
Pythonized SystemC
A non-intrusive scripting approach
Eyck Jentzsch, MINRES Technologies GmbH
Rocco Jonack, MINRES Technologies GmbH

© Accellera Systems Initiative 1

Introduction
•  MINRES focuses on VP and architectural modeling

–  Providing support in various forms

•  Development often in parallel with HW development
–  what if scenarios are important for architecture decisions
–  Platform definition is not fixed

•  VP based embedded software development for large systems
requires the use of partial and subsystems to get reasonable
simulation speed and runtime

•  Flexibility in Reconfiguration is key for efficient model development

© Accellera Systems Initiative 2

Addressing Flexibility
•  Complex configurations system

–  Reading and interpreting a configuration file
–  Done in several tools by parsing XML or JSON files

•  Code generation
–  Based on some configuration input generated glue logic

•  Scripting languages as frontend
–  There are tools which provide such solutions
–  Allows integration of different functionality
–  Limited by scripting API

© Accellera Systems Initiative 3

Scripting Solutions for SystemC
•  There are several existing integration into scripting languages
•  As part of commercial tools based on TCL/TK, Python
•  Open-source solutions

–  SoCRockets Universal Scripting Interface (USI)
–  GreenSoCs GreenScript
–  SystemPy
–  Kosim

© Accellera Systems Initiative 4

SystemC and Python
•  We opted for an interpretation "frontend" based on Python
•  Python is well-known and existing libraries can be reused
•  Besides support for structural construction, simulation control and

dynamic model parametrization can be supported
•  Existing Python integrations require preparation work

–  Definitions of API into libraries which have been compiled
–  Quite often modification of the libraries to fulfill requirements implied by

the interpreter
•  Therefore there are no integrations for SCV or CCI available

© Accellera Systems Initiative 5

PySysC
•  CERN developed several tools for the analysis of LHC generated

data
–  CINT: home-grown Python bindings piggy-backed on C++ reflection for

serialization and interactivity
–  CLING: C++ interpreter (https://root.cern/cling)
–  PyPy/CPPYY: Cling-based Python-C++ bindings

•  Cppyy can be leveraged for any library
•  This is the basis for the PySysC module

© Accellera Systems Initiative 6

PySysC Advantages
•  No preparation of libraries to be integrated
•  No need to have the sources of the code, even 3rd party binary

only libraries can be used
•  Allows introspection of the interfaces and thus dynamic generation
•  If Python is not sufficient JIT allows to compile on-the-fly

generated C++ code

© Accellera Systems Initiative 7

PySysC Example
1.  Instantiation of a

module
2.  Instantiation of a

templated module
3.  Named signal

connection
4.  TLM2.0 socket

connection
5.  Simulation run

© Accellera Systems Initiative 8

from cppyy import gbl as cpp
from cppyy.gbl import sc_core
from pysysc.structural import Connection, Signal, Module, Simulation
loading required libraries
...
instantiating modules
clk_gen = Module(cpp.ClkGen).create("clk_gen") ## (1)
initiator = Module(cpp.Initiator).create("initiator")
memories = [Module(cpp.Memory).create(name)
 for name in ["mem0", "mem1", "mem2", "mem3"]]
router = Module(cpp.Router[4]).create("router") ## (2)
creating connections
clk = Signal("clk")
 .src(clk_gen.clk_o)
 .sink(initiator.clk_i)
 .sink(router.clk_i) ## (3)
[clk.sink(m.clk_i) for m in memories]
Connection()
 .src(initiator.socket)
 .sink(router.target_socket) ## (4)
[Connection()
 .src(router.initiator_socket.at(idx))
 .sink(m.socket)
 for idx,m in enumerate(memories)]
run simulation
sc_core.sc_start() ## (5)

Advantages of Python Usage
•  Due to broad availability of

Python integrations plenty of
libraries can be used and
combined
–  Computational models using

numpy/scipy etc.
–  UIs and cockpits using GTK,

wxWidgets or Qt

© Accellera Systems Initiative 9

Evaluation and Results

© Accellera Systems Initiative 10

•  Table 1 compares a simple design in SystemC and PySysC in
terms of runtime and LoC

•  Table 2 uses a RISC-V based VP in different scenarios using plain
SystemC and PySysC based structural description.

 SystemC PySysC
Time 0.1s 2.9s
LOC 40 22

Scenario SystemC PySysC
build run

hello world 15s 8,7s 12,6s
dhrystone 15s 120s 122s Table 1

Table 2

Outlook
•  PySysC is available as module via git

–  The Python module: https://git.minres.com/VP/PySysC
–  The examples: https://git.minres.com/VP/PySysC-SC

•  Development is work in progress
•  Will be used as a basic building block of the BMBF funded project

‘'RAVEN: Acceleration of Virtual Hardware/Software Development
Platforms by Reconfigurable Logic'

© Accellera Systems Initiative 11

Questions

Finalize slide set with questions slide

© Accellera Systems Initiative 12

Guidelines (1)
•  Please keep the default font size for main lines at 28pt (or 26pt)

–  And use 24pt (or 22pt) font size for the sub bullets

•  Use the default bullet style and color scheme supplied by this
template

•  Limited the number of bullets per page.
•  Use keywords, not full sentences
•  Please do not overlay Accellera or DVCon logo’s
•  Check the page numbering

© Accellera Systems Initiative 13

Guidelines (2)
•  Your company name and/or logo are only allowed to appear on

the title page.
•  Minimize the use of product trademarks
•  Page setup should follow on-screen-show (4:3)
•  Do not use recurring text in headers and/or footers
•  Do not use any sound effects
•  Disable dynamic slide transitions
•  Limit use of animations (not available in PDF export)

© Accellera Systems Initiative 14

Guidelines (3)
•  Use clip-art only if it helps to state the point more effectively (no

generic clip-art)
•  Use contrasting brightness levels, e.g., light-on-dark or dark-on-

light. Keep the background color white
•  Avoid red text or red lines
•  Use the MS equation editor or MathType to embed formulas
•  Embed pictures in vector format (e.g. Enhanced or Window

Metafile format)

© Accellera Systems Initiative 15

