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Status of Formal Verification
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white box 
verification
(property checking)

black box 
verification
(simulation)

The biggest hurdle

Property Checking:
More like design than verification !



Vision

Formal RTL verification should:
– do more than bug hunting
– support new abstraction principles between electronic 

system level models (ESL) and low-level implementations 
(RTL)

– help to emancipate ESL models from prototypes to golden 
design models
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Semantic Gap

High trust in RT level as golden reference!
− Why do we trust the RT level?
− Equivalence proven through equivalence checking (EC)

Trust in system-level models as golden reference?
− Almost no trust, except of HLS
− No notion of equivalence → EC not possible
− High-level synthesis is taking away too many RT-design decisions
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Path Predicate Abstraction (PPA)
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Operationally colored graph G

Path predicate
abstracted  graph P



Soundness Theorem

© Accellera Systems Initiative
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Let P be a path predicate abstraction of a graph G. 
Then, for every (finite or infinite) path in G visiting a 
sequence of colored states (w0, w1, w2, … ) there exists an 
abstract path representing the same sequence of colors 
(c(w0), c(w1), c(w2), …) in P, and vice versa.



Path Predicate Abstraction (PPA)
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Operationally 
colored graph

Path predicate
abstracted  graph

• Colored node: Important state
• Uncolored node: Unimportant state
• Operation: Transition between 

important states: 
• e.g., blue goes to green

ESL



Soundness

– Verification results obtained at ESL translate to the RTL
– Global verification tasks can be moved from the RTL to the ESL 
– Significantly less chip-level simulation is required

Theorem shown for LTL properties 
[J. Urdahl, D. Stoffel, W. Kunz: "Path Predicate Abstraction for Sound System-Level 
Models of RT-Level Circuit Designs", IEEE Transactions on Computer-Aided Design of 
Integrated Circuits and Systems, Vol. 33, No. 2, Feb. 2014, pp. 291-304.]
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PPA in practice?
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Bus Slave

Slave

Slave

Master

Setup:
• ESL model of a bus
• FSM of each module is a PPA
• Implement sound RTL for each PPA



PPA in practice?
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• FSM of each module is a PPA
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Verify on system-level: 
• E.g.: Simulate sending a message across 

the bus at the ESL
• Working correctly? Due to soundness RTL 

works correct, too
• No more verification required for system-

level behavior
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Property-Driven Development (PDD)

• System model as formal specification:
– Designable/implementable subset of SystemC

(SystemC-PPA)
– Generate complete set of properties

• Refine generated properties (templates) 
• Prove properties on final implementation
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Basic Idea SystemC-PPA

DeSCAM

Properties (SVA)

Implementation

generate

prove refine

implement



DeSCAM: from ESL to RTL 
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RTLPPAESL
SystemC-PPA Extract Soundness



DeSCAM
• DeSCAM (“Design from SystemC Abstract Models”):

– Analyzes a given SystemC model for compliance with the designable subset
– Supports by refining the model into a SystemC-PPA
– Automatically generates the properties

• A manual explains how to use DeSCAM in Property-Driven Development 
(from a practical point of view)

Available on GitHub: github.com/ludwig247/DeSCAM
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Designable Subset: SystemC-PPA

• Models an FSM in a time-abstract fashion
• Single thread executing infinitely 
• Only blocks if a communication interface is called
• No cyclic path without a blocking communication
• No dynamic memory allocation

15



Extracting the PPA from the SystemC CFG
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SC_MODULE(encoder) {
// constructor and declarations
void fsm() {

while(true){
bus→read(status,data)
if (status==encode) {

// encode(data)
bus →write(data);

} 
//some code

} } };

CFG

R

+

W<<

rst

encode

wait

wait
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Operation properties 
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property encode;
assume:

at t: start_state; 
at t: status == encode; 

prove:
at t+n: out(encoded(data@t));
at t+n: end_state;

endproperty;

• Operations start and end in 
important states 

• Important states subsume millions 
of concrete states

• Operations have an arbitrary, (but 
fixed) length of n cycles

• Objects of the system-level are 
referenced by macros/functions



SVA Properties
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property encode(length); 
//freeze variables 

int data;
status_t status;

// freeze values @t 
t ##0 hold(data_0, port_in_data()) and

// triggers 
t ##0 start_state() and
t ##0 sync() and
t ##0 port_in_status() == encode

implies 
t_end(length) ##0 end_state() and
t_end(length) ##0 port_out == encoded(data_0)

endproperty;

function int port_in_data()
return { 

$past(unit/data_in,7),
$past(unit/data_in,6), 
$past(unit/data_in,5), 
$past(unit/data_in,4), 
$past(unit/data_in,3),
$past(unit/data_in,2),
$past(unit/data_in,1),
unit/data_in
};

endfunction;



What is the promise?

• Correct-by-construction design 
• Increased design productivity
• No RTL simulation
• Support for aggressive optimization techniques
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Case study: RISC-V CPU
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• PDD design of a RV32I 
processor

• Instruction set simulator (ISS) as 
a designable SystemC-PPA

• Two  RTL implementations
• Implementations are sound 

refinements of the same ESL

implement

RV32I ISS (SystemC-PPA)

Sequential (RTL)

Properties

Pipelined (RTL)

implement

generate properties

refine refine
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Design Size RTL States LoC PPA /Oper./Var.
Sequential 1881 1430 6 states/ 21 op/ 7 var
Pipelined 2502 2020 6 states/ 21 op/ 7 var
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Time [s] Simulation Results

ISS Sequential(RTL) Pipelined(RTL)

• Work effort for RTL design:
– Sequential: 2 weeks
– Pipelined: 4 weeks

• Work effort for verification:
– Sequential: 3 person days
– Pipelined: 4 weeks

Experimental Results RISC-V
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Module RTL States LoC RTL
Framer(or.) 4.2k – 47k 27k
Monitor(or.) 30 850
Framer(re.) 3.9k – 42k 12k
Monitor(re.) 92 92

Industrial Case Study

• Provided industrial Framer
• Extracting SystemC-PPA: 6 PM(person month)

• Top-down redesign: 1PM
• 22 properties proven in 22min
• FF reduction 10%
• Power saving: up to 50% Module PPA States PPA Oper. PPA Variables

Framer 4 13 4

Monitor 2 9 2



Conclusion
• Property Driven Development (PDD):

– Results in a formally sound correct-by-construction design
– No formal verification knowledge required

• In practice, PDD is based on:
– The provided open-source tool SCAM
– State-of-the-art property checker
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→ Shifting global design and verifications to the ESL!
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