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ABSTRACT design IP (Intellectual Property) into a larger edxsignal

Assertion-based verification is a key aspect of any context.

complete SoC or Silicon Realization flow. In thisper, we 1.1 PREVIOUSWORK

discuss how. PSL (Prop(_arty Speuﬁcapon LanguagBNS Various ad-hoc methods have been employed in thetpa
(System-Verilog = Assertions) assertion semantics —areégpecity various properties which are to be verified

extended for the first time to SPICE (Simulatio@am  onai0g/transistor level simulation. In a leadingnder

with Integr'c_lte_d Circuit E_mphaS|s)-IeveI nethst_s dan solution, simulation waveform post-processing téghes

evaluated within a SPICE simulator, and presenttipiel require SKILL[1]-based calculator measurements, mirga

examples and simulation results. Both inline pradrased they cannot be ported to digital/SOC-based vetifica
assertions  (within  SPICE subcircuits) and separate gnvironments (SKILL is not present in those

vunit/bind file based assertion methodologies (Whic environments), and even if they could, the perforoea
reference objects within SPICE subcircuits) areeced. impacts would be challenging. HSPICE[2fmeasure
SPICE electrical quantitigs.(analog node voltagesients statements, while popular, again suffer from palitgh
etc.) are referenced within the. Boolean quers lod t problems. The lack of support for Ultrasim[3] devic
assertions, and analog behavioral modellng concepts.hecks in Spectre[4], and the corresponding laciupport
borrowed from Verilog-AMS are also included both 10 o gpectre checklimit analyses in Ultrasim, pethast
enrich the expressiveness of the properties bessgreed  gorneg 1o jllustrate the issues with lack of stadidation,
and to specify the clocking scheme for the assertio gyen within single-vendor SPICE[5] and FastSPICE[6]
sampling. We also describe various control aspeetiow  gimyjators that otherwise consume the same inpeksde
the ~ SPICE  simulator ~ can  be  selectively pyrher, the existing approaches are very limitegtims of
programmedjcontrolled to: their ability to specifypredicated functional behaviorgif

(a) Read external vunit files, <pre_condition> |=> post_condition).

(b) React to PSL/SVA assertions triggering (treatiome Additional problems are attributed to disparate ruse
as warnings, others as errors leading to earlyitetion of interfaces and environments both for setting up the
the simulation), properties to be verified, for interacting with tsienulation

results (e.g. even a simple assertion summary/dastij
and the ability of properties or assertions to lwetqu
across the multiple abstractions/models of a goaltview
(e.g. Verilog[7] modelswreal[ 8]-based models, Verilog-

With assertion based capabilities applied to SPICE AMS[9] models and SPICE subcircuit models) usethin
simulators as described herein, we extend the heraf accuracy/performance tradeoff (Sagure J)

assertion based verification to SPICE-based usshifes
analog and mixed signal users) and introduce aroiitapt ;
verification bridge between HDL (Hardware Descopti Spice
Language) and SPICE based design and verification
communities.

1. INTRODUCTION

In analog (just as for mixed-signal or digital) dkodesign,
there is a need to specify certain design propsestibich
are to be verified during simulation. While varioad-hoc —
methods have been employed to this end by analog {  Digttal
designers over the years, it is increasingly bémnd that Performance =
the lack of standardized approaches in this gerseed is 1x 10x 100x TKx 10K« 100Kx
leading to verification and interoperability profsie when Figure 1 Model Abstraction Tradeoff

attempts are made to subsequently integrate théogna

(c) Flexibly specify for which properties to gentera
assertions waveforms to the simulation results bdest@,
etc.
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While many companies crave a standardized apprt@ach
such assertion management, some have found ewen
simulation-based solutions employing the standard
PSL/SVA languages to be either excessive in terifns o
setup cost (for a mixed signal/digital simulatorctsuas
NCSIM or VCS), or simply unpalatable to their hégvi

processors led to the conclusion that it shoulgdssible to
achieve a high level of functional coverage in #malog
assertion/property space without significant (odeied
any!) modifications to the assertion language syria
semantics themselves, provided a few basic tenete w
followed. These tenets include introduction of faiga

SPICE-based design community. Finally, due to theseterms to the Boolean layer of the assertion stédkwsin

issues, many customers have actually abandonedsefto
continuously verify ‘analog’ blocks when integragithem

in a mixed signal/SOC (System-On-Chip) environment,
leading to ‘plug and pray’ based integration attesmand
the subsequent mixed signal tapeout nightmares).

2. PSL/SVA ASSERTIONSIN SPICE

It is a desire of this present work to overcome the
challenges associated with the previous work, oeoito
allow for standard property/assertion languages (PSL[10],
SVA[11]) to be used directly within a Spectre/SPIk&sed
simulator and simulation environment. A primary edijve

is to facilitate the transfer of assertions andpprtes
across multiple representations of a design catth ghat
the same basic assertions can ‘travel with thegdésis the

IP is integrated (i.e. debugged) and verified imgger
contexts. The same assertions should thereforebleeta
travel with the designn the same basic form originating
with the SPICE-based simulator, into the Verilog-8M
simulator, and even into the extremely fast RNM glRe
Number-Modeling)-based event driven simulator (\eri
with wreal extensions).

Both PSL and SVA standards were chosen, the foduer
to its largely ‘language-agnostic’ nature leading t
possibilities to (relatively) easily create SPICEvbrs
thereof, while the latter (which is rapidly growinio
popularity in the digital D&V (Design & Verificatio)
communities) is also potentially closely aligned thwi
Verilog-A/MS due to (some) common Verilog-based
language roots.
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// ensure integrator 2 output above threshold
// before comparator output goes high

// PSL integ_to_compl: assert always V(I2) < 0.0
-> V(I2) >= @.0 before_ V(Y) >= V(Vref);

od.__

<simulator_output>

// if comparator output is negative, then

// ensure it stays negative until integrator
// 2 output becomes positive

integ_to_comp2: assert always V(Y) <= -V(Vref)
-> V(Y) <= -V(Vref) until V(I2) >= 0.0;

—_— e e e = == —

Figure 2 Prototype Overall Architecture

Our study of prior approaches (some[l2] academic,
some[13] from industrial/lCAD settings) to PSL/SVA
integration with analog type simulators or waveform

Figure 3 (for this we chose the expression sub-granof

the Verilog-A[14] language), ensuring these expoess
still return Boolean values (i.e. implication of adog
thresholding/ relational operations) combined veitliberal
usage of the assertion modeling layer (again, vg
based) for any required state machine modeling or
convenience functions.

Figure 2 illustrates the overall architecture dgptbin the
implementation of the prototype.
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Figure 3 Primary Layersof an Assertion Stack

An assertion pre-processor was added to the siarnidat
parser to read PSL and SVA assertions either irficitme of
pragmas embedded within the SPICE subcircuit file

the form of PSL/SVA statements embedded within PSL
vunit files. A binding process was added to enghat the
assertion expressions are bound to the corresppndin
SPICE circuit nodes.

The SPICE engine (Spectre) was further augmenttddanmi
assertion evaluation engine which dynamically nasit
the results of the analog expressions during tesnsi
simulation, coupling those results into approphate
constructed FSM (Finite State Machine) models gteotto
dynamically evaluate the temporal aspects of tlseréen
(e.g. sequences, implication operators enablingipaed
assertions, etc). These FSM models were especiaited
to follow the temporal semantics of PSL and SVA.

We finally extended the simulator’s ‘back end’p@duce
simulation waveforms (see Figure 8) that repredéet
assertion evaluation status as a function of sitiwndime.

While some attention was paid in the prototype
implementation to minimize simulation overhead iottb
the evaluation of and processing of assertion veawes,



we expect that further attention can lead to aoldti
optimizations in a commercial offering.

3. ASSERTION CONTROL STATEMENTS
In order to provide a large degree of control dedilbility
to users, the simulator’s parser was also extetalpdrse a
variety of newassertion control statements by which the
user can instruct the simulator:

» which vunit files to process/include

» which actions to take upon an assertion triggefeng.
issue a warning and continue simulating, or erndy o
terminating simulation)

» for which assertions to save status waveforms

The syntax and semantics for these new assertintroto
statements is intentionally quite similar to exigti
simulator control statements for general optioresyirgy
regular node waveforms, and for message/actionrapnt
supporting scoping, wildcarding via regular
expressions[15], and exclusion lists. (While theaatx
syntax and semantics may vary somewhat in a primfuct
release of the software, we do expect that thelyatileast
be similar in spirit/intent to our prototype implentation.)
Based on these control statements, the simulataritane

be produced and saved to the waveform database.
(The obvious analogy is the simulator’s typical
ability to save simulation nodes/currents)
aaction. These act as action statements,
instructing the simulator on what action to take
when assertions trigger.
The leading ‘a’ on these statements are used toteen
(a)ssertion control.

Further details on these three types of assertantral
statements and their provided flexibility followlbe.

3.1 aoptions Statement Details

The aoptions statement is a global assertion options
statement which instructs the simulator about ike df
separate vunit files (which contain assertion priigs) that
are to be bound to the simulation

al aoptions
"extended.psl"]

vunit_files=["basic.psl”

The aoptions statement accepts a vector argument
vunit_files. This argument specifies a space-separated
list of file pathnames, each file of which is expetbe a
PSL wvunit file, containing standard PSL statements,
including clocking statements, modeling layer steats,

the assertion waveforms and issues messages to thand of course assertion statements. In the abcam@e,

simulation logdfile, governed appropriately by theseu
specified options.

two files “basic.psl” and “extended.psl!” are spidf
3.2 asave Statement Details

The assertiorontrol statements are maintained separately 1 553ve statements instruct the simulator on specifically

from the assertion properties themselves i.e. #neyplaced
in the SPICE netlist along with the regular SPIGHtool
statements, and not in the assertion pragmas ar files.
This intentional separation promotes reuse of thee c
assertions themselves as much as possible acrffes®iali
types of simulators, which often provide differassertion
control capability (such as Tcl statements in aedigignal
Verilog-AMS simulator).

al aoptions vunit_files=["basic.psl”

"extended.psl"]

asave ids=[".*"] excludes=[".*pos*"]

subckts=["ADC" ]

a2 aaction ids=[".*pos.*"] message="OH, DEAR!"

level="warning"

a3 aaction ids=[".*"] excludes=[".*pos.*"]

message="THE SKY IS FALLING!" level="fatal"
Figure 4 Assertion Control Statements

Sample assertion control statements are listedgaré& 4.
Here, three new types of statements have been addkd
SPICE simulator’s parser:

» aoptions. These act as global assertion options,
analogous to regular simulator options.

e asave. These act as assertion ‘save’ statements,
indicating for which assertions waveforms are to

which assertions are to be saved as waveforms.

asave ids=[".*"]
subckts=["ADC"]

excludes=[".*pos*"]

In order to provide maximum flexibility, a regular
expressionregexp) scheme is used in order to specify a list
of assertion inclusion id’s (each assertion spedifin a
vunit file or embedded as a pragma within a SPICE
subcircuit/netlist is associated with a unique ithe ids
parameter allows a list of such regular expressispace
separated, double quote delimited) to be providéd.
exclusion list (again, a list of regular expressjoocan also
be provided via theexcludes parameter. Finally, each
asave statement can be associated with a list of sultsrc
to which it applies; this list is specified in tlabckts
parameter, again a list of regular expressions.

For each of the SPICE subcircuits that match anyhef
regexps specified in thesubckts parameter, its list of
associated assertions are traversed, and any fatirch
match theregexp list specified in theids parameter are
tentatively marked for waveform saving. Any whicke a
additionally found to match thexcludes list of regexps
are removed from that tentative list. Waveforms ten
saved for those which remain in the list (see Mhigtéd
waveform example irFigure §. This scheme provides a



huge amount of flexibility to the user in order reduce
waveform database size.

3.3 aaction Statement Details

The aaction statements instruct the simulator on what
explicit actions to take when certain assertiomstaggered

or ‘fire’.

a3 aaction ids=[".*"] excludes=[".*pos.*"]
message="THE SKY IS FALLING!" level="fatal"

This statement again takes an inclusion list, aoopt
exclusion list, and an optional scope modifier (b list),
allowing with a message, and a severity level.

For any matching regular expression (asave statement
details section above for a definition of matching)ich

fires during simulation, the given message is pdro the
simulator’s output/log file, and treated with thévem

severity level. This allows some assertions torbatéd as
informational, others to be treated as warnings] wet

others to be treated as fatal. Fatal errors wilhieate the
(transient) analysis being performed by the sinmulat

4. ASSERTION PRAGMAS

Assertions can be created in sepanateit files as noted
previously, or can alternately be embedded direetthin
SPICE subcircuits via assertiggmagmas. These pragmas
act just like assertion pragmas in leading VerNo¢iDL
simulators, appearing in /& comment-like syntax, such as
theatest®, atestl andatest2 assertion pragmas which
appear in the listing of Figure 5

simulator lang=spectre
global gnd

// SVA atesto: assert property ( @( "cross(V(A)-
1.8)" ) ("V(B) > 0.8" ##[3:5] "V(C) < @0.0" ) )

)

// PSL atestl: assert always {"V(B) > 0.8";
[*3:5]; "V(C) < ©.0" } @( "cross(V(A)-1.0)" );

// PSL atest2: assert always {"V(B,gnd) < 0.8";
[*2:6]; "V(C) > ©.0" } @( "cross(V(A)-1.0)" );
parameters pvdd = 1.1 \
pR = 1.0 \
pSt = 0.1

R1 C gnd resistor r=pR

Cl C gnd capacitor c=0.01
Cin B C capacitor ¢=0.02
Rin A B resistor r=2

EA A gnd vsource type=pulse \
vale=0 vall=pvdd
rise=0.5 fall=0.5 width=2 delay=pSt

period=5

tranl tran stop=100
Figure 5 SPICE Netlist containing Assertion Pragmas

Note that in Figure 5, two syntaxes are evidentha
pragma statement, the first is an (abbreviated) Syttax
and the second is a PSL syntax. The first two e$¢hassert
that once node B has been determined to have ageott
0.8 volts, then shortly thereafter node C must have
voltage which is < 0.0 volts. Sampling (assertibeak and
update) occurs whenever node A voltage cross above
below a threshold of 1.0 volts, according to thmaetics

of the Verilog-A cross statement used as an explici
assertion clocking expression. ‘Shortly thereaftefers to

a range of 3 to 5 such sampling points or clockesycThe
remaining portion of the listing of Figure 5 instiates
some SPICE level devices (resistors, capacitorg) an
stimulus (vsource), along with instructions on hiawg to
perform a transient analysis simulation.

5. EXPERIMENTAL EVIDENCE

The assertion-capable SPICE prototype was employed
perform ABV (Assertion-Based Verification[16]) of a
second order Sigma-Delta (17) based ADC (Analog-to-
Digital Converter) circuit. Figure 6 shows a typical
implementation choice for the modulator portionsath a
circuit, employing switched-capacitor based intégsa

_________

Figure 6 Second order switched capacitor implementation of
Sigma-Delta modulator
In order to decrease simulation time, Verilog-A raisd
were employed for both the analog modulator and the
digital decimating filter components of the ADC, tbu
SPICE subcircuits could have equally been substitut
Figure 7shows the block diagram of the Verilog-A model
used to represent the modulator. All nodes (X, IELEZ2,
12, Y) within the modulator are of type (Verilog-A)
electrical, and the Spectre simulator was used to
perform the simulations running on the Linux opiegt
system.

Bit stream

D

Figure 7 2nd order modulator architecture with integrators
modeled in Z-domain



The code listing of Figure 9 illustrates some o thasic
and comparator

modulator properties for integrator
functionalities within the feedback loop, capturiedthe

PSL language. Verilog-A is used (expressions within

double quoted strings, another prototyping shoytimrtthe

Boolean layer terms. The properties themselves are,,

combined with some (convenience) variables in dgrii

modeling statements, along with a Verilog-A timaised
to strobe the expression

clocking expression used
evaluation, and all encapsulated withinvanit that is
bound to the ADC subcircuit.
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Figure 8 Simulation wavefor ms of analog integrator voltage
(top ), related digitized assertion status waveform (middle)
and modulator feedback stream (bottom)

vunit my_psl_vunit(ADC) {
// DEFAULT CLOCK FOR ASSERTIONS
default clock = ("timer(254.5*80e-9, 8*80e-9)");

// modeling Layer.

// Create some expression placeholders
// (used in pos_1integl assertion)
integer il_pos, il_inputs_pos;

il_pos = V(I1) > 0.0;

il1_inputs_pos = (V(X) > 0.0) && (V(I1) > 0.0) && (V(Y)
<= -V(Vref));

// INTEGRATORS and DIFF JUNCTIONS,

// basic behavior

// ensure preservation of arithmetic sign, positive

pos_integl:
"il_pos";

assert always { "il inputs_pos" } |[=>

ensure preservation of arithmetic sign, negative

neg_integl: assert always { "(V(X) < 0.0) & & (V(I1) <
0.0) & (V(Y) >= V(Vref))" } |=> "V(I1) < @.0";

// COMPARATOR BASIC FUNCTIONALITY

// 1f the 1input to the comparator

// (integrator 2 output) is positive,
// ensure the comparator detects that
// immediately, and vice versa

comparator_pos: assert always "V(I2) > ©.001" -> "V(Y)
>= V(Vref)";

comparator_neg: assert always "V(I2) < -0.001" ->

"V(Y) <= -V(Vref)";

// ensure integrator 2 output above threshold
// before comparator output goes high

integ_to_compl: assert always "V(I2) < 0.0"
>= 0.0" before_ "V(Y) >= V(Vref)";

-> "V(I2)

// 1f comparator output is negative, then
// ensure it stays negative until integrator
// 2 output becomes positive

integ to comp2: assert always "V(Y) <= -V(Vref)" ->
"V(Y) <= -V(Vref)" until "V(I2) >= 6.0";

Figure 9 PSL Codelisting Basic M odulator Properties

By way of example, theeg_integl assertion checks a
fundamental property that whenever the input to lthe
integrator is negative, and its current outputagative, and
the feedback voltage Y is positive, then the nexteeted
output from the integrator must again be negai{8ech a
property could be violated in a post-extracted $ation

via substrate noise coupling for example). The
pos_integl assertion checks the mirror property, and the
remaining assertions are explained via the in-lined
comments in Figure 9.

The ADC sub-circuit and testbench listing for Spedin
. scs format) follows in Figure 10.

// ADC TESTBENCH

simulator lang=spectre

// include modulator and filter models



ahdl_include "sd_behav.va"

ahdl_include "filter_decimator_behav.va"

parameters Tsig=3.2768000e-04 Tclock=8*80e-9
// Tsig = 512*Tclock => OSR=256
// Nyquiest rate

subckt ADC (X dout)
// 1instantiate the analog modulator

modl (X E1 I1 E2 I2 Vref Y) sd period=Tclock Vref=1.3
outStart=0 gnl=0.5 gn2=0.5

// instantiate the digital
// filter/decimator, with decimation
// rate 1/16th of OSR

dfl (Y dintl dint2 dint3 ddiff@ ddiffl ddiff2 ddiff3
dout) filter_decimator tperiod=Tclock +
osr=Tsig/Tclock/16

ends // ADC

// instantiate the ADC
il (X dout) ADC

// give it some STIMULUS.

vi (X 0)
freq=1/Tsig

vsource type=sine ampl=0.65 sinedc=0

// save all subckt nodes

save * il.* depth=all

// the transient analysis

timedom tran
maxstep=0.05*Tclock

stop=0.01*2**7*Tsig-Tclock

Figure 10 Spectre sourcelisting of ADC circuit and Stimulus
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