A code location is

considered to be fully covered if all related mutations are
detected by at least one property each. Thus the key to
improved efficiency is to optimize the sequencing of these
pairings, based on the fact that once a mutation or fault is
covered by one property, it need not be checked with others.

This is illustrated by a simple calculation. For a module
with 10,000 code locations to be covered, 100 properties and
an average proof time of 5 minutes per property, an overall
qualification time of 5 million minutes or almost 10 years
would be needed for checking all combinations, under the
very pessimistic assumption that for each location the
covering property is selected as last one. The theoretical
minimum would then be 10,000 * 5 minutes ≈ 34 days in the
best case, if each code location were directly addressed by
the right property and a complete property set were available.

In reality, a code location is often coverable by several
properties. On average only 50% of all properties may have
to be checked until a code location becomes qualified,
resulting in 5 years worst-case run-time. However,
incomplete property sets will run exhaustively on code
locations not covered by any property.

A book-keeping facility for the results of all proofs is
required in order to collect information about covered code
and coverage holes, and to prepare the selection of mutations
and properties and the iterations. The same formal property
checker that has already been used for digital design
verification of a specified property set now serves for
running the checks to be performed during formal property
qualification.

The decisive feasibility question is whether the formal
property qualification methodologies can be tuned such that
they scale up to the size of realistic module designs being
qualifiable in a few days.

B. Onespin’s Module Verifier MV 360°
Onespin’s module verifier MV 360° has been applied to

numerous industrial chips designs[7]. MV 360° is a state-of-
the-art property checker which accepts properties in 3
different property languages:

• System Verilog Assertions
• PSL Assertions
• ITL (InTerval Logic, Onespin’s proprietary

property language) properties with VHDL or
Verilog flavor

In one session, property sets written in ITL may coexist
with sets of SVA and PSL assertions, and environment
constraints may be mixed as well. For instance, it is possible
to write ITL properties which not only depend on ITL
constraints, but also on SVA or PSL assume-properties.
Thus sets of module interface constraints can be used for
formal module verification and in SOC simulations for
checking whether environment assumptions are kept.

The Onespin tool suite comprises HDL front-ends for
VHDL (87, 93, 2008), Verilog and SystemVerilog.

Several different proof engines are available which are
optimized for different purposes. For instance, one engine is
specialized on generating countertraces reachable from reset.
For this purpose, user-defined reset sequences can be
entered, if a default reset sequence is not applicable. Another
engine proves properties from any start state, however may
return unreachable countertraces. When a property check is
invoked, the user can specify a set of proof engines to be
tried in parallel or sequentially.

Like other commercial property checkers, Onespin
offers a formal consistency checker which identifies dead
code, in addition redundant code, sticky signals, checks in-
code assertions extracted from the design and several other
automatically generated assertions. Most consistency
checking results are relevant for property set qualification.
For instance, mutations within proven dead-code will not be
detected, and stuck-at-1 fault of a signal already proven to be
constantly 1 need not be considered. The parallelization
feature is especially important for running regressions. It
distributes proof jobs of property sets to different servers in
lsf (load sharing facility) queues. Onespin’s extensive
debugging features are very helpful for regular property
checking, but are not needed for qualifying properties.

Onespin itself supports model mutation by allowing
arbitrary port and internal signals at any level of hierarchy to
be cut from their fan-in cone. As a result, such signals are
split into an external output driven by the original signal’s
fan-in function and an external input which drives the
signal’s fan-out. In added property assumptions, any
behavior of the resulting artificial inputs can be assumed,
including the normal signal behavior if input and output parts
are just connected. This special feature e.g. serves for safety
[10] and security verification, and can also be used for
property qualification, e.g. by measuring the detection rate of
injected stuck-at faults of all signals or registers. In a similar
way, Certitude is usable for fault injection in safety
verification.

Onespin MV 360° comprises a formal completeness
checker which applies the strongest possible criteria for gap-
free verification[1]. These criteria are not compatible with
coverage metrics used in simulation environments. A strictly
structured property suite of formal operation properties has
to be written in order to run formal completeness checking,
which is not always feasible within project schedules.

Therefore another feature called Quantify was added
which performs coverage analyses closer to the classical
notions used in simulators (cf. Section III b).

As the Onespin GUI comprises a TCL-shell and a rich
library of useful TCL utilities allowing evaluation and
control of internal data such as filtered signal lists, property
and constraint lists, or current proof status of properties,
users can well add own TCL functions for their purposes.

C. Certitude
Certitude is a tool for qualifying simulation test-benches

offered by Synopsys.

Certitude instruments an RTL design under verification
with artificial faults which, when activated, block or modify
pieces of the original RTL code, thus distorting design
behavior. A reduced example is shown in Example1. An
added fault-vector (f) selectively activates different
mutations of the code. If all bits of this vector are cleared, i.e.
no fault is active, normal behavior results.

Example 1: RTL code instrumentation by Certitude

Test-cases are then rerun on the mutant code with faults
selectively activated by Certitude. For each injected fault
and each test-case, Certitude returns four possible results:

1. A fault is not activated by any test case, i.e. the
code in which the fault is injected is not covered
by any test-case.

2. A fault is not propagated by any test-case: the
behavioral fault does not have any externally
visible effect, e.g. at the interface of the module
or a scoreboard of the test-bench.

3. An activated and propagated fault is not
detected by any test-case.

4. A fault is activated, propagated and detected.

Certitude does pre-qualification in cooperation with
simulators: Faults which are not activated and propagated
will not be checked for detection during qualification. For
each fault, Certitude keeps the information by which test-
case it is activated and propagated. Later in the most
expensive detection phase, this information is used for
avoiding unwinnable simulation runs with test-cases without
chance to detect the fault.

The notion of fault detection is defined as follows: If a
normally passing test-case fails with the activated fault, this
test-case has detected the fault, otherwise it has not. If a
specific fault is not detected by any test-case, the test-bench

entity ex1 is architecture rtl of ex1 is
port(a_i, x_i: in bit; …
 …); begin
 …
 if x_i =1 then
 ff <= a_i;
 end if;
 …
After instrumentation:
entity ex1 is
port(
 f: in bit_vector(1 to n);
 a_i, x_i: in bit;
 …);
architecture rtl of ex1 is
…
begin
 if f(1) = 1 then elsif f(3) = 1 then

if false then if x_i =1 then
 ff <= a_i; ff <= not a_i;

 end if; end if;
 elsif f(2) = 1 then …

 if true then else
 ff <= a_i; if x_i =1 then

 end if; ff <= a_i;
 end if;
 end if;

has to be augmented accordingly by adding or enhancing
test-cases. During the detection phase, Certitude iteratively
generates test-case-fault combinations to be transmitted to
the verification tool. Certitude contains heuristics which
analyze the results of previous verification runs and optimize
the selection of test-case – fault pairs to be checked next. As
subsets of all faults are automatically identified to be likely
to be covered by the same test-case, e.g. faults in nested case
constructs, the chances of successful qualification are
significantly increased.

Further fault reduction is achieved by dropping faults in
sub-branches, if a fault in a super-branch has not been
detected by any test-case. Example 1 shows hierarchically
nested faults. If activation of fault 1 and fault 2 do not cause
any test-case to fail, fault 3 cannot be detected either, thus
fault 3 will be dropped. Faults are automatically categorized
and can be filtered by the user. The depth of fault insertion in
the hierarchy of conditional expressions can be controlled as
well, which allows a shallower qualification in less run-time.

Figure 1: Viewing detection status in RTL code

At each stage of the qualification, a qualification report
can be generated on user request in HTML or a proprietary
viewing format, with the source code items being highlighted
in different colors according to the individual qualification
status. Detected and non-detected faults can be inspected in
more detail as shown in Fig. 2.

Figure 2: Detailed information about fault status

 The qualification result yielded by Certitude is stronger
than code or branch coverage. 100% code coverage just
means that each code location has been touched, but not
necessarily that the behavioral effect of each code line has
actually been checked by at least one test-case. In contrast,
100 % Certitude coverage means that each behavioral fault
is detected by the test-suite.

D. Alternative Approaches
A simple approach is to generate a witness trace of a

property and put this into ordinary coverage checks
performed for simulation traces. As the generated witness
contains values chosen randomly, such coverage analysis is
very weak. For instance, any trace will be a valid witness of
the trivial property |- true. By way of realistic constraints, the
quality of the witnesses can be improved.

Another basic solution is to compute the required proof
radius for bounded-model-checking properties in order to
determine the lines of code which can be covered within a
limited number of clock cycles according to the proof radius.
If some code location is not reachable after n clock cycles,
no bounded property within a proof radius n will cover that
code location. In a wider sense, this coverage notion is
related to fault activation analysis in Certitude. However, a
proof radius check includes no analysis whether reachable
code is actually checked by one or more properties.

Various approaches have been devised which address the
question whether a set of properties specifying a digital
design is complete [1,3,4,5,6,9]. The completeness notions
applied there, even though formally very strong, are not
compatible with simulation coverage metrics. Approaches
for formal property coverage must provide valuable
information about the quality of the properties by observing
the behavior of code locations and not just their activation. In
an industrial environment, tools must manage the
complexities of real chip designs, must be relatively easy to
use, and must fit into verification landscapes where
simulation-based methodologies are applied [8]. Moreover, a
certain level of maturity allowing smooth integration in
productive design flows must have been attained.

III. TWO BASIC QUANTIFICATION APPROACHES
In this section, 2 alternative methods for qualifying

formal property sets are discussed. First, Onespin’s
Quantify feature is summarized, then our basic flow for the
usage of Certitude with 360° MV shown. Thus we use
Certitude not only for the qualification of simulation test-
benches, but also for assessing the fault coverage of formal
properties. Both alternatives have been used on different
system control modules of the AURIX architecture.

A. Onespin’s metric-driven verification approach
Onespin’s new Quantify feature is closely integrated

into the regular property checking environment of 360° MV.
Quantify is a fully automatic push-button tcl-function to be
directly called from the Onespin shell. Quantify just reads a

set of properties for qualification and then analyzes without
any need for further user interaction which code locations are
covered. In a preliminary phase, dead code and redundant
code lines are identified and excluded from qualification.
Constraints e.g. given as SVA-assume–properties are
additionally taken into account, so that further code not
reachable due to constraints is identified before the
qualification starts. For each property a witness is generated
and simulated. This simulation phase allows code locations
to be identified which are reached or not reached by the
provided properties. This information is used in subsequent
coverage evaluations.

In the actual qualification phase, the tool iteratively
checks for each code location whether it is covered by at
least one property or completely uncovered. The
qualification result of a code location does not depend on the
syntactical representation of a property, thus the user does
not need to restructure properties.

By specifying a maximum effort level when starting
qualification, the user can control how deep the coverage
checks shall be. With a lower effort level the qualification
finishes faster, however, with more code regions remaining
open (= unqualified). The tool performs the first iteration
cycle at lowest effort level, trying to cover as much code as
possible with minimum CPU time. With each new iteration
cycle, the effort level is automatically increased, until finally
the user-specified maximum is reached. Accordingly the
checking times grow.

While the qualification is running, the current status is
permanently visualized in HTML format for the code of each
module along with statistics about covered lines and
branches, as shown in Figures 3 and 4.

Figure 3 Quantify: Coverage Statistics

At each effort level, all code locations still open are
checked one after the other with each property of an
internally selected subset, until the first property check
results in coverage of the current code location. Thus in
particular the “uncovered” result is yielded only after a
maximum accumulated proof time for all properties which
corresponds to the run time for a complete regression for just
that code location, which is only reduced by potentially

premature giving-up at lower effort levels with the effect that
properties with low run times will contribute coverage right
from the beginning, while properties with long runtimes will
later get a chance to detect covered code locations at high
effort level.

Figure 4: Highlighting of RTL code depending on status

The Quantify feature can be used incrementally. Results
of one run are saved regularly while Quantify is active, and a
new Quantify run is able to use previous results. As
Quantify typically runs several days for designs with several
thousand code locations, some interruption e.g. by network
instability might well occur. Thus saving intermediate results
is crucial for avoiding that a qualification has to re-start from
scratch. Simulation coverage can be loaded in addition.

B. Qualification of Formal Properties Using Certitude
As Certitude generates just ordinary HDL code, it is

possible to feed the instrumented VHDL design into the
HDL-front-end of a formal property checking environment.
The formal properties used for qualification then take over
the role of the simulation test-cases. Where normally
Certitude starts a simulator with a test-case x fault pair, the
modified Certitude scripts now invoke the property checker
with a property x fault pair instead.

If the property fails with an activated fault, the property
checker reports the result back to Certitude which interprets
the result as detected fault. The communication between
Certitude and the property checker requires some specific
scripting on part of the property checker. When the property
checker receives a job from Certitude, a script generates a
corresponding constraint that the current fault is active and
all other faults are inactive and then starts the proof of the
selected property. If the proof of the property fails, this result
is interpreted as successful detection of the current fault. The
overhead for generating the constraint, invoking the property
checker, reloading model and property, analyzing the proof
result and reporting it back to Certitude is not negligible.

IV. QUANTIFY METHODOLOGY
Even if the efficiency of the fairly new Quantify feature

has been significantly improved since the first release, sets of
several hundred properties of modules with more than
30,000 lines of RTL code are hardly manageable without
specific measures to be taken by the verification engineer.

Onespin’s quantification feature is closed and can only
be controlled by setting the parameters when it is invoked.
The internal strategies are not disclosed to the user. It can be
assumed without being documented that Onespin internally
takes measures to optimize the sequence of checks.

The Quantify function reads optional user parameters for
selecting not only complete modules but also individual line
ranges for inclusion or exclusion of code regions from
qualification runs. These parameters allow the user to
precisely address code partitions by selected property sets.
The verification engineer who devised the properties has a
good understanding of the subsets which verify different
sub-components of the top-level architecture. Thus it is not
too difficult to focus each qualification on related code
regions in a separate run.

Partitioning of property sets and designs can have a
substantial effect, as sketched by the following simple
calculation. If the idealized module discussed in Section II A
is partitioned into 10 sub-components, with corresponding
property sets of 10 properties each, the worst-case figures are
significantly improved: Each code partition now needs 35
days, which amounts to about 1 year for 10 partitions
qualified sequentially. This reduction by a factor of 10 is
already achieved without further measures.

The proof complexity of properties also influences the
efficiency in qualification. Very complex properties with
high sequential depth cause long run-times, which may even
be longer with code mutations. Generally, long-runners of
one or more hours tend to jeopardize the efficiency of the
qualification. Thus they are better excluded from the first
qualification runs or split into sub-properties. The
quantification proofs use the same proof infrastructure like
ordinary property checking, which can be controlled by user-
definable check options. In particular, parallelization and run
time limits can be configured in order to optimize the suite of
qualification proofs and interrupt long-running proofs.

Aggregate properties, which combine properties of
similar instances, are advantageous if their check-times are
close to the proofs of the instances. In [2], we showed that
aggregate register properties behave like this in Onespin.
For instance, a write property of a single register is proven in
roughly the same time as a compound property verifying
writes to all registers in one single proof. Such an aggregate
register property covers many code locations. For one
module with many configuration registers, just 5 aggregate
register properties like read, sw-write, reset, no-write, and
hw-update have covered 70 % of all code locations.

In summary, our methodology using Quantify is based
on

• Partitioning of formal qualification according to
property subsets for different code regions,

• Prioritizing properties according to their run-
time with limit setting in order to avoid long-
running proofs in earlier qualification phases

• Aggregate properties which improve the hit-rate
and reduce the number of properties.

Additionally, parallelization is configured according to
the number of available servers and licenses.

V. ENHANCED CERTITUDE METHODOLOGY
The basic efficiency problem is the same as for Quantify.

The main goal is again to optimize the order of the checks,
where the faults instrumented by Certitude roughly take the
role of the code locations in Quantify. As there is no direct
connection between Certitude and Onespin’s internal
infrastructure, the overhead for the communication between
both tools is a topic deserving special care.

The measures described in this section address the
optimization of the sequence of checks and of set-up times
when proof tasks are forwarded to the property checker.

A. Improved Tool Interaction
In a basic implementation of the link between both tools,

several steps are performed when a qualification proof task is
generated by Certitude and sent to the property checker:

1. Start the proof environment.
2. Load the (instrumented) design.
3. Translate the selected faults into assumptions in the

property language.
4. Add these assumptions to the selected property.
5. Load property code.
6. Run the selected property checks.
7. Evaluate and report the proof results.
Except for Step 3 and 4, these steps are the same as in

regular regression runs. In contrast to regressions which just
have to be started once, for qualification Steps 1-7 are
repeated every time Certitude orders new checks. Thus the
overhead for Steps 1, 2, and 5 is significant.

Step 2 can be optimized by using Onespin’s feature for
saving the elaborated model of the design and properties in a
database. When Onespin is invoked again, the data-base is
just re-loaded. Thus Step 5 is reduced as well, if the
modifications are encapsulated such that only modified
property code is re-read. Another step is appended for saving
the database when a checking round is finished, which is not
blocking as the results have been fed-back to Certitude.

2. Load data-base.
5. Load property modifications only.
8. Save design and property data in database.
By way of a specific control (TCL) routine, Steps 1, 2

and 8 are saved completely:

This routine certQualCheck is called in the property

checking shell, once the design is read and elaborated and
the properties are loaded. The subroutine waitforCertReady
then checks whether Certitude has notified that it has
evaluated previous results and has taken the decision to

proc certQualCheck {
 while {[waitforCertReady]} {}
 while{[qualify]} {
 set cfault [readCertFault]
 set cprop [readCertProp]
 updCertConstr [list $cfault $cprop]
 checkProperty $cprop
 reportCertRes $cfault $cprop
 while {[waitforCertReady]} {} } }

finish or continue the qualification with a new task.
Subroutine qualify checks whether a new task with fault x
property pair has been received from Certitude. Subroutine
updCertConstr updates the constraint for activating the
fault currently selected by Certitude and adds it to the
assumption list of the selected properties. Subroutine
reportCertRes evaluates the results of the property check
and writes them out in a format which is processed by a
Certitude script.

In this way, the overhead for each check is minimized, as
Onespin is not re-started, and design and properties are not
re-loaded in each round. The saving of this measure can be in
the order of magnitude of a property check.

B. Parallelization
Certitude can be configured to select several fault x

property pairs in each round. The routine certQualCheck
need not be modified for this purpose, as all subroutines are
able to handle lists of faults and properties. If the sizes of
these lists are bigger than the number of available property-
checking servers or licenses, it makes sense to augment the
routine certQualCheckPar with own selection mechanisms
which optimize the throughput of the property checking
phase. Subroutine selFPs determines an optimal
combination of properties to be checked together. For this
purpose it accesses internal information about previous run-
times, previously successful proof engines for each property,
and currently available servers and licenses. Without using
latter information, the chosen degree of parallelization could
be sub-optimal in an environment with limited resources.

When proofs of properties are started, a limit can be

specified for aborting all proofs hitting this limit. Generally,
the proof times during qualification cannot be forecasted,
they vary significantly for different mutations and differ
from regression run times. Thus premature abortion of all
properties might occur, so that the complete run-time spent
until then would have been wasted without any coverage
having been obtained. We therefore added an automatic
abortion facility which runs in parallel to the property
checks, controlling their run-times, and cancelling proofs
from outside only if they run much longer than the others.

C. Additional Selection of Faults
In addition to the selections delivered by Certitude, own

heuristics allow the set of fault-property pairs checked in

each round to be augmented. For instance, if an
advantageous partitioning of the design and corresponding
property subsets, and additionally a mapping between
Certitude faults and code lines has been determined, another
subroutine generates additional fault x property
combinations. Certitude provides information on faults
which is usable for this purpose.

These additional pairs are merged with the pairs selected
by Certitude and submitted to property checking. All results
are reported even though Certitude will not be interested in
the extra qualification results in this round. Therefore, all
qualification results are stored in extra book-keeping files. In
forthcoming qualification rounds, these extra files are first
searched for previous proof results, and only pairs not yet
checked are submitted to the proof engines.

D. Handling of Indeterminate Results
If a proof is aborted, the result may be indeterminate. The

question is whether such a fault can be considered to be
detected or not, if it was not detected within the time-limit
corresponding to the original proof-time without fault. The
run-time of an aborted check would not be a valuable input
for Certitude’s selection heuristics. With an external book-
keeping of all check results Certitude’s detection phase is
re-started without repeating finalized property checks.

VI. EXPERIENCE AND RESULTS
Both approaches yield useful qualification results on

productive designs. Table 1 lists a few results from applying
both methods to real system control modules of the new
product family AURIXTM. The numbers indicate that 100%
qualification of large formally verified modules is feasible.

Module verification Quantify Certitude

No. Locs
(VHDL)

Props Code
locat.

Days Faults Days

1 25563 85 2316 4 1784 7

2 27374 157 1993 5 3732 12

3 57168 253 5309 7+ 4122 17

Table 1: Results for different designs

The results of Quantify and Certitude cannot be 1:1
compared, as the number of faults in Certitude depends on
the configured instrumentation and is different from the fault
injection performed by Quantify, which uses an approach
similar to X-assignment. The instrumented RTL code
generated by Certitude can be inspected, although it is not
recommendable to read the augmented code. In our
verification setting, the same fault injection configurations
are used for all modules of the SOC, regardless whether they
are verified by simulation or formally. Certitude could be
configured to instrument many more faults than shown in
this table, while in Quantify the internal fault-model cannot
be influenced by the user. Only for the biggest module, we

proc certQualCheckPar {
 while {[waitforCertReady]} {}
 while{[qualify]} {
 set cfaults [readCertFault]
 set cprops [readCertProp]
 set props $cprops
 while {$props != {}} {
 set fsprops [selFPs $props $cprops $cfaults]
 updCertConstr $fsprops
 set sprops [getProps $fsprops]
 checkProperty $sprops
 set props [evalProps $fsprops] }
 reportCertRes $cfaults $cprops
 while {[waitforCertReady]} {} } }

interrupted Quantify after 7 days with about 80% coverage,
3% code proven uncovered, and the remaining code regions
open, because there was no further progress, due to the
complexity of some properties. In fact, further progress is
expected with future releases of Quantify like in first
versions, when big modules could not yet be processed. Both
approaches yielded similar results with respect to code
regions not covered at all, which gave rise to property
enhancements. As can be imagined, long-running properties
which need more than 1 hour regular proof time are hardly
suitable for such kind of iterative qualification. With the
maximum density of instrumented faults, Certitude would
yield more detailed qualification results than Quantify,
however, in potentially unaffordable qualification time.

Table 2 compares several aspects of the usage of
Quantify and Certitude.

Quantify Certitude

Internal fault model Explicit fault injection in RTL
design, large variety of
configurable fault models

OK for small and medium
designs (-7 days qualification
time with parallelization)

Ongoing efficiency
improvements

All designs manageable which
have been formally verified

Re-startable Re-startable

Powerful detection of dead,
redundant, constrained code

Basic exclusion of dead-code
from instrumentation

User control via options
specifiable at start

Full observability of
qualification checks,
intermediate reconfigurability

No problems by fault injection Sometimes problems with
elaboration of instrumented
RTL design

No exact relation to simulation
coverage (stronger!), but
similar to code coverage

100% matching of coverage
between simulation and formal
property checking

Closed functionality, indirect
enhancements from outside

Scripts for communication and
check control extensible

Fast growth of qualification
results, finalization depending
on effort level

Incomplete property sets
efficiently handled by fault
dropping

Reporting intermediate
coverage state as HTML

Reporting intermediate
coverage state as HTML or
proprietary format

Table 2: Comparison of Quantify and Certitude flow

As Quantify can be directly started by a push-button in
an active MV 360° session without further set-up, it makes
sense to run it in the background and evaluate the results for
completion of property sets. Starting the combined
Certitude – Onespin flow is easy as well, once the scripts
have been set up, but it may be required to exclude few lines
from instrumentation if the model generation fails.

VII. CONCLUSIONS
This paper has discussed methodological enhancements

and experience from the qualification of formal properties
for AURIXTM modules. The experience with real modules is
very positive, and has led to new sign-off criteria for formal
properties. The property sets can be created without specific
methodology or expertise regarding formal completeness.

By running on average 5 coverage checks in parallel,
focusing coverage analyses to property subsets, using
heuristics for advantageous property-code-location pairs, and
exploiting information about dead, constrained and
redundant code computed by MV 360°, the automatic
property qualification took up to a week per module.

The two approaches illustrate possible paradigms:

1. fully integrated formal qualification flow where
formal engines internally provide functions for
optimizing the formal qualification directly

2. open formal qualification flow which provides
common metrics for different verification tools.

Paradigm 1 has the potential to provide more efficient
internal dependency analyses and data management under
the surface by exploiting all highly optimized technology of
MV 360°. As the results are also delivered in UCDB/XML
format, integration with simulation flows is possible.

Paradigm 2 is reliant on the accessibility of advanced
data and control functions provided and used by MV 360°,
such as reachability information, options like proof engines,
parallelization, run-time limits. It is widely applicable, and is
open for combining any simulator and property checker
results while applying a common metric.

REFERENCES

[1] M. Siegel,”Verification Coverage and Productivity Through Formal
Operation- and Transaction-Level Verification Using SVA”, Tutorial
at DVCON 2010.

[2] H. Busch, “Generation of Complete Aggregate Formal Properties”,
DVCON 2008.

[3] Y. Hoskote, T. Kam, P.-H. Ho, X. Zhao, “Coverage Estimation for
Symbolic Model Checking,” in Proceedings of 36th Annual
Conference on Design Automation (DAC'99) , 1999, pp. 300-305.

[4] S .Katz, O. Grumberg, D. Geist, “ Have I written enough properties?
– A method for comparison between specification and
implementation,” Haifa Israel. Charme 1999.

[5] H. Chockler, O.Kupferman, M.Y.Vardi, “Coverage Metrics for
Temporal Logic Model Checking”, in Formal Methods in System
Design, pp. 189-212, Vol. 28, Issue 3, 2006.

[6] M. Oberkönig, M. Schickel, and H. Eveking, “A Quantitative
Completeness Analysis for Property-Sets,” in Proceedings. of
FMCAD’07, 2007.

[7] J. Bormann, S. Beyer, et al., “Complete Formal Verification of
TriCore2 and Other Processors,” Proceedings of DVCON07, 2007.

[8] V. Singhal, P. Aggarwal,” Using Coverage to Deploy Formal in A
Simulation World”, CAV 2011.

[9] F.Haedicke, D.Große, R.Drechsler,“A Guiding Coverage Metric for
Formal Verification“, DATE-12, 2012.

[10] H. Busch, “Formal Safety Verification of Automotive
Microcontroller Parts”, ZuE’12, 6.GMM/GI/ITG-Workshop, 2012.

