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ABSTRACT 
Assertion-based verification is a key aspect of any 
complete SoC or Silicon Realization flow. In this paper, we 
discuss how PSL (Property Specification Language)/SVA 
(System-Verilog Assertions) assertion semantics are 
extended for the first time to SPICE (Simulation Program 
with Integrated Circuit Emphasis)-level netlists and 
evaluated within a SPICE simulator, and present multiple 
examples and simulation results. Both inline pragma-based 
assertions (within SPICE subcircuits) and separate 
vunit/bind file based assertion methodologies (which 
reference objects within SPICE subcircuits) are covered. 
SPICE electrical quantities (analog node voltages, currents 
etc.) are referenced within the Boolean layers of the 
assertions, and analog behavioral modeling concepts 
borrowed from Verilog-AMS are also included both to 
enrich the expressiveness of the properties being asserted 
and to specify the clocking scheme for the assertion 
sampling. We also describe various control aspects i.e. how 
the SPICE simulator can be selectively 
programmed/controlled to: 

(a) Read external vunit files,  

(b) React to PSL/SVA assertions triggering (treating some 
as warnings, others as errors leading to early termination of 
the simulation),  

(c) Flexibly specify for which properties to generate 
assertions waveforms to the simulation results database, 
etc. 

With assertion based capabilities applied to SPICE 
simulators as described herein, we extend the benefits of 
assertion based verification to SPICE-based users (includes 
analog and mixed signal users) and introduce an important 
verification bridge between HDL (Hardware Description 
Language) and SPICE based design and verification 
communities. 

1. INTRODUCTION 
In analog (just as for mixed-signal or digital) block design, 
there is a need to specify certain design properties which 
are to be verified during simulation. While various ad-hoc 
methods have been employed to this end by analog 
designers over the years, it is increasingly being found that 
the lack of standardized approaches in this general area is 
leading to verification and interoperability problems when 
attempts are made to subsequently integrate the analog 

design IP (Intellectual Property) into a larger mixed signal 
context. 

1.1 PREVIOUS WORK 
Various ad-hoc methods have been employed in the past to 
specify various properties which are to be verified in 
analog/transistor level simulation. In a leading vendor 
solution, simulation waveform post-processing techniques 
require SKILL[1]-based calculator measurements, meaning 
they cannot be ported to digital/SOC-based verification 
environments (SKILL is not present in those 
environments), and even if they could, the performance 
impacts would be challenging. HSPICE[2] .measure 
statements, while popular, again suffer from portability 
problems. The lack of support for Ultrasim[3] device 
checks in Spectre[4], and the corresponding lack of support 
for Spectre checklimit analyses in Ultrasim, perhaps best 
serves to illustrate the issues with lack of standardization, 
even within single-vendor SPICE[5] and FastSPICE[6] 
simulators that otherwise consume the same input decks. 
Further, the existing approaches are very limited in terms of 
their ability to specify predicated functional behaviors (if 
<pre_condition> |=> post_condition). 

Additional problems are attributed to disparate user 
interfaces and environments both for setting up the 
properties to be verified, for interacting with the simulation 
results (e.g. even a simple assertion summary/dashboard), 
and the ability of properties or assertions to be ported 
across the multiple abstractions/models of a given cellview 
(e.g. Verilog[7]  models, wreal[8]-based models, Verilog-
AMS[9]  models and SPICE subcircuit models) used in the 
accuracy/performance tradeoff (see Figure 1) 

 
Figure 1 Model Abstraction Tradeoff 



While many companies crave a standardized approach to 
such assertion management, some have found even co-
simulation-based solutions employing the standard 
PSL/SVA languages to be either excessive in terms of 
setup cost (for a mixed signal/digital simulator such as 
NCSIM or VCS), or simply unpalatable to their heavily 
SPICE-based design community. Finally, due to these 
issues, many customers have actually abandoned efforts to 
continuously verify ‘analog’ blocks when integrating them 
in a mixed signal/SOC (System-On-Chip) environment, 
leading to ‘plug and pray’ based integration attempts (and 
the subsequent mixed signal tapeout nightmares). 

2. PSL/SVA ASSERTIONS IN SPICE 
It is a desire of this present work to overcome the 
challenges associated with the previous work, in order to 
allow for standard property/assertion languages (PSL[10], 
SVA[11]) to be used directly within a Spectre/SPICE based 
simulator and simulation environment. A primary objective 
is to facilitate the transfer of assertions and properties 
across multiple representations of a design cell, such that 
the same basic assertions can ‘travel with the design’ as the 
IP is integrated (i.e. debugged) and verified in bigger 
contexts. The same assertions should therefore be able to 
travel with the design in the same basic form originating 
with the SPICE-based simulator, into the Verilog-AMS 
simulator, and even into the extremely fast RNM (Real-
Number-Modeling)-based event driven simulator (Verilog 
with wreal extensions). 

Both PSL and SVA standards were chosen, the former due 
to its largely ‘language-agnostic’ nature leading to 
possibilities to (relatively) easily create SPICE flavors 
thereof, while the latter (which is rapidly growing in 
popularity in the digital D&V (Design & Verification) 
communities) is also potentially closely aligned with 
Verilog-A/MS due to (some) common Verilog-based 
language roots. 

 

 
Figure 2 Prototype Overall Architecture 

Our study of prior approaches (some[12] academic, 
some[13] from industrial/CAD settings) to PSL/SVA 
integration with analog type simulators or waveform 

processors led to the conclusion that it should be possible to 
achieve a high level of functional coverage in the analog 
assertion/property space without significant (or indeed 
any!) modifications to the assertion language syntax or 
semantics themselves, provided a few basic tenets were 
followed. These tenets include introduction of ‘analog’ 
terms to the Boolean layer of the assertion stack show in 
Figure 3 (for this we chose the expression sub-grammar of 
the Verilog-A[14] language), ensuring these expressions 
still return Boolean values (i.e. implication of analog 
thresholding/ relational operations) combined with a liberal 
usage of the assertion modeling layer (again, Verilog-A 
based) for any required state machine modeling or 
convenience functions. 

Figure 2 illustrates the overall architecture deployed in the 
implementation of the prototype.  

 

 
Figure 3 Primary Layers of an Assertion Stack 

 

An assertion pre-processor was added to the simulator’s 
parser to read PSL and SVA assertions either in the form of 
pragmas embedded within the SPICE subcircuit files or in 
the form of PSL/SVA statements embedded within PSL 
vunit files. A binding process was added to ensure that the 
assertion expressions are bound to the corresponding 
SPICE circuit nodes.  

The SPICE engine (Spectre) was further augmented with an 
assertion evaluation engine which dynamically monitors 
the results of the analog expressions during transient 
simulation, coupling those results into appropriately 
constructed FSM (Finite State Machine) models in order to 
dynamically evaluate the temporal aspects of the assertion 
(e.g. sequences, implication operators enabling predicated 
assertions, etc). These FSM models were especially created 
to follow the temporal semantics of PSL and SVA. 

 We finally extended the simulator’s ‘back end’ to produce 
simulation waveforms (see Figure 8) that represent the 
assertion evaluation status as a function of simulation time.  

While some attention was paid in the prototype 
implementation to minimize simulation overhead in both 
the evaluation of and processing of assertion waveforms, 



we expect that further attention can lead to additional 
optimizations in a commercial offering. 

3. ASSERTION CONTROL STATEMENTS 
In order to provide a large degree of control and flexibility 
to users, the simulator’s parser was also extended to parse a 
variety of new assertion control statements by which the 
user can instruct the simulator: 

• which vunit files to process/include 
• which actions to take upon an assertion triggering (e.g. 

issue a warning and continue simulating, or error out, 
terminating simulation) 

• for which assertions to save status waveforms 
 

The syntax and semantics for these new assertion control 
statements is intentionally quite similar to existing 
simulator control statements for general options, saving 
regular node waveforms, and for message/action control, 
supporting scoping, wildcarding via regular 
expressions[15], and exclusion lists. (While the exact 
syntax and semantics may vary somewhat in a production 
release of the software, we do expect that they will at least 
be similar in spirit/intent to our prototype implementation.) 
Based on these control statements, the simulator monitors 
the assertion waveforms and issues messages to the 
simulation logfile, governed appropriately by the user 
specified options.  

The assertion control statements are maintained separately 
from the assertion properties themselves i.e. they are placed 
in the SPICE netlist along with the regular SPICE control 
statements, and not in the assertion pragmas or vunit files. 
This intentional separation promotes reuse of the core 
assertions themselves as much as possible across different 
types of simulators, which often provide different assertion 
control capability (such as Tcl statements in a mixed-signal 
Verilog-AMS simulator). 

 

a1 aoptions vunit_files=["basic.psl" 
"extended.psl"] 
asave ids=[".*"] excludes=[".*pos*"] 
subckts=["ADC"] 
a2 aaction ids=[".*pos.*"] message="OH, DEAR!" 
level="warning" 
a3 aaction ids=[".*"] excludes=[".*pos.*"] 
message="THE SKY IS FALLING!" level="fatal" 

Figure 4 Assertion Control Statements 

 

Sample assertion control statements are listed in Figure 4. 
Here, three new types of statements have been added to the 
SPICE simulator’s parser: 

• aoptions. These act as global assertion options, 
analogous to regular simulator options. 

• asave. These act as assertion ‘save’ statements, 
indicating for which assertions waveforms are to 

be produced and saved to the waveform database. 
(The obvious analogy is the simulator’s typical 
ability to save simulation nodes/currents) 

• aaction. These act as action statements, 
instructing the simulator on what action to take 
when assertions trigger. 

The leading ‘a’ on these statements are used to denote 
(a)ssertion control. 

Further details on these three types of assertion control 
statements and their provided flexibility follow below. 

3.1 aoptions Statement Details 
The aoptions statement is a global assertion options 
statement which instructs the simulator about the list of 
separate vunit files (which contain assertion properties) that 
are to be bound to the simulation 

a1 aoptions vunit_files=["basic.psl" 
"extended.psl"] 
 

The aoptions statement accepts a vector argument 
vunit_files. This argument specifies a space-separated 
list of file pathnames, each file of which is expected be a 
PSL vunit file, containing standard PSL statements, 
including clocking statements, modeling layer statements, 
and of course assertion statements. In the above example, 
two files “basic.psl” and “extended.psl” are specified. 

3.2 asave Statement Details 
The asave statements instruct the simulator on specifically 
which assertions are to be saved as waveforms.  

asave ids=[".*"] excludes=[".*pos*"] 
subckts=["ADC"] 
 

In order to provide maximum flexibility, a regular 
expression (regexp) scheme is used in order to specify a list 
of assertion inclusion id’s (each assertion specified in a 
vunit file or embedded as a pragma within a SPICE 
subcircuit/netlist is associated with a unique id). The ids 
parameter allows a list of such regular expressions (space 
separated, double quote delimited) to be provided. An 
exclusion list (again, a list of regular expressions) can also 
be provided via the excludes parameter. Finally, each 
asave statement can be associated with a list of subcircuits 
to which it applies; this list is specified in the subckts 
parameter, again a list of regular expressions. 

For each of the SPICE subcircuits that match any of the 
regexps specified in the subckts parameter, its list of 
associated assertions are traversed, and any found which 
match the regexp list specified in the ids parameter are 
tentatively marked for waveform saving. Any which are 
additionally found to match the excludes list of regexps 
are removed from that tentative list. Waveforms are then 
saved for those which remain in the list (see highlighted 
waveform example in Figure 8). This scheme provides a 



huge amount of flexibility to the user in order to reduce 
waveform database size. 

3.3 aaction Statement Details 
The aaction statements instruct the simulator on what 
explicit actions to take when certain assertions are triggered 
or ‘fire’. 

a3 aaction ids=[".*"] excludes=[".*pos.*"] 
message="THE SKY IS FALLING!" level="fatal" 
 

This statement again takes an inclusion list, a optional 
exclusion list, and an optional scope modifier (subckts list), 
allowing with a message, and a severity level. 

For any matching regular expression (see asave statement 
details section above for a definition of matching) which 
fires during simulation, the given message is printed to the 
simulator’s output/log file, and treated with the given 
severity level. This allows some assertions to be treated as 
informational, others to be treated as warnings, and yet 
others to be treated as fatal. Fatal errors will terminate the 
(transient) analysis being performed by the simulator. 

4. ASSERTION PRAGMAS 
Assertions can be created in separate vunit files as noted 
previously, or can alternately be embedded directly within 
SPICE subcircuits via assertion pragmas. These pragmas 
act just like assertion pragmas in leading Verilog/VHDL 
simulators, appearing in a // comment-like syntax, such as 
the atest0, atest1 and atest2 assertion pragmas which 
appear in the listing of Figure 5. 

simulator lang=spectre 
global gnd 
 
// SVA atest0: assert property ( @( "cross(V(A)-
1.0)" )  ("V(B) > 0.8" ##[3:5] "V(C) < 0.0" ) ) 
; 
 
// PSL atest1: assert always {"V(B) > 0.8"; 
[*3:5]; "V(C) < 0.0" } @( "cross(V(A)-1.0)" ); 
 
// PSL atest2: assert always {"V(B,gnd) < 0.8"; 
[*2:6]; "V(C) > 0.0" } @( "cross(V(A)-1.0)" ); 
 
parameters pvdd = 1.1 \ 
           pR = 1.0 \ 
           pSt = 0.1 
 
R1 C gnd resistor r=pR 
C1 C gnd capacitor c=0.01 
Cin B C capacitor c=0.02 
Rin A B resistor r=2 
 
EA A gnd vsource type=pulse \ 
                 val0=0 val1=pvdd period=5 
rise=0.5 fall=0.5 width=2 delay=pSt 
 
tran1 tran stop=100 

Figure 5 SPICE Netlist containing Assertion Pragmas 

Note that in Figure 5, two syntaxes are evident in the 
pragma statement, the first is an (abbreviated) SVA syntax 
and the second is a PSL syntax. The first two of these assert 
that once node B has been determined to have a voltage > 
0.8 volts, then shortly thereafter node C must have a 
voltage which is < 0.0 volts. Sampling (assertion check and 
update) occurs whenever node A voltage cross above or 
below a threshold of 1.0 volts, according to the semantics 
of the Verilog-A cross statement used as an explicit 
assertion clocking expression. ‘Shortly thereafter’ refers to 
a range of 3 to 5 such sampling points or clock cycles. The 
remaining portion of the listing of Figure 5 instantiates 
some SPICE level devices (resistors, capacitors) and 
stimulus (vsource), along with instructions on how long to 
perform a transient analysis simulation. 

5. EXPERIMENTAL EVIDENCE 
The assertion-capable SPICE prototype was employed to 
perform ABV (Assertion-Based Verification[16]) of a 
second order Sigma-Delta (17) based ADC (Analog-to-
Digital Converter) circuit. Figure 6 shows a typical 
implementation choice for the modulator portion of such a 
circuit, employing switched-capacitor based integrators. 

 

 
Figure 6 Second order switched capacitor implementation of 

Sigma-Delta modulator 

In order to decrease simulation time, Verilog-A models 
were employed for both the analog modulator and the 
digital decimating filter components of the ADC, but 
SPICE subcircuits could have equally been substituted.  
Figure 7 shows the block diagram of the Verilog-A model 
used to represent the modulator. All nodes (X, E1, I1, E2, 
I2, Y) within the modulator are of type (Verilog-A) 
electrical, and the Spectre simulator was used to 
perform the simulations running on the Linux operating 
system. 

 

 
Figure 7 2nd order modulator architecture with integrators 

modeled in Z-domain 



The code listing of Figure 9 illustrates some of the basic 
modulator properties for integrator and comparator 
functionalities within the feedback loop, captured in the 
PSL language. Verilog-A is used (expressions within 
double quoted strings, another prototyping shortcut) for the 
Boolean layer terms. The properties themselves are 
combined with some (convenience) variables in Verilog-A 
modeling statements, along with a Verilog-A timer-based 
clocking expression used to strobe the expression 
evaluation, and all encapsulated within a vunit that is 
bound to the ADC subcircuit. 

 

 
 

Figure 8 Simulation waveforms of analog integrator voltage 
(top ), related digitized assertion status waveform (middle) 

and modulator feedback stream (bottom) 

 
vunit my_psl_vunit(ADC) { 

// DEFAULT CLOCK FOR ASSERTIONS 

default clock = ("timer(254.5*80e-9, 8*80e-9)"); 

 

// modeling layer.  

// Create some expression placeholders 

// (used in pos_integ1 assertion) 

integer i1_pos, i1_inputs_pos; 

i1_pos = V(I1) > 0.0; 

i1_inputs_pos = (V(X) > 0.0) && (V(I1) > 0.0) && (V(Y) 
<= -V(Vref)); 

 

 

// INTEGRATORS and DIFF JUNCTIONS,  

// basic behavior 

 

// ensure preservation of arithmetic sign, positive 

pos_integ1: assert always { "i1_inputs_pos" } |=> 
"i1_pos"; 

// ensure preservation of arithmetic sign, negative 

neg_integ1: assert always { "(V(X) < 0.0) && (V(I1) < 
0.0) && (V(Y) >= V(Vref))" } |=> "V(I1) < 0.0"; 

 

// COMPARATOR BASIC FUNCTIONALITY 

 

// if the input to the comparator  

// (integrator 2 output) is positive, 

// ensure the comparator detects that  

// immediately, and vice versa 

comparator_pos: assert always "V(I2) > 0.001" -> "V(Y) 
>= V(Vref)"; 

comparator_neg: assert always "V(I2) < -0.001" -> 
"V(Y) <= -V(Vref)"; 

 

// ensure integrator 2 output above threshold  

// before comparator output goes high 

integ_to_comp1: assert always "V(I2) < 0.0" -> "V(I2) 
>= 0.0" before_ "V(Y) >= V(Vref)"; 

 

// if comparator output is negative, then  

// ensure it stays negative until integrator  

// 2 output becomes positive  

integ_to_comp2: assert always "V(Y) <= -V(Vref)" -> 
"V(Y) <= -V(Vref)" until "V(I2) >= 0.0"; 

 

} 

Figure 9 PSL Code listing Basic Modulator Properties 

By way of example, the neg_integ1 assertion checks a 
fundamental property that whenever the input to the I1 
integrator is negative, and its current output is negative, and 
the feedback voltage Y is positive, then the next expected 
output from the integrator must again be negative. (Such a 
property could be violated in a post-extracted simulation 
via substrate noise coupling for example). The 
pos_integ1 assertion checks the mirror property, and the 
remaining assertions are explained via the in-lined 
comments in Figure 9. 

 

The ADC sub-circuit and testbench listing for Spectre (in 
.scs format) follows in Figure 10. 

 
// ADC TESTBENCH 

simulator lang=spectre 

 

// include modulator and filter models 



ahdl_include "sd_behav.va" 

ahdl_include "filter_decimator_behav.va" 

 

parameters Tsig=3.2768000e-04 Tclock=8*80e-9  

// Tsig = 512*Tclock => OSR=256  

// Nyquiest rate 

 

 

subckt ADC (X dout) 

// instantiate the analog modulator 

mod1 (X E1 I1 E2 I2 Vref Y) sd period=Tclock Vref=1.3 
outStart=0 gn1=0.5 gn2=0.5 

 

// instantiate the digital  

// filter/decimator, with decimation  

// rate 1/16th of OSR 

df1 (Y dint1 dint2 dint3 ddiff0 ddiff1 ddiff2 ddiff3 
dout) filter_decimator tperiod=Tclock + 
osr=Tsig/Tclock/16 

ends // ADC 

 

// instantiate the ADC 

i1 (X dout) ADC 

 

// give it some STIMULUS. 

v1 (X 0) vsource type=sine ampl=0.65 sinedc=0 
freq=1/Tsig 

 

// save all subckt nodes 

save * i1.* depth=all 

 

// the transient analysis 

timedom tran stop=0.01*2**7*Tsig-Tclock  
maxstep=0.05*Tclock 

 

Figure 10 Spectre source listing of ADC circuit and Stimulus 

 

 

6. CONCLUSIONS 
With assertion based capabilities applied to SPICE 
simulators as described herein, we extend the benefits of 
assertion based verification to SPICE-based users (includes 
analog and mixed signal users) and introduce an important 
verification bridge between the long-isolated HDL and 
SPICE based design and verification communities. 
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