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Abstract — This paper demonstrates, at the example of implementing a RISC-V CPU, a novel top-down RTL design methodology
called Property-Driven Development (PDD). The methodology starts from an abstract, transaction-level, hardware description in
SystemC and produces a fully and formally verified RTL implementation. We present an open-source software tool supporting
PDD. Using the tool, we develop an abstract system-level CPU model for the RISC-V R32I instruction set and refine it to an RTL
implementation. Two different implementations for the same abstract model are provided.

I. INTRODUCTION

This paper demonstrates a novel top-down RTL design methodology called property-driven development (PDD) at the
example of implementing a RISC-V CPU. The methodology starts from an abstract, transaction-level, hardware description in
SystemC and produces a fully and formally verified RTL implementation. To date, hardware models on the electronic system
level (ESL) are extensively used in design exploration and virtual prototyping, but they rarely serve as a starting point and
golden model for the actual implementation. As of today, the entry point for design implementation is still the RTL itself,
simply because system-level models at the transaction level do not provide a clear and unambiguous “implementation view”.
This is due to the lack of a clear semantics. The PDD paradigm closes this semantic gap by establishing a well-defined and
sound relationship between an abstract system-level model written in SystemC and the RTL. Basically, PDD ensures that the
system-level model, at all times, remains a so-called Path Predicate Abstraction (PPA) [1] of the RTL implementation. In
practice, this is guaranteed through the methodical use of formal property checking tools as they are commercially available.

PDD emancipates system-level models from prototypes to golden design models and enables moving complex verification
tasks from the RTL to the system level where verification of global behaviors is usually much easier and less costly. In
PDD, abstract properties are generated automatically in a standard property language from a system-level model. They are
then refined together with the RTL implementation. At any stage during the design process the property suite can be verified
against the RTL developed so far. This ensures that the RTL design implementation is a correct refinement of the system-level
model, and, due to the formal soundness, also fulfills the same requirements and properties that the system-level model fulfills.
The guidance of the RTL design flow by properties has additional advantages besides ensuring functional correctness. The
properties generated from a well thought-out abstract model comprise valuable functional knowledge for the manual design
process. As demonstrated by our case studies, this can point the designer to effective optimizations leading to more compact
and more power-efficient implementations.

Sec. II provides an overview of the proposed methodology. Sec. III briefly covers the underlying theories. Sec. IV explains
how PDD is related to other techniques. Practical aspects of PDD are elaborated in Sec. V to VII-D. Sec. VIII shows the
results for the developed RISC-V CPU as well as for an industrial case study on a bus system.

II. DESIGN FLOW OVERVIEW

Fig. 1 shows the general flow of property-driven top-down design. It starts with a specification at the ESL formalized as
an executable SystemC model. In order to establish a clear semantics with respect to the implementation, the SystemC model
must be interpretable as a path predicate abstraction (PPA). Therefore, certain restrictions on the use of SystemC language
constructs apply. We call this “PPA-designable subset” of the language SystemC-PPA. In SystemC-PPA, the modules to be
implemented are represented as time-abstract, word-level instances of communicating finite state machines. Computation and
datapath operations inside each module are described using standard SystemC operators. Communication between modules
is modeled at the transaction level via event-based message passing. The SystemC-PPA model serves as both, an executable
prototype at the transaction level, and a formal specification for the RTL design process.

The RTL design process splits up into two concurrent tracks. The RTL implementation track (left side of Fig. 1) is concerned
with how the specified functions are implemented. The verification track (right side of Fig. 1) maintains the correctness of
the implementation by verifying the property suite against the RTL model: it checks what behavior has been implemented.
The starting points for both tracks, the RTL design and the property suite, are generated automatically from the SystemC-
PPA description with the provided open-source software tool DeSCAM [2]. It generates an RTL skeleton in VHDL or Verilog
that provides a framework for implementing the main controllers of each module. Furthermore, it generates a complete set of
formal properties together with macros and functions that provide the user with means for mapping the system-level model to
the implementation. During the design process, both, the RTL code and the property suite, are concurrently refined to include
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Fig. 1. Property-Driven Design — Work flow

details about the implementation, e.g., cycle-accurate timing and bit-accurate descriptions of the datapath, making use of the
skeleton, macros and functions provided by the software tool.

When writing the RTL code the designer has full freedom over all aspects of the design, including the microarchitectural
structure, the use of pipelining, the timing of individual operations, etc. The generated RTL skeleton only serves convenience
purposes and may be replaced by other structures possibly preferred by the designer. What is important, however, is that the
designer refines the macros and functions of the generated property suite. These macros provide the bit and timing information
to relate the generated properties to the RTL. The properties themselves remain unchanged. As long as these properties can be
formally proven on the RTL the design is correct in the strict formal sense. By construction, the final set of properties covers
every behavior of the design. The resulting verification IP is therefore a valuable documentation and can be understood as a
precise and formally proven data sheet of the design IP.

III. THEORETICAL FOUNDATION

This section briefly covers the underlying theory of PDD. A detailed treatment of the theory can be found in [1], [3].
The goal here is to provide an intuitive understanding of PPA, as well as the meaning of the terms soundness and operation
properties. In a design flow, there is an established chain of trust from the transistor level to the gate level, and from the gate
level to the RTL. The correctness of a model at one abstraction level can be verified with respect to the next lower level.
For example, an RTL model can be verified against its gate-level implementation by formal equivalence checking techniques
such as combinational or sequential equivalence checking. Two sequential circuits are equivalent, if and only if they produce
identical output sequences for all possible input sequences. Such a notion of equivalence does not exist between design models
at the ESL and the RTL. At the ESL, a system is described by modules that communicate abstractly based on untimed message
passing, whereas at the RTL, communication is specified with bit and clock-cycle accuracy.

For example, an ESL designer specifies reading a message from a bus as bus→read(). At the ESL this is represented
event-based, for example, using handshaking. The RTL design implements the same operation with an arbitrarily complex,
cycle-accurate bus protocol. The RTL design is considered sound w.r.t. the ESL if the protocol ensures, under all circumstances,
that if the bus→read() is triggered a correct and valid message is transmitted from the writer to the reader. In this case, the
RTL is a correct refinement of the ESL, and the ESL is a sound abstraction of the RTL. The term soundness describes a
well defined formal relationship between an ESL and an RTL model. In the following we describe how this relationship is
established. First, we give an intuition into the underlying theory of path predicate abstraction [1], and then we show how it
is applied in practice in the context of RTL design.

A. Path Predicate Abstraction
Instead of revisiting the formal development of PPA from [1], we motivate its basic idea by considering a special graph

labeling or coloring called “operational coloring”. Later, we show how this type of coloring is created using the concept of
“operations” in digital circuits.

Definition 1 (Operational Graph Coloring): Consider a directed graph G = (V,E), a subset W ⊆ V of the graph
nodes called colored nodes, a set of colors Ŵ = {ŵ1, ŵ2, . . .} and a surjective coloring function c : W 7→ Ŵ . A path
(v0, v1, . . . , vn) such that v0, vn ∈ W and v1, . . . , vn−1 ∈ V \W is called operational path in G. The set W must be
chosen and colored such that:

1) every cyclic path in G contains at least one node from W (no cycles with only uncolored nodes in the graph),
2) for every operational path (v0, v1, . . . , vn) and u0 ∈ W such that c(u0) = c(v0) there must exist an operational

path (u0, u1, . . . , um) in G with c(um) = c(vn)

We call c an operational coloring function and G an operationally colored graph.



In other words, this definition considers a graph with two types of nodes, colored and uncolored. We call this coloring an
operational coloring if the following two conditions are fulfilled: Every cycle in the graph must contain at least one colored
node. A path starting in a colored node moving through uncolored nodes and ending in a colored node is called an “operational”
path. The coloring must fulfill a second condition: If there exists an operational path that starts in some node with color 1 and
ends in some node with color 2 then for any other node of color 1 there also must exist an operational path to color 2.
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Fig. 2. Example of an operational coloring
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Fig. 3. Path predicate abstraction of Fig. 2

1: property my operation is
2: assume:
3: - - starting states
4: at t+0: astart(S);
5: - - trigger sequence
6: at t+0: a0(X);
7: prove:
8: - - output sequence
9: at t+n: c1(Y );

10: - - ending states
11: at t+n: cend(S)
12: end property;

S: state variables, X: inputs, Y : outputs

Fig. 4. Example operation formalized as a
property

Fig. 2 shows an example of an operationally colored graph according to Def. 1. The blue (b), green (g) and yellow (y) nodes
are colored nodes, (they are elements of W ⊆ V ). The nodes shown in white are considered uncolored, (they do not belong
to W ). As can be noted, in Fig. 2, every cycle in the graph has at least one colored node, so that the first condition of Def. 1
is fulfilled. Also the second condition is fulfilled. For example, from every green node there are operational paths to blue
nodes as well as to yellow nodes, but there are no operational paths to any other color. Intuitively, the graph describes the
“operations”: green→yellow, green→blue, blue→green, yellow→blue. For the operationally colored graph of Fig. 2, we can
draw an abstract graph as shown in Fig. 3. Such an abstraction is called path predicate abstraction.

Definition 2 (Path Predicate Abstraction): We consider a graph G = (V,E) with a set of colored nodes W ⊆ V , a set
of colors Ŵ and an operational coloring function c : W 7→ Ŵ .
A directed graph Ĝ = (Ŵ , Ê), such that for any two nodes u,w ∈W , it is (c(u), c(w)) ∈ Ê if and only if there is an
operational path (u, . . . , w) in G, is called path predicate abstraction of G.

This definition states that the abstracted graph contains exactly one node for each color in the original graph, and path segments
through uncolored nodes in the original graph are replaced by single edges in the abstract graph. Hence, every operation, such
as blue→green, represented by several operational paths in the original graph is represented by a single edge in the abstract
graph.

What is interesting about this abstraction? There is a well-defined formal relationship between the abstract graph and the
original graph: Any path in the abstract graph can be described by a sequence of colors. Obviously, for any such path there is
a corresponding path in the original graph that has the same sequence of colors, and vice versa. In this sense, path predicate
abstraction is sound w.r.t. color sequences. As can be shown, soundness w.r.t. color sequences translates to soundness w.r.t.
to certain properties formulated in the formal property language LTL (linear time logic). With respect to path predicate
abstraction in digital circuits, it means that any relationship between certain events and operations on the ESL also holds in
the implementation at the RTL (and vice versa).

In the following, we show how this relates to digital design. The graphs that we consider are the state transition graphs
of finite state machines (FSMs), both on the RTL and on the ESL. An operational coloring of a state transition graph is a
decomposition of the FSM behavior into operations that can be clearly defined using operational properties.

B. Operational Properties
The concept of an operation is as old as digital design itself. Intuitively, the term describes a piece of processing of digital

data (computation or communication) that is executed in a finite number of steps, sometimes even within one clock cycle.
For example, the execution of an instruction in a processor, or the the transactions in a communication protocol all constitute
operations. The states at the beginning and at the end of an operation are important because they mark the “boundaries” to the
previous or next operation, respectively. The intermediate states are inherent and specific to each operation and are therefore
considered unimportant from an abstract point of view. Consider the state transition graph of the FSM implemented by a
digital circuit at the RTL. Certain states can be marked as “important” in this state transition graph, others as “unimportant”.
Important states correspond to the colored nodes above, unimportant ones to the uncolored states. The paths between colored
states are “operational paths” as in Def. 1 and can be unambiguously described by formal properties written in a standard
property language.



Fig. 4 shows the general structure of an operation formalized in a property. (The property language shown is a pseudo-
language. Any property language that allows to formulate LTL-type properties, such as SystemVerilog Assertions (SVA), can
be used in practice.) An operation property starts in an important state (line 4) and has several trigger conditions, which are
formulated on inputs or state variables (lines 5 to 6). If the operation is triggered, the property verifies that the correct outputs
are generated (lines 8 to 9) and that the design ends in the desired state (line 11). The property specifies the concrete timing
by referring to specific clock cycles in each line in the assume and prove part of the property.

For path predicate abstraction, operation properties are always formulated over a finite time interval (cf. Def. 1). They are
called interval properties. The finiteness of the considered time window allows for efficient proofs based on satisfiability (SAT)
solving (cf. [4]). This has enabled formal verification technology to handle industrial-size designs and led to powerful tools
that are commercially available.

A set of operation properties can serve as a formalized specification of the design behavior, decomposed functionally in
terms of operations. It complements the RTL model which is, mostly, a structural composition of blocks. However, the set of
properties can only be viewed as a specification if it is complete [5], i.e., every possible design behavior is described by one
of the properties in the set.

IV. RELATED WORK

Modern industrial design flows incorporate an abstraction level above the RTL, called Electronic System Level (ESL). The
ESL allows for design space exploration as well as early software development based on Virtual Prototyping [6]. SystemC has
been very successful as an ESL modeling and simulation language, and has enabled new design and verification methodologies
for abstract system-level designs [7], [8], [9], [10]. Due to the semantic gap between ESL and RTL, SystemC has so far not
been used as the entry point for design implementation. Our methodology complements existing techniques, aiming to close
the semantic gap and to upgrade system-level design as a new golden reference for subsequent design processes.

Note that PDD is only loosely related to High-level Synthesis (HLS). Usually, HLS is used in special domains like digital
signal processing or other data-intensive applications. It is a largely automatic synthesis technique that can be complemented
by High-Level Equivalence Checking (HLEC) [11], [12]. Also HLEC closes the semantic gap by exploiting a special notion
of equivalence applicable to such designs and applications. HLS and HLEC are less suitable for describing and implementing
the control and communication structures of a system. Our proposed methodology can therefore complement design flows in
those cases where HLS and HLEQ are not applicable.

The PDD methodology is supported by an open-source tool called DeSCAM (described below). DeSCAM parses a SystemC
description based on the LLVM/Clang framework [13] and uses parsing techniques, as introduced in [14]. After parsing the
SystemC model, the framework generates an Abstract Syntax Tree (AST) that is used in a static analysis of the code, providing
a semantically unambiguous representation of the model. The result of the analysis is a data structure describing the model
and a report regarding SystemC-PPA compliance. Using Clang allows us to stay up-to-date with new C++ language features
and to easily extend the supported language subset. Nevertheless, any EDA tool supporting the basic features of SystemC will
be able to read in and process our SystemC-PPA models, including the SystemC frameworks [15], [16], [14]. There is related
work [17] that derives properties from SystemC for implementation verification. The goal of these approaches is to maintain
coherence between the test cases at different abstraction levels. In contrast, our work aims to establish a formal relationship
between the system-level model and the RTL implementation.

A SystemC-PPA model is linked to the RTL by the verification track of Fig. 1. Our PPA-based methodology has been
formulated in such a way that no knowledge of higher order logic or related languages is required to implement the proposed
PDD paradigm. Only standard design and verification languages like SVA are needed. All proofs can be based on bounded
circuit models using SAT-based property checking [18], [4], as it is commercially available.

V. INGREDIENTS OF PROPERTY-DRIVEN DEVELOPMENT

A PDD-based design flow consists of four major steps in transforming a SystemC-PPA model into a correct-by-construction
RTL implementation. The first three steps are automated and happen inside our tool Design from SystemC Abstract Model
(DeSCAM) [2]. The last step is a manual process. The four steps are:

1) Parsing and syntactic analysis of the SystemC-PPA model (cf. Sec. VI-A). In case the input model has syntax errors or
is not SystemC-PPA-compliant, diagnostic feedback is provided to the designer. The result of this step is a data structure
named Abstract Model (AM) consisting of structural and behavioral descriptions.

2) Extraction and optimization of the PPA (cf. Sec. VI-B). The PPA is the starting point for automatic property generation.
This step optimizes the PPA representation in order to reduce complexity and enhance readability.

3) Generation of formal property suite (cf. Sec. VII-D). A set of abstract property descriptions is generated from the PPA
in the desired property language.

4) Concurrent refinement of properties and RTL design. The generated properties are refined manually. This is interleaved
with a conventional (manual) RTL design process.

The software DeSCAM is open-source and available on GitHub. The online repository includes an extended manual covering
the SystemC-PPA subset, the examples and the plugin system that can be used to customize and extend the local design flow.



In the following sections we describe the Property-Driven Development flow in more detail. Sec. V-A discusses the basic
structure and semantics of a SystemC-PPA system-level model. Sec. V-B highlights syntax and important modeling constructs
in SystemC-PPA.

A. ESL Modeling With SystemC-PPA
In the following, we introduce the semantics of SystemC-PPA. The system-level model is executable, i.e., it can be simulated

with any SystemC simulator. Communication between the modules in a system is modeled on the transaction level, i.e., the
system behavior is given by time-abstract finite state machines described at word level. The FSMs send each other messages
based on synchronization events. Each FSM is a PPA and describes one module. The FSM states represent communication
events, and the transitions between states represent operations. The overall system behavior results from an asynchronous
product [1] of the individual FSMs. This allows for a modeling of all interleavings of messages being passed between the
modules, and ensures capturing all possible behaviors of the system. Due to the untimed behavior of the system-level model,
each module is allowed to run at its own speed. In order to exchange a message between two modules, they need to synchronize
through a handshake.

At system level this handshake is implemented through SystemC events. During the RTL design process the handshake is
implemented explicitly as a four-phase “request-acknowledge” handshake. Sometimes, implementing full four-phase handshak-
ing bears unnecessary overhead, e.g., when modules share a common clock, or in cases where losing a message is acceptable.
SystemC-PPA, therefore, provides three different kinds of communication interfaces called ports. The three supported interfaces,
in our experience, provide enough flexibility to support any communication scheme between digital hardware components. The
type of communication interface is selected during the system-level design process.

Each interface generates a different kind of property suite and, therefore, affects the subsequent hardware design process.
The basic interface is called blocking and implements a blocking message passing handshake. It ensures that a message is
never lost. The master/slave interface is a variant of the blocking interface for synchronous communication. If it is known that
one side (the slave) is always ready for communication then the other side (master) may communicate without waiting for
synchronization. Finally, the shared interface models the behavior of a volatile memory.

In order to simulate and verify the system-level design, an executable description of the system is needed. The industry
standard for executable system-level designs is SystemC, but the semantics of SystemC does not, per se, match the semantics
of our formal model. SystemC, like many other high-level modeling languages employed in industry, is primarily a software
programming language used to program a simulator for analyzing the behavior of the modeled systems. For example, SystemC
is used by a framework of class hierarchies and macro definitions to describe the structure of hardware systems, with the
associated behavior being modeled in C++. While C++ has clearly defined semantics as a programming language, the high-
level objects defined in the SystemC class framework lack precise semantics with respect to the abstract hardware designs they
are intended for. We solved this by restricting SystemC to a subset of certain constructs called SystemC-PPA.

The following example intends to provide an intuition into the semantics of a SystemC-PPA model for blocking message
passing. Let’s assume we are designing a CPU. Most designers will describe a CPU as a set of modules like ALU, register file,
control unit, which are connected to each other via ports. For example, the Control Unit has an output port next_instruction
and the ALU has an input port next_instruction. The Control Unit sends a new instruction, formalized as a message (e.g.,
ADD rs1, rs2, rd), to the ALU. If the ALU is still busy with a different instruction the Control Unit is blocked until the
ALU is ready for the next instruction. The blocking message passing handshake is sometimes also referred to as Rendezvous
communication [19]. (Rendezvous communication is an analogy: In order for two people to communicate they have to be at
the same place at the same time. If either one is missing the other one has to wait.)

B. Overview of SystemC-PPA Syntax
We will illustrate some key features of SystemC-PPA using the example of a module definition in Fig. 5, however, without

explaining every language feature used in the example. Details can be found in the online documentation to DeSCAM [2].
The module provides communication interfaces to other modules in the system. Lines 8 to 10 define three such interfaces.
There is a blocking interface, corresponding to a full four-phase handshake between the communicating modules. When the
example module accesses the interface (in line 17), the read function call blocks until the communicating module has called
the corresponding write. When a blocking interface is refined to the RTL, the generated set of properties contains special
synchronization functions/macros that need to be implemented by the RTL developer in order to guarantee a full four-phase
handshake. In the provided RISC-V implementations this type of interface is used for the communication between core and
memory. If the memory is slower than the processor the processor is blocked until it receives data from the memory.

When RTL designs are synchronized through a common clock, four-phase handshakes are not necessary. Line 9 shows an
example of a so-called master/slave interface, avoiding such overhead in the RTL refinement. A master/slave interface refines
to a unilateral synchronization scheme. It relies on the timing constraint that the slave module is guaranteed to be ready for
communication whenever the master module sends a synchronization signal. The generated properties ensure that the timing
constraint is met by the RTL design. The register file of a processor is a good example for using the master/slave interface. In
the provided RISC-V implementation the processor and the register file share a common clock and the register file is a slave



1: enum status t {in frame, oof frame};
2: struct msg t { status t status; int data; };
3: SC MODULE(Example) {
4: SC CTOR(Example):nextsection(idle)
5: {SC THREAD(fsm)};
6: enum Sections{idle,frame start,frame data};
7: Sections section, nextsection;
8: blocking in < msg t > b in;
9: master out < int >m out;

10: shared out < bool > s out;
11: int cnt; bool ready; msg t msg;
12: void fsm(){
13: while(true) {
14: section = nextsection;

15: if (section == idle){
16: s out→set(false);

//State idle 3
17: b in→read(msg);
18: if (msg.status == in frame){
19: s out→set(true);
20: nextsection = frame start;
21: cnt = 3;
22: }
23: }else if (section == frame start){

//State frame start 2
24: m out→write(cnt);
25: cnt = cnt-1;
26: if (cnt == 0) {
27: cnt = 15;
28: nextsection = frame data;
29: }

30: }else if (section == frame data){
//State frame data 0

31: ready = b in→nb read(msg);
32: if (!ready) {
33: m out→write(msg.data);
34: if (cnt == 0){nextsection = idle;}
35: cnt = cnt-1;
36: }
37: }
38: }}};

Fig. 5. SystemC-PPA example

to the processor. If the processor writes back a value, the register file is always ready and, thus, a four-phase handshake is not
necessary.

An example of a third communication primitive, an unsynchronized port, is shown in line 10. It can be used to model volatile
data (like sensor I/O) or to provide additional information together with some other communication port that is of the blocking
or master/slave kind. The control and computation behavior of the module is described in the form of an FSM (cf. line 12 in
the example). It is divided into sections that loosely correspond to operations of the design. However, the actual abstract states
of the PPA defined by the module are given implicitly through the communication primitives read() and write(), as shown,
e.g., in lines 17, 24 and 31.

The behavior described in fsm() is the following: Execution starts in section idle. Execution keeps repeating section idle
as long as no new frame is detected. If a new frame is detected, the shared output is set to true and section frame start is
executed. Section frame start is executed until master out transmits the message 3, 2 and 1. Execution continues in frame data
until 15 frames have been received. After the 15th frame, execution continues in idle.

In general, the FSM structure of a SystemC-PPA module allows for modeling of arbitrary digital hardware. It has a sufficiently
high level of abstraction so that a human designer can quickly grasp the intended behavior. Not all details of the language
can be discussed here, but from the shown example the reader should have a basic intuition about SystemC-PPA in order to
understand the following sections.

VI. TOOL SUPPORT FOR PDD
Once a SystemC-PPA model has been created, the user runs the automatic tool DeSCAM in order to generate both, properties

for verification and an RTL design skeleton. In this section we describe the internals of this process consisting of several steps.

A. Abstract Model Generation
The first step consists of parsing the input file and generating an abstract data structure for further analysis. For parsing,

we use the open-source compiler framework LLVM/Clang. The parser produces a representation of the SystemC-PPA input
as abstract syntax tree (AST), containing the program code and all static information related to the program, like, e.g., the
SystemC scheduler. The AST implements a software design pattern called visitor pattern, enabling an efficient subsequent
analysis.

In the next step, the AST is analyzed and all information required for property generation is extracted. All details that
are relevant only for C++ analysis or SystemC simulation, like the SystemC scheduler, are stripped away. The remaining
information describing the module in a PPA view is stored in a new data structure called Abstract Model (AM). It contains
structural information in the form of an abstract syntax tree and behavioral information as a control flow graph (CFG). Initially,
a CFG is automatically generated by Clang for the class method void fsm() of a SystemC-PPA module. This method needs
to follow a certain structure such that (1) its behavior, when simulated by the SystemC framework, is that of a finite state
machine (FSM), and (2), that the FSM in terms of states and transitions can be extracted from the control flow graph of the
SystemC code.

In fact, this FSM extraction is straightforward. The CFG nodes can serve directly as nodes of the state transition graph of
the FSM, with a few exceptions, such as the outer while (true) loop, the if-then-else (ITE) structure for the sections and any
nextsection assignment (if present). DeSCAM removes the CFG nodes not needed and produces a CFG that represents the
FSM of the PPA, as shown in Fig. 6. The nodes are labeled with the line numbers of the statements in Fig. 5. The dashed
boxes indicate the sections the individual CFG nodes belong to. The tool analyzes each object of the SystemC/C++ program
and checks for compliance with SystemC-PPA. Violations are reported in form of warnings and errors and the affected objects

https://en.wikipedia.org/wiki/Abstract_syntax_tree
https://en.wikipedia.org/wiki/Visitor_pattern


are rejected. Note that, often, ESL models written in SystemC serve several purposes at the same time, e.g., to support early
firmware development, to help in integration testing and to generate tests. SystemC models may therefore contain code that is
meaningless in the PPA view but should still remain in the source. When DeSCAM warns about code that is not SystemC-PPA
compliant the user needs to analyze the diagnostic output and make a decision on whether the affected code should stay
included in the model or not.

B. PPA generation
In the next step DeSCAM generates a PPA from the Abstract Model. This step has three phases:
• Coloring: Operational coloring is applied on the initially uncolored CFG. In case of PDD the coloring is trivial, because

the important states are implicitly provided by the communication primitives. Each communication with synchronization
results in an important state.

• Identification of operational paths: Every path between two important states (cf. Sec. III) in the CFG results in an operation
and will result in an operational property.

• Optimization: The PPA is optimized with respect to structural complexity, in order to enhance conciseness and readability.
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Fig. 7. Resulting PPA

1: property red-to-blue is
2: assume:
3: - - starting states
4: at t+0: state == L. 17;
5: - - trigger sequence
6: at t+0: sync == true;
7: at t+0: msg.status == in frame;
8: prove:
9: - - output sequence

10: at t+n: s out == true)
11: at t+n: cnt == 3;
12: - - ending states
13: at t+n: state == L. 24
14: end property;

Fig. 8. Operation property: red to blue

Prior to applying the operational coloring, the CFG is extended by additional operations that are defined implicitly by the
SystemC-PPA model, but are not explicitly represented in the CFG:

• reset operation: It is defined by the initialization of the nextstate variable in the constructor (SC_CTOR) of the
SC_MODULE, cf. Fig. 5. In the current version, DeSCAM supports SystemC-PPA modules with a single constructor
only. The reset operation ensures the correct initialization of RTL registers and guarantees that the design is in the correct
important state after reset.

• wait operation: Wait operations are generated for communications over blocking ports. If read() or write() is called and
the counterpart of the communication is not ready then the module blocks, i.e., needs to wait. A wait operation is added
to the PPA that forces the module to remain in its state until the counterpart is ready for communication.

After the insertion of implicit operations, operational coloring as required for generating the PPA is applied. First, every
node resulting from a blocking communication is colored (i.e., red and green). A communication primitive implementing the
master interface is colored only if condition 1 of Def. 1 is violated, i.e., a cyclic path in the CFG must be broken. This is
the case for line 24, thus L. 24 is colored blue. The communication primitive at line 33 does not violate the condition because
there is no path without a colored node starting from L. 33. The paths end in either green or red.

Fig. 8 shows one of the resulting operation properties. This property specifies the transition from red to blue. It verifies that
after a successful handshake and detecting a new frame in control state L. 17, the operation will always end up in control state
L. 24, with counter set to 3 and with the shared port set to true.

In contrast to Fig. 6, DeSCAM names the states not by the line of code in which they are declared. Instead, as Fig. 7
shows, states are named by the section they are declared in, extended by a unique ID generated by DeSCAM. If multiple
communication calls occur within one section they are distinguished by the unique ID. In our example, L. 17 is renamed to
idle 3, L. 24 to frame start 2 and L. 33 to frame data 0.

The operations of the PPA are labeled with the trigger conditions. The effects of different port interfaces on the RTL
implementation become apparent in Fig. 7. The state idle has a wait operation because the communication counterpart may
not be ready when the module enters this state. On the other hand, the state frame data 0 does not have a wait operation



because the communication call uses the non-blocking nb read() method. The state frame start 2 requires no handshaking,
because the respective port implements the master interface.

Initially, each variable specified at the system level leads to the implementation of corresponding registers in the RTL. If a
variable is only a temporary one storing intermediate computation results, an RTL register is not needed. In the given example,
this is the case for the variable ready. The variable is assigned the status value indicating success of communication via port
b in. It is used only once in the if-then-else at line 32 where it can be safely replaced by the status value itself, in all operations
containing line 32. By contrast, the variable cnt at line 35 is assigned its previous value, decreased by one. The new value
depends on the previous one and thus the variable is a necessary part of the state space of the PPA resulting in an RTL register.

VII. RTL IMPLEMENTATION AND REFINEMENT

Implement RefineProve

RTL Properties

Fig. 9. Implementation and refinement

The final, manual, step of PDD is the actual implementation of the RTL from a PPA. Its workflow is depicted in Fig. 9. The
starting point is the complete set of properties as DeSCAM has generated it from the PPA, where each property represents one
operation that needs to be implemented at the RTL. For each abstract object of the system level like variables, data values,
communication function calls using one of the primitives, etc., a macro or function definition (in SVA) is generated. The
operation properties are built using these macros. For example, the macro cnt in Fig. 8 is one resulting from the system-level
variable with the same name, cnt.

The designer implements the RTL code matching the properties, one property at a time. Each property is refined concurrently
with the implementation, i.e., timing information is added as well as detail concerning the datapath implementation. If the
chosen property holds on the design, the hardware implements the operation correctly, otherwise the RTL code needs to be
corrected (or the timing adjusted). Once all properties can be verified successfully on the design then the design process is
finished. The property suite provides a valuable verification IP for the finished design. It can be used as a formalized data
sheet which documents precisely what functionality has been implemented.

Sec. VII-A explains in more detail what a macro is and how it relates an abstract object of the system level to a concrete
RTL implementation.

A. Macros
Macros are an important vehicle for abstraction. By encapsulating references to RTL objects at different time points they

decouple RTL implementation details from their abstract representation in a property. The property definitions themselves
remain unchanged during the design process. Only the macro bodies are edited. This approach has two benefits. Since the
generated set of properties is complete, independently from the actual content of the macros, it is not possible to introduce a
verification gap during the refinement process; also, instead of the whole property text only a small part of the generated lines
of code have to be adapted by the designer. We evaluated the associated work effort. Results can be found in Sec. VIII.

In this and the following section we illustrate the abstraction constructs using the commercial property language ITL [20].
Note that DeSCAM also supports SVA printout for which it generates defines and functions instead of macros. The interested
reader can find the RTL implementation as well as the refined properties (both in ITL and SVA) for the example of Fig. 5 on
our GitHub site.

Fig. 10 shows an abstract definition of a macro, consisting of a name, return type and a body as it is initially generated
by DeSCAM. Within the macro body the designer specifies the implementation details of the abstract object. Sometimes, a
word-level RTL variable has the same name and an equivalent type as the system-level variable it implements. For example,
Fig. 11 shows such a straightforward refinement for the abstract system-level variable cnt. A variable can also be mapped to
a more complex RTL data structure, as shown in the example of Fig. 12 where “cnt” is represented by a composition of two
slices named “foo” and “bar”.

1: macro MACRO-NAME: RETURN-TYPE :=
2: MACRO BODY
3: end macro

Fig. 10. Macro definition

1: macro cnt: int :=
2: instance/RT signal
3: end macro

Fig. 11. Simple refinement for cnt

1: macro cnt: int :=
2: instance/foo[31 downto 16]
3: & instance/bar[15 downto 0]
4: end macro

Fig. 12. Non-trivial refinement for cnt

For refining the macros there are only three rules:



• Sequences may be formulated only over finite time windows (of arbitrary length).
• Functions characterizing abstract inputs may be expressions over only input signals of the RTL design.
• Functions characterizing abstract outputs may be expressions over only output signals of the RTL design.

Ports are modeled by a combination of three specialized macros: notify, sync and datapath. The combination of these macros
is determined by the type of communication interface the port implements. A port with a shared interface requires no
synchronization, because it models a volatile access. Hence, only a datapath macro is generated for it. The datapath macro
describes the message and is named portname sig. The operation properties guarantee that the correct message is sent by
specifying a value for the datapath macro. Ports with a master/slave interface require, generally, no synchronization. The
output port with a master interface is complemented by notify indicating validity of a new message for the respective slave
input. Conversely, the slave input has a sync macro in order to evaluate the validity of the incoming message. The macros are
named portname notify and portname sync, respectively.

For a port implementing a blocking interface both macros, notify and sync, are required to implement a handshaking
mechanism. The four-phase handshake starts with raising the outgoing notify flag. The module is blocked until the incoming
sync flag evaluates to true, indicating readiness of the counterpart. At the end of the transmission both flags evaluate to false.
The correct handshaking is enforced by the generated operation properties. The design has to fulfill these properties, resulting
in a correct-by-construction handshaking. The evaluation of the macros is not necessarily restricted to a single signal changing
its value in a single clock cycle. The macros may describe an arbitrary protocol spanning multiple cycles and different signals.

Macros for datapath registers result from variables at the system level. The macros for compound types are split into separate
macros for each subtype. For example, the variable msg is separated into two macros msg data and msg status. The same
idea applies for port macros. The provided example implementation has three datapath registers: one for the variable cnt and
two for the variable msg, namely msg data and msg status. As explained earlier, the variable ready is not required for the
RTL implementation.

Important states, derived from the communication calls at the system level, each result in a macro. Fig. 7 shows the resulting
PPA with three important states, idle 3, frame start 2 and frame data 0. Each important state results in a macro of boolean
return type. If the hardware is in an important state the macro evaluates to true, otherwise to false.

B. RTL Skeleton
As a starting point, the PDD methodology requires, at the least, a minimal RTL description that provides structural information

about the implementation, such as the ports and the needed datapath registers. We call it skeleton in the sequel. A behavioral
description is not needed for the first iteration of PDD. The designer can either use the skeleton provided by DeSCAM or
create a custom one. It is even possible to start with a pre-existing design and then only edit the properties for refinement.
This is a promising solution for dealing with legacy design code, as will be shown in Sec. VIII-B.

In the following, we show how to create an RTL implementation for the PPA example of Fig. 5. We begin with the skeleton
as it is generated by DeSCAM and show how the corresponding properties are refined. We explain refinement of macro
definitions at the example of the macro generated for port b in. We show how to implement RTL code at the example of the
reset operation. Fig. 13 shows the RTL skeleton generated by DeSCAM. A VHDL package declaring the needed data types
is generated together with the skeleton. The code is somewhat simplified for demonstration purposes. The full example is
available on GitHub.

1: entity Example is
2: port(
3: clk: in std logic;
4: rst: in std logic;
5: - - b in: in msg t;
6: b in sync: in bool;
7: b in notify: out bool;
8: data in: in signed(0 downto 0);
9: m out: out int;

10: m out notify: out bool;
11: s out: out bool )
12: end Example;
13:
14: architecture Example arch of Example is
15: signal section: Example SECTIONS;
16: signal cnt signal:int;
17: signal msg signal:msg t;

18: begin
19: control: process(clk)
20: if (clk=’1’ and clk’event) then
21: if rst = ’1’ then
22: section <=idle;
23: cnt signal <= 0;
24: s out <= false;
25: b in notify <= true;
26: m out notify <=false;
27: msg signal.data <= to signed(0,32);
28: msg signal.status <= in frame;
29: else
30: - - Implement the control behavior
31: end if;
32: end if;
33: end process
34:
35: end Example arch;

Fig. 13. RTL implementation

The skeleton declares a port b in (line 5) that transports a message of type msg t. It consists of a 32-bit integer for msg.data
and a 1-bit boolean for msg.status (cf. Fig. 5). In practice, a system-level data object can usually not be simply “copied” to



the RTL, but needs to be refined to a low-level representation according to specific data formats and communication protocols.
In our example, the 33-bit wide input port data, as generated by DeSCAM, is represented on the RTL as a serial bit stream
received in 33 beats over a 1 bit-wide input. In Fig. 13 a 1-bit input port called data in (line 8) is added and b in (line 5) is
removed. The protocol is abstracted at the system level. The untimed word-level exchange of a message at the system level
is transformed into a cycle- and bit-accurate exchange. DeSCAM generates two macros for the port b in: b in sig status and
b in sig data. In the following, we describe how these macros are refined for this specific protocol.

C. Refinement
Fig. 14, illustrates how the macro for the datapath b in sig data is refined in order to implement the protocol. The property

checker proves the property for an arbitrary starting state (resembled by arbitrary time point t). The other time points referred
to in the property are finite offsets from t, i.e., the property covers a finite time interval of behavior. The first bit is received at
timepoint t, the last bit at timepoint t+31. The macro describes the reception of this serially transmitted message. The method
prev(signal, n) provides the value of signal n cycles prior to t and the method next(signal, n) returns the signal value at n cycles
after t. Lines 2–3 describe the sequential behavior using the next function. The protocol for the refinement of b in sig status
is the following:

• The abstract bit is evaluated over the last four input bits of data in.
• If the sequence is equal to ’1111’, then the status bit evaluates to in frame and otherwise to oof frame.

1: macro b in sig data : int :=
2: data in & next(data in,1) & next(data in,2) & next(data in,3)
3: & next(data in,4) & ... & next(data in,31)
4: end macro

Fig. 14. Refinement of macro b in sig data

1: macro b in sig status: int :=
2: frame detected( prev(data in,4) & prev(data in,3)
3: & prev(data in,2) & prev(data in,1) )
3: end macro

Fig. 15. Refinement of macro b in sig status

Fig.15 shows the resulting refinement and Fig. 14 describes a 4-bit integer composed of the value of the last four cycles. In
this case, the RTL evaluates four bits to determine the status, whereas at the system level only one bit is required. The helper
function frame detected evaluates this integer and returns the required value.

Refining the important states boils down to specifying which state bits of the global state vector describe the important
states. In general, the designer is free to describe the important states to his/her convenience.

D. Implementation
The first property a design must implement is the reset property. Fig. 16 shows the reset property of our example. Line 3

calls a macro named reset sequence. As the name suggests, the macro defines the sequence of signal values that reset the
circuit. In the simplest case, the macro describes an assertion of a signal called reset or the like. (The macro reset sequence
is not part of the PDD methodology. We use it here only to hide the details of circuit initialization.) The property specifies that
when the reset is triggered the design has to fulfill the commitments in lines 5 to 14. The datapath registers must be initialized
correctly (lines 6 to 8). The output s out is required to become false. As mentioned in Sec. VII-A the properties ensure a
correct handshaking. The reset property proves that after reset the hardware is in state idle 3. This state has been generated
for the communication through port b in. The read from this port is initiated by asserting its notify signal. The port m out is
not used and thus m out notify evaluates to false. Fig. 13 contains the implementation of the reset operation between lines
22 and 28. Now, after the reset operation has been implemented, the PDD process continues with the operations starting in
important state idle 3.

In our example, we continue with the operation leading from idle 3 to frame start 2, as described in lines 17 to 24 in
Fig. 5. The corresponding operation property is shown in Fig. 17. There are two new undiscussed ITL language features in
this property (line 2 and line 4). The first feature, for timepoints, is used to define the length of an operation by providing
a value for the timepoint t end at line 3. Note that the minimum length of an operation is one clock cycle. In case t end
is not defined, DeSCAM generates the property with the default value t+1. The property specifies that the operation receives
a message at port b in and modifies the datapath registers accordingly. The timepoint t end of macro msg.data is changed
to t+32. The operation has a length of 32 cycles, because it takes 32 cycles to receive the 32 serial bits. For example, the
evaluation of macro b in sig data at t end results in the values from t end to t end+32.

The second ITL language feature, freeze (line 4), allows to associate the value of an expression at a specific timepoint t
with a name so that it can be referenced later. For example, the “freeze variable” b in sig data at t is assigned the evaluation
of macro b in sig data (the value of the received message data) at timepoint t. The property verifies (line 18) that the datapath
register msg data stores the message, received at timepoint t, at timepoint t end, correctly. The property ensures the correct
handshaking by checking that the associated notify flags only change value at the end of the operation, proven by line 21 and
line 22. The important state entered after receiving the message is frame start 2. This state results from the port m out. The
macro of this port has to evaluate to 3 (line 17) and the according notify is set (line 23).



1: property reset is
2: assume:
3: reset sequence;
4: prove:
5: - - output sequence
6: at t: cnt = 0;
7: at t: msg data = 0;
8: at t: msg status = in frame;
9: at t: s out sig = false;

10: at t: m out notify = false;
12: at t: b in notify = true;
13: - - ending states
14: at t: idle 3;
15: end property;

Fig. 16. Reset operation

1: property idle 3 read 5 is
2: for timepoints:
3: t end = t+32;
4: freeze:
5: b in sig data at t=b in sig data@t,
6: b in sig status at t=b in sig status@t;
7: assume:
8: - - starting states
9: at t: idle 3;

10: - - trigger sequence
11: at t: b in sig status=in frame;
12: at t: b in sync;
13: at t: cnt==0;
14: prove:
15: - - output sequence
16: t end: cnt = 3;
17: t end: m out sig = 3;
18: t end: msg data=b in sig data at t;
19: t end: msg status=b in sig status at t;
20: t end: s out sig = true;
21: during[t+1, t end]: b in notify=false;
22: during[t+1, t end-1]: m out notify=false;
23: t end: m out notify = true;
24: - - ending states
25: t end: frame start 2;
26: end property;

Fig. 17. Regular operation

The designer is entirely free on how to implement this operation. The provided example on GitHub is one possible
implementation. Theoretically, there is an infinite number of sound refinements for the same PPA. If all properties hold
on the design it is guaranteed with mathematical rigor that the implementation is sound w.r.t. the PPA and thereby sound w.r.t.
the SystemC-PPA. It is, however, important that the designer is only allowed to change the length of the operation and the
bodies of the macros. The property descriptions calling the macros must remain as generated by DeSCAM.

VIII. EXPERIMENTAL RESULTS

The proposed methodology has been evaluated by means of two case studies. The first study provides three different RISC-V
implementations derived from the same SystemC-PPA. The goal of this study is to evaluate the effort for refining the properties
to different designs, the effort for proving the properties on the design and the amount of abstraction between the system level
and the RTL. The second study, an industrial case study, demonstrates that PDD is applicable to industrial-scale designs, leads
to cleaner code and enables aggressive optimizations w.r.t. non-functional design goals.

A. RISC-V
The first case study comprises multiple implementations of a RISC-V CPU, each being a sound refinement of the same

system-level model. The system-level model is a SystemC-PPA-compliant Instruction Set Simulator (ISS) implementing the
RV32I Base Integer Instruction Set, as specified in [21], excluding interrupts. In the sequel we refer to the SystemC-PPA model
as ISS. The methodology is elaborated on three different implementations:

• Simple sequential CPU. The design is implemented with two modules. The core consists of a CPU module and a register
file. Datapath computations are described mostly by combinational functions. The goal of this implementation is to provide
an RTL design requiring as little refinement effort as possible.

• Complex sequential CPU. The functionality of the processor is divided into four modules. The core is composed of a
decoder, an arithmetic logic unit (ALU), a register file and a control unit. All communication between the modules is
realized by master/slave interfaces. This CPU demonstrates how a complex communication structure implemented at the
RTL is abstracted at the system level.

• Pipelined CPU: The CPU consists of a control unit, a data path and a register file. The processor is implemented as a
five-stage static pipeline with forwarding. The control unit takes care of the pipelining and sets the respective control
signals. The data path implements the computation and communicates with the register file.

The complete set of properties was generated for the ISS and refined for each implementation, resulting in three different
property suites. Fig. 18 shows the PPA of the ISS. The ISS is connected to a memory by a blocking output port for sending
a new memory request and a blocking input port for receiving the response. As we explained in Sec.VI-B, each blocking
communication results in an important state. If the handshake fails, the system waits in its current state, as symbolized by the
wait-operation of each important state. An instruction cycle starts in request instr, requesting an instruction from the memory.
The ISS transitions to state receive instr, if the request is successful. Upon receiving the instruction the execution continues,
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Fig. 18. PPA of the ISS

depending on the decoding of the instruction. Two cases need to be distinguished: In case a load or store instruction is received
the ISS needs to make another communication to memory, resulting in state request load for a load instruction and request
store for a store instruction. The state request load (store) is followed by another state receive load (store) reading the response
from the memory. Execution then continues with fetching the next instruction from the memory. In case of any other type
of instruction (e.g., R-type, I-type or B-type) the operation “other instructions”, subsuming the operations for each of those
encode types, is triggered. Basically, these operations ensure that the correct values are written in the right registers and that
the program counter is set to the correct value. The operation ends in state request instr and a new cycle begins.

1: property property fetch 16 read 5 is is
2: for timepoints:
3: t end = t+k;
4: freeze:
5: - - Register values in REG FILE
6: pcReg at t = pcReg@t;
7: assume:
8: - - starting states
9: at t+0: receive instr;

10: - - trigger sequence
11: at t+0: (getEncType(loadedDataInstr)=ENC R);
12: at t+0: fromMemoryPort sync;

13: prove:
14: - - output sequence
15: t end: pcReg = (4 + pcReg at t);
16: during[t+1,t end]: fromMemoryPort notify = false;
17: t end: toMemoryPort sig addrIn = (4 + pcReg at t);
18: t end: toMemoryPort sig dataIn = 0;
19: during[t+1,t end-1]:toMemoryPort notify = false;
20: t end: toMemoryPort notify = true;
21: t end: toRegsPort sig dst = getRdAddr(INSTR);
22: t end: toRegsPort sig dstData = getALUresult(...);
23: during[t+1,t end-1]:toRegsPort notify = false;
24: t end: toRegsPort notify = true;
25: t end: - - Unimportant datapath register ...
26: - - ending state
27: t end: request instr
28: end property;

Fig. 19. R-Type instructions

Fig. 19 shows the property generated for R-type instructions. It implements all register-to-register instructions like add, or
and shift. The property starts in state receive instr (line 9) and it is assumed that a new instruction is available (line 12) from
the memory. The encode type of the instruction is evaluated by a combinational function getEncType(). A combinational
function is not allowed to change any state variables of the module. It returns a value as a function of the input parameters.
When the operation is triggered, it is guaranteed that the program counter is set to the correct value (line 15). Lines 17 to 19
set up the request for the next instruction. During the operation all notify flags are set to false and the memory is notified
that there is a new request by raising the notify flag at t end. The result of the computation is returned by the combinational
function getALUresult() and stored to the register file. Lines 21 to 24 sets up the communication with the register file. In
line 16, the property ensures that the hardware does not accidentally initiate a read from the memory.

The refinements for the pipelined processor are somewhat more complex. The property describes a single instruction, but, due
to the pipelining, the processor executes other instructions in parallel. This results in a more complex refinement of properties
and design. Take, for example, the refinement of the source registers. In the sequential implementation it is sufficient to refine
the macros for the registers by referring to the datapath registers storing the actual values. In the pipelined implementation
data hazards can occur, necessitating implementation of forwarding. The property macros are refined by referring to the values
of the forwarding unit or to the datapath registers, depending on whether a hazard was detected or not.

Lastly, the timing in line 3 is refined by providing a value for k which is different for the different implementations:
• Simple sequential implementation: k = 1. Each operation is executed in one clock cycle.
• Complex sequential implementation: k = 8. The timing here depends on the communication between the modules. Each

operation has its own distinct timing. The designer has to understand the underlying communication sequences and reflect
this in the timing.

• Pipelined implementation: This is the most complex case, because the timing of the operation depends on the pipeline
state, e.g., a stall due to a data hazard increases the time until an operation finishes. In practice, there are two ways to
specify this. One way is to keep the value for k static and let the macros describing the pipelining accommodate for the
different pipeline states. The other way is to keep the macros static and reflect the pipeline state through different values



for k. In either case, the pipeline state is reflected in the property refinement. The implementation provided online uses
the first approach.

TABLE I
DESIGN SIZE AND LOC

Lines of code ISS Simple Seq. Complex Seq. Pipelined

Properties generated 1165 - - -
Properties - lines added - 0 1 411
Properties - lines changed - 56 68 56
Implementation 1000 1110 1626 2264

Synthesis
Input/Output - 36/71 36/71 36/71
Flip-Flops - 1340 1881 2698

Table I provides the results for the size of the designs and the property suite. A set of 21 properties was generated from the
SystemC-PPA of the ISS in less than 25 seconds. The verification effort in PDD results from the time spent on the refinement
of the properties during the implementation process.

Table II provides manual work efforts, CPU times for formal property checking and simulation times for the system-level
model. CPU times were measured on an Intel i7-6700 CPU with 32 GB of main memory. Properties were proven with the
commercial property checker OneSpin 360 DV [20] and the RTL designs were simulated with ModelSim SE by Mentor
Graphics [22]. The second row of the table denotes the design efforts for creating the SystemC model of the ISS and for
creating from it the RTL implementations of the different RISC-V implementations. The third row shows the additional manual
efforts needed for refining the generated properties during the RTL design process. The reported work efforts were those of
first-time users of the methodology.

As can be expected, manual efforts grow as the designs become more complex w.r.t. inter-module communication, timing
and pipelining. For example, all operations of the simple processor have a length of one cycle and the design and property
refinement starting from the system-level model is nearly trivial. This keeps the work effort for refining the properties under two
hours. For the more complex processor versions we exploited the SystemC-PPA communication mechanisms, as discussed in
Sec. V, to decompose the ISS model into several SystemC-PPA sub-models that correspond to the different processor modules.
The design efforts given in Table II include the efforts for these decomposition steps at the SystemC-PPA level as well as for
the creation of the RTL code.

TABLE II
DESIGN EFFORT AND SIMULATION RESULTS FOR DIFFERENT RISC-V IMPLEMENTATIONS

Design and verification results ISS Simple Seq. Complex Seq. Pipelined
Design effort 1 person week 1 person day 4 person days 3 person months
Property refinement effort — 2 person hours 1 person day 1 person month
Property checking time total — 2 min 5 min 4:20 h
Longest individual checking time — 28 s 65 s 1:30 h
Max. memory usage (MB) — 4003 5220 4628

Simulation time
Prime numbers (s) 5 16 56 95
Fibonacci (s) 1 4 10 15
Bubble sort (s) 8 35 130 259

The property refinement of the pipelined processor required about 1 person month, due to the complex pipelining. It is
important to note that a completed property refinement process implies that all properties hold on the design. Thus, further
RTL simulation for verification is not required so that all efforts for traditional simulation and creation of test benches can be
avoided.

As shown in Table II, proving the actual properties on the design is very fast, especially for the smaller design. Most
properties are proven in less than five minutes. The longest proof time was for the R-type instruction property of the pipelined
processor. The complexity lies within the datapath operations, which are a worst-case scenario for SAT engines, due to the large
state space. A common practice is to blackbox datapath-heavy components (e.g., the ALU) to reduce proof times drastically.

We simulate the designs with three computation-heavy C++ programs, compiled with the RISCV-V R32 toolchain:
• “Prime numbers”, computes ten prime numbers starting from n=10000.
• “Fibonacci”, computes numbers of the Fibonacci sequence.
• “BubbleSort”, sorts an array with 500 integer numbers. Initially, the numbers are sorted in descending order and the

algorithm sorts them in ascending order, resulting in the worst-case execution time for BubbleSort.



The results, as given in Table II, demonstrate a simulation speedup by simulating the ISS between 4 in case of the simple
design and ∼32 for the more complex design, compared to the RTL implementations. Simulation of a SystemC model can,
obviously, be expected to generally outperform RTL simulation. In case of our PDD methodology the SystemC model, at the
abstraction level of an instruction set simulator, has the additional advantage of a sound relationship with the RTL, meaning
that the RTL implementation and the ISS execute software in functionally identical ways. This is, to our knowledge, the first
time that an ISS can be used as a golden model for design and even for firmware sign-off.

B. SONET/SDH Framer
The second case study is based on an industrial implementation of a SONET/SDH Framer circuit from Alcatel-Lucent. The

purpose of the Framer circuit is to identify protocol frames in a serial data stream. A simplified version of the design for
illustration purposes is publicly available in [2]. Initially, only an industrial RTL implementation of the Framer was available.
We first conducted a complete verification of the design and then created a SystemC-PPA model consisting of two modules, a
main module called Framer and a supplementary module called Monitor. The purpose of the Monitor is to collect performance
data about the frame detection process realized by the Framer module. The work effort for the “bottom-up abstraction” of the
RTL design by complete functional verification, as described in [1], was about six person months. Starting with this system
described in SystemC-PPA we created an RTL redesign of the circuit by following the PDD methodology. The PDD design
process took less than two person months of effort.

TABLE III
SONET/SDH FRAMER — ORIGINAL DESIGN AND REDESIGN

RTL Design PPA
Module inp./out. FFs LoC inp./out. var. states/ops.
Framer (or.) 549/280 4.2k-47k 27k 7/6 4 4/13
Monitor(or.) 20/6 30 850 3/1 2 2/9
Framer (re.) 549/280 3.9k-42k 12k 7/6 4 4/13
Monitor (re.) 20/6 425 92 3/1 2 2/9

Table III shows some statistics for the original design (rows 1 and 2) and the redesign created from PDD (rows 3 and 4).
Both designs are configurable through VHDL generics. The actual numbers depend heavily on the configuration parameters.
For example, the number of flipflops ranges between ∼4,000 and ∼40,000, depending on the chosen configuration. A large
portion of the flipflops (FFs) actually belong to temporary storage needed for buffering the input stream.

Both, the original design and the PDD redesign are sound refinements of the same PPA model. The RTL redesign by PDD
has less state variables than the original.

More importantly, though, the code is, subjectively, much “cleaner” than the original implementation which had already seen
multiple updates, patches and maintenance changes from several designers. In this sense, PDD can also be seen as a way to
deal with legacy code problems, allowing for code cleanup without compromising functional correctness.

More interestingly, however, the new design had a significantly lower power consumption. This has several reasons. First,
the “cleaned-up” design has less logic and flipflops than the original one, consuming less power, while still meeting timing
and area requirements of the original design. Second, more aggressive optimizations could be explored because their impact on
functional correctness could be immediately assessed by running verification of the complete property suite that was created
during PDD. An additional improvement of power efficiency would be possible by applying the PPA-based clock gating
techniques of [23]. These automatic techniques utilize an existing complete set of properties for creating clock gating circuitry
to minimize dynamic power. However, this technique was not employed to gain the above results.

In our experiments, the property suite was generated and refined such that it allowed to describe all design configurations
that are possible through the set of VHDL generics provided. The property suite comprises 22 operation properties. Proving
them on all possible configurations of the original design takes 23 min and 2 min for the redesign. Proving the most complex
property took less than 9 min with a maximum memory consumption of 1589 MB. Memory consumption ranges from 496 MB
to 1589 MB for both designs.

TABLE IV
SONET/SDH FRAMER — SIMULATION OF 107 FRAMES

Design RTL sim. SystemC-PPA sim. property proofs
RTL Industrial 540 s 2 s 23 min
RTL Redesign 600 s 2 s 10 min

Table IV shows results for the simulation of both the RTL and the SystemC-PPA models. In both simulations, the test bench
generated 107 SONET frames as input data to the design. A main contribution of PDD is that it enables to move verification



from RTL to the system level. The case study demonstrates that a high degree of abstraction is obtained by the PPA models.
In this particular example we can exploit that the correct buffering of the input stream is verified at the RT level and does not
need to be represented at the system level. Due to this the simulation times are reduced by a factor of ∼270 to ∼300, while
the soundness of the system model guarantees preservation of the design’s I/O sequences.

IX. CONCLUSION

In this paper we present Property-Driven Development, a novel method to refine transaction-level system models into RTL
implementations, along with the supporting open-source tool DeSCAM. The underlying theoretical basis of path predicate
abstraction ensures a sound formal relationship between the system-level model and the RTL, guaranteeing that verification
results obtained at the ESL hold unequivocally also on the RTL. This paves the way to using system-level models as golden
references for design. Implementing these models top-down with PDD results in designs that are correct by construction.
Additional simulation for design sign-off is not required. PDD is based on the provided tool DeSCAM, state-of-the-art property
checking and a well-defined methodology for design refinement.

In the first case study, we implemented three different RISC-V CPU designs that are all sound refinements of the same
abstract SystemC-PPA model. The refinement effort grows with the complexity of the designs. However, it stays reasonable even
for a sophisticated processor design with pipelining and forwarding. The system-level model simulates up to 32 times faster
than the RTL implementations. The second case study on an industrial design proved that PDD is practically applicable also to
larger-scale designs. It also showed a new way to deal with legacy design problems and demonstrated how a complete formal
property suite is usable as a formal specification for a redesign with clean code structure and optimized power consumption.

In conclusion, the presented methodology contributes to shifting global design and verification tasks from the RTL to the
system level. By closing the semantic gap between system level and RTL implementation we envision that such a step can
make a significant contribution to increase design productivity in future design flows.
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