
Property-Driven Development
of a RISC-V CPU

1

Tobias Ludwig
Technische Universität Kaiserslautern (TUK)

Status of Formal Verification

2

white box
verification
(property checking)

black box
verification
(simulation)

The biggest hurdle

Property Checking:
More like design than verification !

Vision

Formal RTL verification should:
– do more than bug hunting
– support new abstraction principles between electronic

system level models (ESL) and low-level implementations
(RTL)

– help to emancipate ESL models from prototypes to golden
design models

3

Semantic Gap

High trust in RT level as golden reference!
− Why do we trust the RT level?
− Equivalence proven through equivalence checking (EC)

Trust in system-level models as golden reference?
− Almost no trust, except of HLS
− No notion of equivalence → EC not possible
− High-level synthesis is taking away too many RT-design decisions

4

Path Predicate Abstraction (PPA)

5

Operationally colored graph G

Path predicate
abstracted graph P

Soundness Theorem

© Accellera Systems Initiative

6

Let P be a path predicate abstraction of a graph G.
Then, for every (finite or infinite) path in G visiting a
sequence of colored states (w0, w1, w2, …) there exists an
abstract path representing the same sequence of colors
(c(w0), c(w1), c(w2), …) in P, and vice versa.

Path Predicate Abstraction (PPA)

7

Operationally
colored graph

Path predicate
abstracted graph

• Colored node: Important state
• Uncolored node: Unimportant state
• Operation: Transition between

important states:
• e.g., blue goes to green

ESL

Soundness

– Verification results obtained at ESL translate to the RTL
– Global verification tasks can be moved from the RTL to the ESL
– Significantly less chip-level simulation is required

Theorem shown for LTL properties
[J. Urdahl, D. Stoffel, W. Kunz: "Path Predicate Abstraction for Sound System-Level
Models of RT-Level Circuit Designs", IEEE Transactions on Computer-Aided Design of
Integrated Circuits and Systems, Vol. 33, No. 2, Feb. 2014, pp. 291-304.]

8

PPA in practice?

9

Bus Slave

Slave

Slave

Master

Setup:
• ESL model of a bus
• FSM of each module is a PPA
• Implement sound RTL for each PPA

PPA in practice?

10

Bus Slave

Slave

Slave

Master

Setup:
• ESL model of a bus
• FSM of each module is a PPA
• Implement sound RTL for each PPA

Verify on system-level:
• E.g.: Simulate sending a message across

the bus at the ESL
• Working correctly? Due to soundness RTL

works correct, too
• No more verification required for system-

level behavior

PPA in practice?

11

Bus Slave

Slave

Slave

Master

Setup:
• ESL model of a bus
• FSM of each module is a PPA
• Implement sound RTL for each PPA

Verify on system-level:
• E.g.: Simulate sending a message across

the bus at the ESL
• Working correctly? Due to soundness RTL

works correct, too
• No more verification required for system-

level behavior

Property-Driven Development (PDD)

• System model as formal specification:
– Designable/implementable subset of SystemC

(SystemC-PPA)
– Generate complete set of properties

• Refine generated properties (templates)
• Prove properties on final implementation

12

Basic Idea SystemC-PPA

DeSCAM

Properties (SVA)

Implementation

generate

prove refine

implement

DeSCAM: from ESL to RTL

13

RTLPPAESL
SystemC-PPA Extract Soundness

DeSCAM
• DeSCAM (“Design from SystemC Abstract Models”):

– Analyzes a given SystemC model for compliance with the designable subset
– Supports by refining the model into a SystemC-PPA
– Automatically generates the properties

• A manual explains how to use DeSCAM in Property-Driven Development
(from a practical point of view)

Available on GitHub: github.com/ludwig247/DeSCAM

14

Designable Subset: SystemC-PPA

• Models an FSM in a time-abstract fashion
• Single thread executing infinitely
• Only blocks if a communication interface is called
• No cyclic path without a blocking communication
• No dynamic memory allocation

15

Extracting the PPA from the SystemC CFG

16

SC_MODULE(encoder) {
// constructor and declarations
void fsm() {

while(true){
bus→read(status,data)
if (status==encode) {

// encode(data)
bus →write(data);

}
//some code

} } };

CFG

R

+

W<<

rst

encode

wait

wait

Extracting the PPA from the SystemC CFG

17

SC_MODULE(encoder) {
// constructor and declarations
void fsm() {

while(true){
bus→read(status,data)
if (status==encode) {

// encode(data)
bus →write(data);

}
//some code

} } };

CFG

R

+

W<<

rst

encode

wait

wait

Extracting the PPA from the SystemC CFG

18

SC_MODULE(encoder) {
// constructor and declarations
void fsm() {

while(true){
bus→read(status,data)
if (status==encode) {

// encode(data)
bus →write(data);

}
//some code

} } };

CFG

R

+

W<<

rst

encode

wait

wait

Operation properties

19

property encode;
assume:

at t: start_state;
at t: status == encode;

prove:
at t+n: out(encoded(data@t));
at t+n: end_state;

endproperty;

• Operations start and end in
important states

• Important states subsume millions
of concrete states

• Operations have an arbitrary, (but
fixed) length of n cycles

• Objects of the system-level are
referenced by macros/functions

SVA Properties

20

property encode(length);
//freeze variables

int data;
status_t status;

// freeze values @t
t ##0 hold(data_0, port_in_data()) and

// triggers
t ##0 start_state() and
t ##0 sync() and
t ##0 port_in_status() == encode

implies
t_end(length) ##0 end_state() and
t_end(length) ##0 port_out == encoded(data_0)

endproperty;

function int port_in_data()
return {

$past(unit/data_in,7),
$past(unit/data_in,6),
$past(unit/data_in,5),
$past(unit/data_in,4),
$past(unit/data_in,3),
$past(unit/data_in,2),
$past(unit/data_in,1),
unit/data_in
};

endfunction;

What is the promise?

• Correct-by-construction design
• Increased design productivity
• No RTL simulation
• Support for aggressive optimization techniques

21

Case study: RISC-V CPU

22

• PDD design of a RV32I
processor

• Instruction set simulator (ISS) as
a designable SystemC-PPA

• Two RTL implementations
• Implementations are sound

refinements of the same ESL

implement

RV32I ISS (SystemC-PPA)

Sequential (RTL)

Properties

Pipelined (RTL)

implement

generate properties

refine refine

23

Design Size RTL States LoC PPA /Oper./Var.
Sequential 1881 1430 6 states/ 21 op/ 7 var
Pipelined 2502 2020 6 states/ 21 op/ 7 var

5

1

8

55

109 133
83

135
208

1

2

4

8

16

32

64

128

256

Prime Calc Fibonacci Calc Bubble Sort

Time [s] Simulation Results

ISS Sequential(RTL) Pipelined(RTL)

• Work effort for RTL design:
– Sequential: 2 weeks
– Pipelined: 4 weeks

• Work effort for verification:
– Sequential: 3 person days
– Pipelined: 4 weeks

Experimental Results RISC-V

24

Module RTL States LoC RTL
Framer(or.) 4.2k – 47k 27k
Monitor(or.) 30 850
Framer(re.) 3.9k – 42k 12k
Monitor(re.) 92 92

Industrial Case Study

• Provided industrial Framer
• Extracting SystemC-PPA: 6 PM(person month)

• Top-down redesign: 1PM
• 22 properties proven in 22min
• FF reduction 10%
• Power saving: up to 50% Module PPA States PPA Oper. PPA Variables

Framer 4 13 4

Monitor 2 9 2

Conclusion
• Property Driven Development (PDD):

– Results in a formally sound correct-by-construction design
– No formal verification knowledge required

• In practice, PDD is based on:
– The provided open-source tool SCAM
– State-of-the-art property checker

25

→ Shifting global design and verifications to the ESL!

	Property-Driven Development �of a RISC-V CPU
	Status of Formal Verification
	Vision
	Semantic Gap
	Path Predicate Abstraction (PPA)
	Soundness Theorem
	Path Predicate Abstraction (PPA)
	Soundness
	PPA in practice?
	PPA in practice?
	PPA in practice?
	Property-Driven Development (PDD)
	DeSCAM: from ESL to RTL
	DeSCAM
	Designable Subset: SystemC-PPA
	Extracting the PPA from the SystemC CFG
	Extracting the PPA from the SystemC CFG
	Extracting the PPA from the SystemC CFG
	Operation properties
	SVA Properties
	What is the promise?
	Case study: RISC-V CPU
	Experimental Results RISC-V
	Industrial Case Study
	Conclusion

