
PSL/SVA Assertions in SPICE
Donald O’Riordan

Cadence Design Systems, Inc.
2655 Seeley Ave

San Jose, CA
+1 408 428 5794

riordan@cadence.com

Prabal Bhattacharya
Cadence Design Systems, Inc.

2655 Seeley Ave
San Jose, CA

+1 408 894 2508

prabal@cadence.com

ABSTRACT
Assertion-based verification is a key aspect of any
complete SoC or Silicon Realization flow. In this paper, we
discuss how PSL (Property Specification Language)/SVA
(System-Verilog Assertions) assertion semantics are
extended for the first time to SPICE (Simulation Program
with Integrated Circuit Emphasis)-level netlists and
evaluated within a SPICE simulator, and present multiple
examples and simulation results. Both inline pragma-based
assertions (within SPICE subcircuits) and separate
vunit/bind file based assertion methodologies (which
reference objects within SPICE subcircuits) are covered.
SPICE electrical quantities (analog node voltages, currents
etc.) are referenced within the Boolean layers of the
assertions, and analog behavioral modeling concepts
borrowed from Verilog-AMS are also included both to
enrich the expressiveness of the properties being asserted
and to specify the clocking scheme for the assertion
sampling. We also describe various control aspects i.e. how
the SPICE simulator can be selectively
programmed/controlled to:

(a) Read external vunit files,

(b) React to PSL/SVA assertions triggering (treating some
as warnings, others as errors leading to early termination of
the simulation),

(c) Flexibly specify for which properties to generate
assertions waveforms to the simulation results database,
etc.

With assertion based capabilities applied to SPICE
simulators as described herein, we extend the benefits of
assertion based verification to SPICE-based users (includes
analog and mixed signal users) and introduce an important
verification bridge between HDL (Hardware Description
Language) and SPICE based design and verification
communities.

1. INTRODUCTION
In analog (just as for mixed-signal or digital) block design,
there is a need to specify certain design properties which
are to be verified during simulation. While various ad-hoc
methods have been employed to this end by analog
designers over the years, it is increasingly being found that
the lack of standardized approaches in this general area is
leading to verification and interoperability problems when
attempts are made to subsequently integrate the analog

design IP (Intellectual Property) into a larger mixed signal
context.

1.1 PREVIOUS WORK
Various ad-hoc methods have been employed in the past to
specify various properties which are to be verified in
analog/transistor level simulation. In a leading vendor
solution, simulation waveform post-processing techniques
require SKILL[1]-based calculator measurements, meaning
they cannot be ported to digital/SOC-based verification
environments (SKILL is not present in those
environments), and even if they could, the performance
impacts would be challenging. HSPICE[2] .measure
statements, while popular, again suffer from portability
problems. The lack of support for Ultrasim[3] device
checks in Spectre[4], and the corresponding lack of support
for Spectre checklimit analyses in Ultrasim, perhaps best
serves to illustrate the issues with lack of standardization,
even within single-vendor SPICE[5] and FastSPICE[6]
simulators that otherwise consume the same input decks.
Further, the existing approaches are very limited in terms of
their ability to specify predicated functional behaviors (if
<pre_condition> |=> post_condition).

Additional problems are attributed to disparate user
interfaces and environments both for setting up the
properties to be verified, for interacting with the simulation
results (e.g. even a simple assertion summary/dashboard),
and the ability of properties or assertions to be ported
across the multiple abstractions/models of a given cellview
(e.g. Verilog[7] models, wreal[8]-based models, Verilog-
AMS[9] models and SPICE subcircuit models) used in the
accuracy/performance tradeoff (see Figure 1)

Figure 1 Model Abstraction Tradeoff

While many companies crave a standardized approach to
such assertion management, some have found even co-
simulation-based solutions employing the standard
PSL/SVA languages to be either excessive in terms of
setup cost (for a mixed signal/digital simulator such as
NCSIM or VCS), or simply unpalatable to their heavily
SPICE-based design community. Finally, due to these
issues, many customers have actually abandoned efforts to
continuously verify ‘analog’ blocks when integrating them
in a mixed signal/SOC (System-On-Chip) environment,
leading to ‘plug and pray’ based integration attempts (and
the subsequent mixed signal tapeout nightmares).

2. PSL/SVA ASSERTIONS IN SPICE
It is a desire of this present work to overcome the
challenges associated with the previous work, in order to
allow for standard property/assertion languages (PSL[10],
SVA[11]) to be used directly within a Spectre/SPICE based
simulator and simulation environment. A primary objective
is to facilitate the transfer of assertions and properties
across multiple representations of a design cell, such that
the same basic assertions can ‘travel with the design’ as the
IP is integrated (i.e. debugged) and verified in bigger
contexts. The same assertions should therefore be able to
travel with the design in the same basic form originating
with the SPICE-based simulator, into the Verilog-AMS
simulator, and even into the extremely fast RNM (Real-
Number-Modeling)-based event driven simulator (Verilog
with wreal extensions).

Both PSL and SVA standards were chosen, the former due
to its largely ‘language-agnostic’ nature leading to
possibilities to (relatively) easily create SPICE flavors
thereof, while the latter (which is rapidly growing in
popularity in the digital D&V (Design & Verification)
communities) is also potentially closely aligned with
Verilog-A/MS due to (some) common Verilog-based
language roots.

Figure 2 Prototype Overall Architecture

Our study of prior approaches (some[12] academic,
some[13] from industrial/CAD settings) to PSL/SVA
integration with analog type simulators or waveform

processors led to the conclusion that it should be possible to
achieve a high level of functional coverage in the analog
assertion/property space without significant (or indeed
any!) modifications to the assertion language syntax or
semantics themselves, provided a few basic tenets were
followed. These tenets include introduction of ‘analog’
terms to the Boolean layer of the assertion stack show in
Figure 3 (for this we chose the expression sub-grammar of
the Verilog-A[14] language), ensuring these expressions
still return Boolean values (i.e. implication of analog
thresholding/ relational operations) combined with a liberal
usage of the assertion modeling layer (again, Verilog-A
based) for any required state machine modeling or
convenience functions.

Figure 2 illustrates the overall architecture deployed in the
implementation of the prototype.

Figure 3 Primary Layers of an Assertion Stack

An assertion pre-processor was added to the simulator’s
parser to read PSL and SVA assertions either in the form of
pragmas embedded within the SPICE subcircuit files or in
the form of PSL/SVA statements embedded within PSL
vunit files. A binding process was added to ensure that the
assertion expressions are bound to the corresponding
SPICE circuit nodes.

The SPICE engine (Spectre) was further augmented with an
assertion evaluation engine which dynamically monitors
the results of the analog expressions during transient
simulation, coupling those results into appropriately
constructed FSM (Finite State Machine) models in order to
dynamically evaluate the temporal aspects of the assertion
(e.g. sequences, implication operators enabling predicated
assertions, etc). These FSM models were especially created
to follow the temporal semantics of PSL and SVA.

 We finally extended the simulator’s ‘back end’ to produce
simulation waveforms (see Figure 8) that represent the
assertion evaluation status as a function of simulation time.

While some attention was paid in the prototype
implementation to minimize simulation overhead in both
the evaluation of and processing of assertion waveforms,

we expect that further attention can lead to additional
optimizations in a commercial offering.

3. ASSERTION CONTROL STATEMENTS
In order to provide a large degree of control and flexibility
to users, the simulator’s parser was also extended to parse a
variety of new assertion control statements by which the
user can instruct the simulator:

• which vunit files to process/include
• which actions to take upon an assertion triggering (e.g.

issue a warning and continue simulating, or error out,
terminating simulation)

• for which assertions to save status waveforms

The syntax and semantics for these new assertion control
statements is intentionally quite similar to existing
simulator control statements for general options, saving
regular node waveforms, and for message/action control,
supporting scoping, wildcarding via regular
expressions[15], and exclusion lists. (While the exact
syntax and semantics may vary somewhat in a production
release of the software, we do expect that they will at least
be similar in spirit/intent to our prototype implementation.)
Based on these control statements, the simulator monitors
the assertion waveforms and issues messages to the
simulation logfile, governed appropriately by the user
specified options.

The assertion control statements are maintained separately
from the assertion properties themselves i.e. they are placed
in the SPICE netlist along with the regular SPICE control
statements, and not in the assertion pragmas or vunit files.
This intentional separation promotes reuse of the core
assertions themselves as much as possible across different
types of simulators, which often provide different assertion
control capability (such as Tcl statements in a mixed-signal
Verilog-AMS simulator).

a1 aoptions vunit_files=["basic.psl"
"extended.psl"]
asave ids=[".*"] excludes=[".*pos*"]
subckts=["ADC"]
a2 aaction ids=[".*pos.*"] message="OH, DEAR!"
level="warning"
a3 aaction ids=[".*"] excludes=[".*pos.*"]
message="THE SKY IS FALLING!" level="fatal"

Figure 4 Assertion Control Statements

Sample assertion control statements are listed in Figure 4.
Here, three new types of statements have been added to the
SPICE simulator’s parser:

• aoptions. These act as global assertion options,
analogous to regular simulator options.

• asave. These act as assertion ‘save’ statements,
indicating for which assertions waveforms are to

be produced and saved to the waveform database.
(The obvious analogy is the simulator’s typical
ability to save simulation nodes/currents)

• aaction. These act as action statements,
instructing the simulator on what action to take
when assertions trigger.

The leading ‘a’ on these statements are used to denote
(a)ssertion control.

Further details on these three types of assertion control
statements and their provided flexibility follow below.

3.1 aoptions Statement Details
The aoptions statement is a global assertion options
statement which instructs the simulator about the list of
separate vunit files (which contain assertion properties) that
are to be bound to the simulation

a1 aoptions vunit_files=["basic.psl"
"extended.psl"]

The aoptions statement accepts a vector argument
vunit_files. This argument specifies a space-separated
list of file pathnames, each file of which is expected be a
PSL vunit file, containing standard PSL statements,
including clocking statements, modeling layer statements,
and of course assertion statements. In the above example,
two files “basic.psl” and “extended.psl” are specified.

3.2 asave Statement Details
The asave statements instruct the simulator on specifically
which assertions are to be saved as waveforms.

asave ids=[".*"] excludes=[".*pos*"]
subckts=["ADC"]

In order to provide maximum flexibility, a regular
expression (regexp) scheme is used in order to specify a list
of assertion inclusion id’s (each assertion specified in a
vunit file or embedded as a pragma within a SPICE
subcircuit/netlist is associated with a unique id). The ids
parameter allows a list of such regular expressions (space
separated, double quote delimited) to be provided. An
exclusion list (again, a list of regular expressions) can also
be provided via the excludes parameter. Finally, each
asave statement can be associated with a list of subcircuits
to which it applies; this list is specified in the subckts
parameter, again a list of regular expressions.

For each of the SPICE subcircuits that match any of the
regexps specified in the subckts parameter, its list of
associated assertions are traversed, and any found which
match the regexp list specified in the ids parameter are
tentatively marked for waveform saving. Any which are
additionally found to match the excludes list of regexps
are removed from that tentative list. Waveforms are then
saved for those which remain in the list (see highlighted
waveform example in Figure 8). This scheme provides a

huge amount of flexibility to the user in order to reduce
waveform database size.

3.3 aaction Statement Details
The aaction statements instruct the simulator on what
explicit actions to take when certain assertions are triggered
or ‘fire’.

a3 aaction ids=[".*"] excludes=[".*pos.*"]
message="THE SKY IS FALLING!" level="fatal"

This statement again takes an inclusion list, a optional
exclusion list, and an optional scope modifier (subckts list),
allowing with a message, and a severity level.

For any matching regular expression (see asave statement
details section above for a definition of matching) which
fires during simulation, the given message is printed to the
simulator’s output/log file, and treated with the given
severity level. This allows some assertions to be treated as
informational, others to be treated as warnings, and yet
others to be treated as fatal. Fatal errors will terminate the
(transient) analysis being performed by the simulator.

4. ASSERTION PRAGMAS
Assertions can be created in separate vunit files as noted
previously, or can alternately be embedded directly within
SPICE subcircuits via assertion pragmas. These pragmas
act just like assertion pragmas in leading Verilog/VHDL
simulators, appearing in a // comment-like syntax, such as
the atest0, atest1 and atest2 assertion pragmas which
appear in the listing of Figure 5.

simulator lang=spectre
global gnd

// SVA atest0: assert property (@("cross(V(A)-
1.0)") ("V(B) > 0.8" ##[3:5] "V(C) < 0.0"))
;

// PSL atest1: assert always {"V(B) > 0.8";
[*3:5]; "V(C) < 0.0" } @("cross(V(A)-1.0)");

// PSL atest2: assert always {"V(B,gnd) < 0.8";
[*2:6]; "V(C) > 0.0" } @("cross(V(A)-1.0)");

parameters pvdd = 1.1 \
 pR = 1.0 \
 pSt = 0.1

R1 C gnd resistor r=pR
C1 C gnd capacitor c=0.01
Cin B C capacitor c=0.02
Rin A B resistor r=2

EA A gnd vsource type=pulse \
 val0=0 val1=pvdd period=5
rise=0.5 fall=0.5 width=2 delay=pSt

tran1 tran stop=100

Figure 5 SPICE Netlist containing Assertion Pragmas

Note that in Figure 5, two syntaxes are evident in the
pragma statement, the first is an (abbreviated) SVA syntax
and the second is a PSL syntax. The first two of these assert
that once node B has been determined to have a voltage >
0.8 volts, then shortly thereafter node C must have a
voltage which is < 0.0 volts. Sampling (assertion check and
update) occurs whenever node A voltage cross above or
below a threshold of 1.0 volts, according to the semantics
of the Verilog-A cross statement used as an explicit
assertion clocking expression. ‘Shortly thereafter’ refers to
a range of 3 to 5 such sampling points or clock cycles. The
remaining portion of the listing of Figure 5 instantiates
some SPICE level devices (resistors, capacitors) and
stimulus (vsource), along with instructions on how long to
perform a transient analysis simulation.

5. EXPERIMENTAL EVIDENCE
The assertion-capable SPICE prototype was employed to
perform ABV (Assertion-Based Verification[16]) of a
second order Sigma-Delta (17) based ADC (Analog-to-
Digital Converter) circuit. Figure 6 shows a typical
implementation choice for the modulator portion of such a
circuit, employing switched-capacitor based integrators.

Figure 6 Second order switched capacitor implementation of

Sigma-Delta modulator

In order to decrease simulation time, Verilog-A models
were employed for both the analog modulator and the
digital decimating filter components of the ADC, but
SPICE subcircuits could have equally been substituted.
Figure 7 shows the block diagram of the Verilog-A model
used to represent the modulator. All nodes (X, E1, I1, E2,
I2, Y) within the modulator are of type (Verilog-A)
electrical, and the Spectre simulator was used to
perform the simulations running on the Linux operating
system.

Figure 7 2nd order modulator architecture with integrators

modeled in Z-domain

The code listing of Figure 9 illustrates some of the basic
modulator properties for integrator and comparator
functionalities within the feedback loop, captured in the
PSL language. Verilog-A is used (expressions within
double quoted strings, another prototyping shortcut) for the
Boolean layer terms. The properties themselves are
combined with some (convenience) variables in Verilog-A
modeling statements, along with a Verilog-A timer-based
clocking expression used to strobe the expression
evaluation, and all encapsulated within a vunit that is
bound to the ADC subcircuit.

Figure 8 Simulation waveforms of analog integrator voltage
(top), related digitized assertion status waveform (middle)

and modulator feedback stream (bottom)

vunit my_psl_vunit(ADC) {

// DEFAULT CLOCK FOR ASSERTIONS

default clock = ("timer(254.5*80e-9, 8*80e-9)");

// modeling layer.

// Create some expression placeholders

// (used in pos_integ1 assertion)

integer i1_pos, i1_inputs_pos;

i1_pos = V(I1) > 0.0;

i1_inputs_pos = (V(X) > 0.0) && (V(I1) > 0.0) && (V(Y)
<= -V(Vref));

// INTEGRATORS and DIFF JUNCTIONS,

// basic behavior

// ensure preservation of arithmetic sign, positive

pos_integ1: assert always { "i1_inputs_pos" } |=>
"i1_pos";

// ensure preservation of arithmetic sign, negative

neg_integ1: assert always { "(V(X) < 0.0) && (V(I1) <
0.0) && (V(Y) >= V(Vref))" } |=> "V(I1) < 0.0";

// COMPARATOR BASIC FUNCTIONALITY

// if the input to the comparator

// (integrator 2 output) is positive,

// ensure the comparator detects that

// immediately, and vice versa

comparator_pos: assert always "V(I2) > 0.001" -> "V(Y)
>= V(Vref)";

comparator_neg: assert always "V(I2) < -0.001" ->
"V(Y) <= -V(Vref)";

// ensure integrator 2 output above threshold

// before comparator output goes high

integ_to_comp1: assert always "V(I2) < 0.0" -> "V(I2)
>= 0.0" before_ "V(Y) >= V(Vref)";

// if comparator output is negative, then

// ensure it stays negative until integrator

// 2 output becomes positive

integ_to_comp2: assert always "V(Y) <= -V(Vref)" ->
"V(Y) <= -V(Vref)" until "V(I2) >= 0.0";

}

Figure 9 PSL Code listing Basic Modulator Properties

By way of example, the neg_integ1 assertion checks a
fundamental property that whenever the input to the I1
integrator is negative, and its current output is negative, and
the feedback voltage Y is positive, then the next expected
output from the integrator must again be negative. (Such a
property could be violated in a post-extracted simulation
via substrate noise coupling for example). The
pos_integ1 assertion checks the mirror property, and the
remaining assertions are explained via the in-lined
comments in Figure 9.

The ADC sub-circuit and testbench listing for Spectre (in
.scs format) follows in Figure 10.

// ADC TESTBENCH

simulator lang=spectre

// include modulator and filter models

ahdl_include "sd_behav.va"

ahdl_include "filter_decimator_behav.va"

parameters Tsig=3.2768000e-04 Tclock=8*80e-9

// Tsig = 512*Tclock => OSR=256

// Nyquiest rate

subckt ADC (X dout)

// instantiate the analog modulator

mod1 (X E1 I1 E2 I2 Vref Y) sd period=Tclock Vref=1.3
outStart=0 gn1=0.5 gn2=0.5

// instantiate the digital

// filter/decimator, with decimation

// rate 1/16th of OSR

df1 (Y dint1 dint2 dint3 ddiff0 ddiff1 ddiff2 ddiff3
dout) filter_decimator tperiod=Tclock +
osr=Tsig/Tclock/16

ends // ADC

// instantiate the ADC

i1 (X dout) ADC

// give it some STIMULUS.

v1 (X 0) vsource type=sine ampl=0.65 sinedc=0
freq=1/Tsig

// save all subckt nodes

save * i1.* depth=all

// the transient analysis

timedom tran stop=0.01*2**7*Tsig-Tclock
maxstep=0.05*Tclock

Figure 10 Spectre source listing of ADC circuit and Stimulus

6. CONCLUSIONS
With assertion based capabilities applied to SPICE
simulators as described herein, we extend the benefits of
assertion based verification to SPICE-based users (includes
analog and mixed signal users) and introduce an important
verification bridge between the long-isolated HDL and
SPICE based design and verification communities.

7. REFERENCES
1. Cadence SKILL. [Online]
http://en.wikipedia.org/wiki/Cadence_SKILL.

2. HSPICE. [Online]
http://www.synopsys.com/Tools/Verification/AMSVerifica
tion/CircuitSimulation/HSPICE/Pages/default.aspx.
3. Virtuoso UltraSim Full-Chip Simulator. [Online]
http://www.cadence.com/products/cic/UltraSim_fullchip/pa
ges/default.aspx.
4. Cadence Virtuoso Spectre Circuit Simulator.
www.cadence.com. [Online]
http://www.cadence.com/products/rf/spectre_circuit/pages/
default.aspx.
5. SPICE. [Online] http://en.wikipedia.org/wiki/SPICE.
6. Second generation circuit simulation - Fast-SPICE.
[Online] http://www.allabouteda.com/second-generation-
circuit-simulation-fast-spice/.
7. Verilog. [Online] http://en.wikipedia.org/wiki/Verilog.
8. Real Valued Modeling for Mixed Signal Simulation.
[Online]
http://www.cadence.com/rl/Resources/application_notes/re
al_number_appNote.pdf.
9. Verilog-AMS Language Reference Model. [Online]
http://www.eda.org/verilog-ams/htmlpages/public-
docs/lrm/2.3.1/VAMS-LRM-2-3-1.pdf.
10. 1850-2010 IEEE Standard for Property Specification
Language (PSL). IEEE Xplore. [Online] April 6 , 2010 .
http://ieeexplore.ieee.org/servlet/opac?punumber=5445949.
11. 1800-2009 IEEE Standard for System Verilog-Unified
Hardware Design, Specification, and Verification
Language. IEEE Xplore. [Online] 2009.
http://ieeexplore.ieee.org/servlet/opac?punumber=5354133.
12. Towards Assertion based Verification of Analog and
Mixed Signal Designs using PSL. [Online]
http://hvg.ece.concordia.ca/Publications/Conferences/FDL
%2707_02.pdf.
13. Assertion Based Analog Mixed Signal Verification.
[Online] http://www.vhdl.org/verilog-
ams/htmlpages/public-
docs/AMS_Assertions/AnalogAssertions_AccelleraProposa
l_2008_08_12.pdf.
14. Verilog-A Language Reference Manual. [Online]
August 1, 1996. http://www.vhdl.org/verilog-
ams/htmlpages/public-docs/lrm/VerilogA/verilog-a-lrm-1-
0.pdf.
15. Regular expression. [Online]
http://en.wikipedia.org/wiki/Regular_expression.
16. Everything Assertion Based -- Assertion-Based
Verification (ABV) Comes of Age for Complete Block-
Level Verification. [Online]
http://www.cadence.com/Community/blogs/fv/archive/201
0/12/02/everything-assertion-based-assertion-based-
verification-abv-comes-of-age-for-complete-block-level-
verification.aspx.
17. Delta-sigma modulation. [Online]
http://en.wikipedia.org/wiki/Delta-sigma_modulation.

