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Abstract—Industrial automotive microcontroller design 
requires most advanced verification methodologies for meeting 
highest quality and safety standards despite very tight project 
schedules. For efficient verification project management, 
appropriate metrics for measuring verification progress and 
completion are essential. As modern verification environments 
are heterogeneous and include directed and constraint-driven 
simulation and formal property-checking being even jointly 
applied to individual modules, common metrics are needed 
which allow coverage which is contributed by different 
verification approaches to be merged. While structural 
coverage figures delivered by simulation are generally well 
understood, project managers desire compatible sign-off 
criteria for assessing verification results yielded by formal 
property checking. This paper describes experience and results 
from the qualification of proven formal properties of modules 
of Infineon’s new automotive microcontroller family AURIXTM. 
In this next-generation chip design project, metrics for formal 
property coverage which enable code-based progress tracking 
and merging with structural coverage yielded by simulation 
test-cases have been applied for the first time productively. 
Two alternative methods for measuring coverage of formal 
properties have been used. The vast number of formal 
quantification proofs needed for larger modules turned out to 
be the real challenge for both methods.  

This work contributes to the project RELY, 01M3091A, which is funded 
by the German ministry of education and research. 

I. INTRODUCTION  
Formal property checking has been in established in 

industrial chip design projects for many years. It is widely 
acknowledged that formal property-checking ensures highest 
quality of RTL modules and yields very convincing bug-
finding statistics. The advances of formal property checking 
technology have rendered possible exhaustive verification of 
modules of several 10,000 lines of RTL code. 

For the planning of schedules and control of project 
milestones project managers request easily understandable 
and applicable metrics which reflect the verification progress 
in percentages and allow for basic quality control of globally 
distributed verification work packages, regardless of which 

verification approach, formal or simulation-based, is applied 
to different parts of the system-on-chip architecture. Less 
than 100% coverage of a module’s functionality by one 
verification approach is acceptable, if a complementary 
verification approach contributes the missing coverage. For 
this goal, it is necessary to apply common metrics for 
measuring the quality of verification results. 

Code-oriented metrics like line, branch or toggle 
coverage are widely applied as minimum criteria for a design 
to be sufficiently simulated. In productive projects, the 
verification must not be finished before these basic coverage 
criteria are fulfilled in addition to functional completeness 
criteria specified in verification plans.  

Two new approaches for generating coverage metrics 
more directly related to the established simulative code-
coverage metrics have been tested on system-related 
modules of new automotive microcontroller developments. 
The first method uses a new feature provided by Onespin-
Solutions called Quantify, which computes formal line and 
branch coverage of formal property sets. The second 
approach is based on the test-bench qualification tool 
Certitude from Synopsys. 

Like in other formal coverage approaches, formal 
property checking is performed in order to determine the 
coverage contributions of the properties. Unfortunately, the 
qualification checks in total consume considerably more run 
time than the regular regression run with all properties, as 
thousands of different punctual design mutations and re-
checking of property sets are iteratively performed. Typically 
many of these proofs do not yield any coverage contribution, 
whenever properties are checked which are not affected by 
the current design mutation. 

Without dedicated methodologies and routines for 
optimizing the iterations with respect to the elapsed run-time 
and the results yielded in each round, such qualification of 
formal property sets would only be feasible on small designs. 
The tool providers have already installed significant 
improvements since the first experience gathered with these 
formal qualification approaches. Nevertheless, in several 



applications with real chip components, further potential for 
optimizations has been identified.  

Both methods have been applied to system control 
modules of the new Infineon Microcontroller family 
AURIXTM (AUtomotive Realtime Integrated NeXt 
Generation Architecture) which comprises up to 3 
independent 32-Bit TriCoreTM CPUs, numerous peripherals 
and memories of several MB and which is designed to meet 
highest safety standards and performance requirements. In 
principle both approaches showed their capability of 
detecting RTL code left uncovered by formal properties and 
of delivering coverage data which resemble those obtained 
by simulations. As the formally verified modules have 
specifications of several 100 pages, several 10 k lines of 
RTL code, and hundreds of properties, straightforward usage 
of the basic qualification methods would have resulted in 
unrealistic run times caused by a vast number of required 
coverage proofs. Various enhancements of the qualification 
flows have resulted in considerable efficiency gains. 

The following sections of this paper are organized as 
follows. Section II provides some information on the used 
tools and reviews related work. Section III summarizes the 
basics of the two applied quantification approaches. Section 
IV describes our qualification methodology based on 
OneSpin’s Quantify feature. Section V details our 
integrated formal qualification flow based on Certitude. 
Section VI adds experience and results achieved by applying 
both approaches to system control modules. Section VII 
discusses conclusions and implications. 

II. BACKGROUND 
In this section, qualification methodologies are summarized, 
including the EDA tools used.   

A. Ingredients of  formal coverage methodologies 
Code coverage computation of properties proven by a 

formal property checker requires a facility for mutating the 
design in such a way that each individual mutation is related 
to another piece of code to be covered. Such mutation is 
either instrumented explicitly in the RTL design, or in an 
internal model of the design. Obviously, an instrumented 
RTL design can be read by any verification tool, whereas the 
internal model is not usable outside of the formal verification 
tool. The instrumentation can be done once for the complete 
qualification, if the mutation of each code location is 
individually activated by an assumption added to the current 
property being checked. 

Some selection mechanism has to determine in each round 
which property is checked with which activated mutation. 
This decision is very essential for the overall efficiency. The 
goal of each individual coverage proof is to check whether a 
property covers a specific mutation related to a code 
location, e.g. a signal assignment or branching condition. For 
simplicity we here assume just 1 mutation per code location. 
In general the actual instrumentation can generate several 
mutations for one single code location. A code location is 

considered to be fully covered if all related mutations are 
detected by at least one property each. Thus the key to 
improved efficiency is to optimize the sequencing of these 
pairings, based on the fact that once a mutation or fault is 
covered by one property, it need not be checked with others. 

This is illustrated by a simple calculation. For a module 
with 10,000 code locations to be covered, 100 properties and 
an average proof time of 5 minutes per property, an overall 
qualification time of 5 million minutes or almost 10 years 
would be needed for checking all combinations, under the 
very pessimistic assumption that for each location the 
covering property is selected as last one. The theoretical 
minimum would then be 10,000 * 5 minutes ≈ 34 days in the 
best case, if each code location were directly addressed by 
the right property and a complete property set were available.  

In reality, a code location is often coverable by several 
properties. On average only 50% of all properties may have 
to be checked until a code location becomes qualified, 
resulting in 5 years worst-case run-time. However, 
incomplete property sets will run exhaustively on code 
locations not covered by any property.  

A book-keeping facility for the results of all proofs is 
required in order to collect information about covered code 
and coverage holes, and to prepare the selection of mutations 
and properties and the iterations. The same formal property 
checker that has already been used for digital design 
verification of a specified property set now serves for 
running the checks to be performed during formal property 
qualification. 

The decisive feasibility question is whether the formal 
property qualification methodologies can be tuned such that 
they scale up to the size of realistic module designs being 
qualifiable in a few days. 

B. Onespin’s Module Verifier MV 360° 
Onespin’s module verifier MV 360° has been applied to 

numerous industrial chips designs[7]. MV 360° is a state-of-
the-art property checker which accepts properties in 3 
different property languages: 

• System Verilog Assertions 
• PSL Assertions 
• ITL (InTerval Logic, Onespin’s proprietary 

property language) properties with VHDL or 
Verilog flavor 

In one session, property sets written in ITL may coexist 
with sets of SVA and PSL assertions, and environment 
constraints may be mixed as well. For instance, it is possible 
to write ITL properties which not only depend on ITL 
constraints, but also on SVA or PSL assume-properties. 
Thus sets of module interface constraints can be used for 
formal module verification and in SOC simulations for 
checking whether environment assumptions are kept. 

The Onespin tool suite comprises HDL front-ends for 
VHDL (87, 93, 2008), Verilog and SystemVerilog. 



Several different proof engines are available which are 
optimized for different purposes. For instance, one engine is 
specialized on generating countertraces reachable from reset. 
For this purpose, user-defined reset sequences can be 
entered, if a default reset sequence is not applicable. Another 
engine proves properties from any start state, however may 
return unreachable countertraces. When a property check is 
invoked, the user can specify a set of proof engines to be 
tried in parallel or sequentially. 

Like other commercial property checkers, Onespin 
offers a formal consistency checker which identifies dead 
code, in addition redundant code, sticky signals, checks in-
code assertions extracted from the design and several other 
automatically generated assertions. Most consistency 
checking results are relevant for property set qualification. 
For instance, mutations within proven dead-code will not be 
detected, and stuck-at-1 fault of a signal already proven to be 
constantly 1 need not be considered.  The parallelization 
feature is especially important for running regressions. It 
distributes proof jobs of property sets to different servers in 
lsf (load sharing facility) queues. Onespin’s extensive 
debugging features are very helpful for regular property 
checking, but are not needed for qualifying properties. 

Onespin itself supports model mutation by allowing 
arbitrary port and internal signals at any level of hierarchy to 
be cut from their fan-in cone. As a result, such signals are 
split into an external output driven by the original signal’s 
fan-in function and an external input which drives the 
signal’s fan-out. In added property assumptions, any 
behavior of the resulting artificial inputs can be assumed, 
including the normal signal behavior if input and output parts 
are just connected. This special feature e.g. serves for safety 
[10] and security verification, and can also be used for 
property qualification, e.g. by measuring the detection rate of 
injected stuck-at faults of all signals or registers. In a similar 
way, Certitude is usable for fault injection in safety 
verification. 

Onespin MV 360° comprises a formal completeness 
checker which applies the strongest possible criteria for gap-
free verification[1]. These criteria are not compatible with 
coverage metrics used in simulation environments. A strictly 
structured property suite of formal operation properties has 
to be written in order to run formal completeness checking, 
which is not always feasible within project schedules. 

Therefore another feature called Quantify was added 
which performs coverage analyses closer to the classical 
notions used in simulators (cf. Section III b). 

As the Onespin GUI comprises a TCL-shell and a rich 
library of useful TCL utilities allowing evaluation and 
control of internal data such as filtered signal lists, property 
and constraint lists, or current proof status of properties, 
users can well add own TCL functions for their purposes. 

C. Certitude 
Certitude is a tool for qualifying simulation test-benches 

offered by Synopsys.  

Certitude instruments an RTL design under verification 
with artificial faults which, when activated, block or modify 
pieces of the original RTL code, thus distorting design 
behavior. A reduced example is shown in Example1. An 
added fault-vector (f) selectively activates different 
mutations of the code. If all bits of this vector are cleared, i.e. 
no fault is active, normal behavior results. 

 
Example 1: RTL code instrumentation by Certitude 

Test-cases are then rerun on the mutant code with faults 
selectively activated by Certitude. For each injected fault 
and each test-case, Certitude returns four possible results: 

1. A fault is not activated by any test case, i.e. the 
code in which the fault is injected is not covered 
by any test-case.  

2. A fault is not propagated by any test-case: the 
behavioral fault does not have any externally 
visible effect, e.g. at the interface of the module 
or a scoreboard of the test-bench. 

3. An activated and propagated fault is not 
detected by any test-case. 

4. A fault is activated, propagated and detected. 

Certitude does pre-qualification in cooperation with 
simulators: Faults which are not activated and propagated 
will not be checked for detection during qualification. For 
each fault, Certitude keeps the information by which test-
case it is activated and propagated. Later in the most 
expensive detection phase, this information is used for 
avoiding unwinnable simulation runs with test-cases without 
chance to detect the fault. 

The notion of fault detection is defined as follows: If a 
normally passing test-case fails with the activated fault, this 
test-case has detected the fault, otherwise it has not. If a 
specific fault is not detected by any test-case, the test-bench 

entity ex1 is architecture rtl of ex1 is
port(a_i, x_i: in bit;                    … 
         …);                    begin 
   … 
     if x_i =1 then 
       ff <= a_i; 
     end if; 
    … 
After instrumentation: 
entity ex1 is    
port( 
  f: in bit_vector(1 to n); 
  a_i, x_i: in bit;    
 …); 
architecture rtl of ex1 is 
… 
begin 
  if f(1) = 1 then  elsif f(3) = 1 then 

if false then    if x_i =1 then 
  ff <= a_i;      ff <= not a_i; 

    end if;     end if; 
  elsif f(2) = 1 then                   … 

 if true then  else 
  ff <= a_i;    if x_i =1 then 

    end if;       ff <= a_i; 
     end if; 
   end if; 

 



has to be augmented accordingly by adding or enhancing 
test-cases. During the detection phase, Certitude iteratively 
generates test-case-fault combinations to be transmitted to 
the verification tool. Certitude contains heuristics which 
analyze the results of previous verification runs and optimize 
the selection of test-case – fault pairs to be checked next. As 
subsets of all faults are automatically identified to be likely 
to be covered by the same test-case, e.g. faults in nested case 
constructs, the chances of successful qualification are 
significantly increased.  

Further fault reduction is achieved by dropping faults in 
sub-branches, if a fault in a super-branch has not been 
detected by any test-case. Example 1 shows hierarchically 
nested faults. If activation of fault 1 and fault 2 do not cause 
any test-case to fail, fault 3 cannot be detected either, thus 
fault 3 will be dropped. Faults are automatically categorized 
and can be filtered by the user. The depth of fault insertion in 
the hierarchy of conditional expressions can be controlled as 
well, which allows a shallower qualification in less run-time. 

 
Figure 1: Viewing detection status in RTL code 

At each stage of the qualification, a qualification report 
can be generated on user request in HTML or a proprietary 
viewing format, with the source code items being highlighted 
in different colors according to the individual qualification 
status. Detected and non-detected faults can be inspected in 
more detail as shown in Fig. 2. 

 
Figure 2: Detailed information about fault status 

 The qualification result yielded by Certitude is stronger 
than code or branch coverage. 100% code coverage just 
means that each code location has been touched, but not 
necessarily that the behavioral effect of each code line has 
actually been checked by at least one test-case. In contrast, 
100 % Certitude coverage means that each behavioral fault 
is detected by the test-suite. 

D. Alternative Approaches 
A simple approach is to generate a witness trace of a 

property and put this into ordinary coverage checks 
performed for simulation traces. As the generated witness 
contains values chosen randomly, such coverage analysis is 
very weak. For instance, any trace will be a valid witness of 
the trivial property |- true. By way of realistic constraints, the 
quality of the witnesses can be improved. 

Another basic solution is to compute the required proof 
radius for bounded-model-checking properties in order to 
determine the lines of code which can be covered within a 
limited number of clock cycles according to the proof radius. 
If some code location is not reachable after n clock cycles, 
no bounded property within a proof radius n will cover that 
code location. In a wider sense, this coverage notion is 
related to fault activation analysis in Certitude. However, a 
proof radius check includes no analysis whether reachable 
code is actually checked by one or more properties.   

Various approaches have been devised which address the 
question whether a set of properties specifying a digital 
design is complete [1,3,4,5,6,9]. The completeness notions 
applied there, even though formally very strong, are not 
compatible with simulation coverage metrics. Approaches 
for formal property coverage must provide valuable 
information about the quality of the properties by observing 
the behavior of code locations and not just their activation. In 
an industrial environment, tools must manage the 
complexities of real chip designs, must be relatively easy to 
use, and must fit into verification landscapes where 
simulation-based methodologies are applied [8]. Moreover, a 
certain level of maturity allowing smooth integration in 
productive design flows must have been attained. 

III. TWO BASIC QUANTIFICATION APPROACHES 
In this section, 2 alternative methods for qualifying 

formal property sets are discussed. First, Onespin’s 
Quantify feature is summarized, then our basic flow for the 
usage of Certitude with 360° MV shown. Thus we use 
Certitude not only for the qualification of simulation test-
benches, but also for assessing the fault coverage of formal 
properties. Both alternatives have been used on different 
system control modules of the AURIX architecture.  

A. Onespin’s metric-driven verification approach 
Onespin’s new Quantify feature is closely integrated 

into the regular property checking environment of 360° MV. 
Quantify is a fully automatic push-button tcl-function to be 
directly called from the Onespin shell. Quantify just reads a 



set of properties for qualification and then analyzes without 
any need for further user interaction which code locations are 
covered. In a preliminary phase, dead code and redundant 
code lines are identified and excluded from qualification. 
Constraints e.g. given as SVA-assume–properties are 
additionally taken into account, so that further code not 
reachable due to constraints is identified before the 
qualification starts. For each property a witness is generated 
and simulated. This simulation phase allows code locations 
to be identified which are reached or not reached by the 
provided properties. This information is used in subsequent 
coverage evaluations. 

In the actual qualification phase, the tool iteratively 
checks for each code location whether it is covered by at 
least one property or completely uncovered. The 
qualification result of a code location does not depend on the 
syntactical representation of a property, thus the user does 
not need to restructure properties. 

By specifying a maximum effort level when starting 
qualification, the user can control how deep the coverage 
checks shall be. With a lower effort level the qualification 
finishes faster, however, with more code regions remaining 
open (= unqualified). The tool performs the first iteration 
cycle at lowest effort level, trying to cover as much code as 
possible with minimum CPU time. With each new iteration 
cycle, the effort level is automatically increased, until finally 
the user-specified maximum is reached. Accordingly the 
checking times grow. 

While the qualification is running, the current status is 
permanently visualized in HTML format for the code of each 
module along with statistics about covered lines and 
branches, as shown in Figures 3 and 4. 

 
Figure 3 Quantify: Coverage Statistics 

At each effort level, all code locations still open are 
checked one after the other with each property of an 
internally selected subset, until the first property check 
results in coverage of the current code location. Thus in 
particular the “uncovered” result is yielded only after a 
maximum accumulated proof time for all properties which 
corresponds to the run time for a complete regression for just 
that code location, which is only reduced by potentially 

premature giving-up at lower effort levels with the effect that 
properties with low run times will contribute coverage right 
from the beginning, while properties with long runtimes will 
later get a chance to detect covered code locations at high 
effort level. 

 
Figure 4: Highlighting of RTL code depending on status 

 

The Quantify feature can be used incrementally. Results 
of one run are saved regularly while Quantify is active, and a 
new Quantify run is able to use previous results. As 
Quantify typically runs several days for designs with several 
thousand code locations, some interruption e.g. by network 
instability might well occur. Thus saving intermediate results 
is crucial for avoiding that a qualification has to re-start from 
scratch. Simulation coverage can be loaded in addition. 

B. Qualification of Formal Properties Using Certitude 
As Certitude generates just ordinary HDL code, it is 

possible to feed the instrumented VHDL design into the 
HDL-front-end of a formal property checking environment. 
The formal properties used for qualification then take over 
the role of the simulation test-cases. Where normally 
Certitude starts a simulator with a test-case x fault pair, the 
modified Certitude scripts now invoke the property checker 
with a property x fault pair instead. 

If the property fails with an activated fault, the property 
checker reports the result back to Certitude which interprets 
the result as detected fault. The communication between 
Certitude and the property checker requires some specific 
scripting on part of the property checker. When the property 
checker receives a job from Certitude, a script generates a 
corresponding constraint that the current fault is active and 
all other faults are inactive and then starts the proof of the 
selected property. If the proof of the property fails, this result 
is interpreted as successful detection of the current fault. The 
overhead for generating the constraint, invoking the property 
checker, reloading model and property, analyzing the proof 
result and reporting it back to Certitude is not negligible.  

IV. QUANTIFY METHODOLOGY 
Even if the efficiency of the fairly new Quantify feature 

has been significantly improved since the first release, sets of 
several hundred properties of modules with more than 
30,000 lines of RTL code are hardly manageable without 
specific measures to be taken by the verification engineer. 

Onespin’s quantification feature is closed and can only 
be controlled by setting the parameters when it is invoked. 
The internal strategies are not disclosed to the user. It can be 
assumed without being documented that Onespin internally 
takes measures to optimize the sequence of checks.  



The Quantify function reads optional user parameters for 
selecting not only complete modules but also individual line 
ranges for inclusion or exclusion of code regions from 
qualification runs. These parameters allow the user to 
precisely address code partitions by selected property sets. 
The verification engineer who devised the properties has a 
good understanding of the subsets which verify different 
sub-components of the top-level architecture. Thus it is not 
too difficult to focus each qualification on related code 
regions in a separate run. 

Partitioning of property sets and designs can have a 
substantial effect, as sketched by the following simple 
calculation. If the idealized module discussed in Section II A 
is partitioned into 10 sub-components, with corresponding 
property sets of 10 properties each, the worst-case figures are 
significantly improved: Each code partition now needs 35 
days, which amounts to about 1 year for 10 partitions 
qualified sequentially. This reduction by a factor of 10 is 
already achieved without further measures. 

The proof complexity of properties also influences the 
efficiency in qualification. Very complex properties with 
high sequential depth cause long run-times, which may even 
be longer with code mutations. Generally, long-runners of 
one or more hours tend to jeopardize the efficiency of the 
qualification. Thus they are better excluded from the first 
qualification runs or split into sub-properties. The 
quantification proofs use the same proof infrastructure like 
ordinary property checking, which can be controlled by user-
definable check options. In particular, parallelization and run 
time limits can be configured in order to optimize the suite of 
qualification proofs and interrupt long-running proofs. 

Aggregate properties, which combine properties of 
similar instances, are advantageous if their check-times are 
close to the proofs of the instances. In [2], we showed that 
aggregate register properties behave like this in Onespin. 
For instance, a write property of a single register is proven in 
roughly the same time as a compound property verifying 
writes to all registers in one single proof. Such an aggregate 
register property covers many code locations. For one 
module with many configuration registers, just 5 aggregate 
register properties like read, sw-write, reset, no-write, and 
hw-update have covered 70 % of all code locations. 

In summary, our methodology using Quantify is based 
on  

• Partitioning of formal qualification according to 
property subsets for different code regions, 

• Prioritizing properties according to their run-
time with limit setting in order to avoid long-
running proofs in earlier qualification phases 

• Aggregate properties which improve the hit-rate 
and reduce the number of properties.  

Additionally, parallelization is configured according to 
the number of available servers and licenses. 

V. ENHANCED CERTITUDE METHODOLOGY 
The basic efficiency problem is the same as for Quantify. 

The main goal is again to optimize the order of the checks, 
where the faults instrumented by Certitude roughly take the 
role of the code locations in Quantify. As there is no direct 
connection between Certitude and Onespin’s internal 
infrastructure, the overhead for the communication between 
both tools is a topic deserving special care. 

The measures described in this section address the 
optimization of the sequence of checks and of set-up times 
when proof tasks are forwarded to the property checker. 

A. Improved Tool Interaction 
In a basic implementation of the link between both tools, 

several steps are performed when a qualification proof task is 
generated by Certitude and sent to the property checker: 

1. Start the proof environment. 
2. Load the (instrumented) design. 
3. Translate the selected faults into assumptions in the 

property language. 
4. Add these assumptions to the selected property. 
5. Load property code. 
6. Run the selected property checks. 
7. Evaluate and report the proof results. 
Except for Step 3 and 4, these steps are the same as in 

regular regression runs. In contrast to regressions which just 
have to be started once, for qualification Steps 1-7 are 
repeated every time Certitude orders new checks. Thus the 
overhead for Steps 1, 2, and 5 is significant.   

Step 2 can be optimized by using Onespin’s feature for 
saving the elaborated model of the design and properties in a 
database. When Onespin is invoked again, the data-base is 
just re-loaded. Thus Step 5 is reduced as well, if the 
modifications are encapsulated such that only modified 
property code is re-read. Another step is appended for saving 
the database when a checking round is finished, which is not 
blocking as the results have been fed-back to Certitude. 

2. Load data-base. 
5. Load property modifications only. 
8. Save design and property data in database. 
By way of a specific control (TCL) routine, Steps 1, 2 

and 8 are saved completely: 

 
This routine certQualCheck is called in the property 

checking shell, once the design is read and elaborated and 
the properties are loaded. The subroutine waitforCertReady 
then checks whether Certitude has notified that it has 
evaluated previous results and has taken the decision to 

proc certQualCheck {
    while {[waitforCertReady]} {} 
    while{[qualify]} { 
        set cfault [readCertFault] 
        set cprop [readCertProp] 
        updCertConstr [list $cfault $cprop] 
        checkProperty $cprop 
        reportCertRes $cfault $cprop 
        while {[waitforCertReady]} {}  }  } 



finish or continue the qualification with a new task.  
Subroutine qualify checks whether a new task with fault x 
property pair has been received from Certitude. Subroutine 
updCertConstr updates the constraint for activating the 
fault currently selected by Certitude and adds it to the 
assumption list of the selected properties. Subroutine 
reportCertRes evaluates the results of the property check 
and writes them out in a format which is processed by a 
Certitude script. 

In this way, the overhead for each check is minimized, as 
Onespin is not re-started, and design and properties are not 
re-loaded in each round. The saving of this measure can be in 
the order of magnitude of a property check. 

B. Parallelization 
Certitude can be configured to select several fault x 

property pairs in each round. The routine certQualCheck 
need not be modified for this purpose, as all subroutines are 
able to handle lists of faults and properties. If the sizes of 
these lists are bigger than the number of available property-
checking servers or licenses, it makes sense to augment the 
routine certQualCheckPar with own selection mechanisms 
which optimize the throughput of the property checking 
phase. Subroutine selFPs determines an optimal 
combination of properties to be checked together. For this 
purpose it accesses internal information about previous run-
times, previously successful proof engines for each property, 
and currently available servers and licenses. Without using 
latter information, the chosen degree of parallelization could 
be sub-optimal in an environment with limited resources. 

 
When proofs of properties are started, a limit can be 

specified for aborting all proofs hitting this limit. Generally, 
the proof times during qualification cannot be forecasted, 
they vary significantly for different mutations and differ 
from regression run times. Thus premature abortion of all 
properties might occur, so that the complete run-time spent 
until then would have been wasted without any coverage 
having been obtained. We therefore added an automatic 
abortion facility which runs in parallel to the property 
checks, controlling their run-times, and cancelling proofs 
from outside only if they run much longer than the others. 

C. Additional Selection of Faults 
In addition to the selections delivered by Certitude, own 

heuristics allow the set of fault-property pairs checked in 

each round to be augmented. For instance, if an 
advantageous partitioning of the design and corresponding 
property subsets, and additionally a mapping between 
Certitude faults and code lines has been determined, another 
subroutine generates additional fault x property 
combinations. Certitude provides information on faults 
which is usable for this purpose. 

These additional pairs are merged with the pairs selected 
by Certitude and submitted to property checking. All results 
are reported even though Certitude will not be interested in 
the extra qualification results in this round. Therefore, all 
qualification results are stored in extra book-keeping files. In 
forthcoming qualification rounds, these extra files are first 
searched for previous proof results, and only pairs not yet 
checked are submitted to the proof engines. 

D. Handling of Indeterminate Results 
If a proof is aborted, the result may be indeterminate. The 

question is whether such a fault can be considered to be 
detected or not, if it was not detected within the time-limit 
corresponding to the original proof-time without fault. The 
run-time of an aborted check would not be a valuable input 
for Certitude’s selection heuristics. With an external book-
keeping of all check results Certitude’s detection phase is 
re-started without repeating finalized property checks. 

VI. EXPERIENCE AND RESULTS 
Both approaches yield useful qualification results on 

productive designs. Table 1 lists a few results from applying 
both methods to real system control modules of the new 
product family AURIXTM. The numbers indicate that 100% 
qualification of large formally verified modules is feasible. 

Module verification Quantify Certitude

No. Locs
(VHDL) 

Props Code 
locat. 

Days Faults Days

1 25563 85 2316 4 1784 7

2 27374 157 1993 5 3732 12

3 57168 253 5309 7+ 4122 17

Table 1: Results for different designs 
 

The results of Quantify and Certitude cannot be 1:1 
compared, as the number of faults in Certitude depends on 
the configured instrumentation and is different from the fault 
injection performed by Quantify, which uses an approach 
similar to X-assignment. The instrumented RTL code 
generated by Certitude can be inspected, although it is not 
recommendable to read the augmented code. In our 
verification setting, the same fault injection configurations 
are used for all modules of the SOC, regardless whether they 
are verified by simulation or formally. Certitude could be 
configured to instrument many more faults than shown in 
this table, while in Quantify the internal fault-model cannot 
be influenced by the user. Only for the biggest module, we 

proc certQualCheckPar { 
    while {[waitforCertReady]} {} 
    while{[qualify]} { 
        set cfaults [readCertFault] 
        set cprops [readCertProp] 
        set props $cprops 
        while  {$props != {}} { 
            set fsprops [selFPs $props $cprops $cfaults] 
            updCertConstr $fsprops 
            set sprops [getProps $fsprops] 
            checkProperty $sprops 
            set props [evalProps $fsprops]    } 
        reportCertRes $cfaults $cprops 
        while {[waitforCertReady]} {}  }  } 
 



interrupted Quantify after 7 days with about 80% coverage, 
3% code proven uncovered, and the remaining code regions 
open, because there was no further progress, due to the 
complexity of some properties. In fact, further progress is 
expected with future releases of Quantify like in first 
versions, when big modules could not yet be processed. Both 
approaches yielded similar results with respect to code 
regions not covered at all, which gave rise to property 
enhancements. As can be imagined, long-running properties 
which need more than 1 hour regular proof time are hardly 
suitable for such kind of iterative qualification. With the 
maximum density of instrumented faults, Certitude would 
yield more detailed qualification results than Quantify, 
however, in potentially unaffordable qualification time. 

Table 2 compares several aspects of the usage of 
Quantify and Certitude. 

Quantify Certitude 

Internal fault model Explicit fault injection in RTL 
design, large variety of 
configurable fault models 

OK for small and medium 
designs (-7 days qualification 
time with parallelization) 

Ongoing efficiency 
improvements 

All designs manageable which 
have been formally verified 

Re-startable  Re-startable 

Powerful detection of dead, 
redundant, constrained code  

Basic exclusion of dead-code 
from instrumentation 

User control via options 
specifiable at start  

Full observability of 
qualification checks, 
intermediate reconfigurability  

No problems by fault injection Sometimes problems with 
elaboration of instrumented 
RTL design 

No exact relation to  simulation 
coverage (stronger!), but  
similar to code coverage 

100% matching of coverage 
between simulation and formal 
property checking  

Closed functionality, indirect 
enhancements from outside 

Scripts for communication and 
check control extensible 

Fast growth of qualification 
results, finalization depending 
on effort level 

Incomplete property sets 
efficiently handled by fault 
dropping 

Reporting intermediate 
coverage state as HTML 

Reporting intermediate 
coverage state as HTML or 
proprietary format 

Table 2: Comparison of Quantify and Certitude flow 
 

As Quantify can be directly started by a push-button in 
an active MV 360° session without further set-up, it makes 
sense to run it in the background and evaluate the results for 
completion of property sets. Starting the combined 
Certitude – Onespin flow is easy as well, once the scripts 
have been set up, but it may be required to exclude few lines 
from instrumentation if the model generation fails. 

VII. CONCLUSIONS 
This paper has discussed methodological enhancements 

and experience from the qualification of formal properties 
for AURIXTM modules. The experience with real modules is 
very positive, and has led to new sign-off criteria for formal 
properties. The property sets can be created without specific 
methodology or expertise regarding formal completeness. 

By running on average 5 coverage checks in parallel, 
focusing coverage analyses to property subsets, using 
heuristics for advantageous property-code-location pairs, and 
exploiting information about dead, constrained and 
redundant code computed by MV 360°, the automatic 
property qualification took up to a week per  module. 

The two approaches illustrate possible paradigms: 

1. fully integrated formal qualification flow where 
formal engines internally provide functions for 
optimizing the formal qualification directly 

2. open formal qualification flow which provides 
common metrics for different verification tools. 

Paradigm 1 has the potential to provide more efficient 
internal dependency analyses and data management under 
the surface by exploiting all highly optimized technology of 
MV 360°. As the results are also delivered in UCDB/XML 
format, integration with simulation flows is possible.  

Paradigm 2 is reliant on the accessibility of advanced 
data and control functions provided and used by MV 360°, 
such as reachability information, options like proof engines, 
parallelization, run-time limits. It is widely applicable, and is 
open for combining any simulator and property checker 
results while applying a common metric. 
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