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Abstract – Complex modules sometimes call for white box test approaches, as there may be some internal 

variables and signals that cannot be reached from the module’s outermost surface. One such test method is 

probing where a testbench related component is bound into the Device Under Test’s (DUT) structure to provide 

information about its internal activities. There are several probe methodologies employing the Universal 

Verification Methodology (UVM) that provide different kinds of flexibility and configuration options. 

This paper focuses on emphasizing each methodology’s practical strengths and weaknesses and presents a 

suggested solution, that was successfully deployed in an automotive field related verification project where 

error injection, error propagation observation and probing played a crucial role. As the probed values are 

propagated via Transaction-level Modelling (TLM) transactions to other UVM components, code 

maintainability, reusability and probe–monitor decoupling were strongly considered factors in choosing the 

finally implemented features. 
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I. METHODOLOGIES 

There are two essential reusable techniques for implementing probes using UVM: the interface binding based 

methodology and the polymorphic class based methodology. In this section a short introduction is given for both. 

While direct hierarchical access is a valid and possible methodology, its reusability is questionable, thus it is omitted 

from the further discussions. 

A. Interface binding 

SystemVerilog provides a bind directive that can be used to specify an instantiation of a module, interface, program 

or checker without modifying the code of the target. This allows encapsulating further functions, instrumentation code 

and assertions to the target in a non-intrusive manner. Bound structures become part of the target object and can be 

normally referenced using the standard hierarchical naming conventions. [1, 23.11] 

From a verification perspective, the possible candidates of a bind directive are the module and the interface, as not 

every EDA vendor supports the checker and the program construct seems to be obsolete in an UVM environment. 

Modules and interfaces both can contain concurrent and immediate assertions, class instances, tasks and functions; 

but with the virtual interface mechanism, the interface construct provides more flexibility toward the testbench 

components connection. 

typedef logic[63:0] addr_t; 
 
interface probe_if(addr_t contact); 
endinterface 
 
module dut(...); 
  addr_t addr; 
endmodule 
 
module top; 
  dut dut_inst(...); 
  bind dut_inst probe_if probe_if_inst (.contact(addr)); 
  initial uvm_config_db#(virtual probe_if)::set(..., dut_inst.probe_if_inst); 
endmodule 

Figure 1 – The instruments of an interface bind 



 

 

As shown in Figure 1, an interface bind requires three mandatory components:  

• A bound interface (probe_if) with an appropriate port list, where the ports will serve as connection points 

toward the host;  

• The target structure (dut) that contains the probed signals or ports;  

• A compilation-unit scope (top module in this case) that hosts the binding.  

It is always a good idea to include the UVM configuration database write of the interface (if needed) at the same 

spot as the bind is declared, since all hierarchical information is present there. 

B. The polymorphic class 

The key concepts of the polymorphic class methodology are as follows. SystemVerilog provides subtype 

polymorphism for its class constructs, thus allowing inheritance, dynamic method lookup and dynamic casting of 

objects. If a class is defined in a hierarchy construct, then it will access each port, parameter and variable of that 

structure. Furthermore, it becomes part of the namespace of the enclosing hierarchy construct; while it can be 

instantiated outside of that structure, it can only serve as a future superclass for descendants that are declared within a 

nested design element. [1, 3.13] [1, 23.4] 

Figure 2 illustrates this case; if the class holy_grail could be used as a superclass for other namespaces, it would 

solve most technical related problems of binding permanently. 

interface holy_grail_container(...); 
  virtual class holy_grail extends uvm_object; 
  endclass 
endinterface 
 
class tlm_probe extends holy_grail; 
endclass 

 Figure 2 – An apparently perfect solution that does not work, due to not available superclass 

To overcome this structural limitation of SystemVerilog, the following common technique is used: a superclass is 

specified in a widely available unit or package, a subclass is defined in the bound interface or module, and the UVM 

environment accesses an object of the subclass via a handle of the superclass. There are different well documented 

methods of accessing the subclass objects with SV and UVM constructs discussed in [2] [3] and [4]; thus while this 

paper will refer these methods, they are not explained to detail here, although an example is provided in Figure 3. 

Certain applications further extend this methodology with the introduction of an abstract superclass or with interface 

classes, to enforce the implementation of certain subroutines. However, these extensions do not fundamentally change 

the application in all but one case, which will be discussed in II.B later.  

virtual class probe_abstract; 
  pure virtual function addr_t get_data(); 
endclass 
 
interface poly_if(addr_t contact); 
  class probe_specialized extends probe_abstract; 
    function addr_t get_data(); 
      get_data=contact; 
    endfunction 
  endclass 
 
  probe_specialized probe_inst=new(); 
  initial uvm_config_db#(probe_abstract)::set(..., probe_inst); 
endinterface 
 
bind dut_inst poly_if poly_probe_inst (.contact(addr)); 

Figure 3 – The instruments of a polymorphic class access 



 

 

Figure 3 illustrates an example of the polymorphic class access. The bound interface (poly_if) encapsulates a 

specialized descendant (probe_specialized) of the global abstract superclass (probe_abstract). This subclass 

implements all the parent’s required methods, therefore providing access to the host interface’s ports and signals. As 

a final step, it is instantiated and set to the configuration database, to make it accessible for the rest of the testbench.  

It is worth noting that the bound interface type, the instance, and the specialized class type are unknown to the 

testbench, as they only access the class instance via a superclass typed handle, as shown in Figure 5 later. This detached 

nature provides a huge advantage for this methodology, albeit some restrictions apply as will be discussed in II.B. 

II. APPLICATION 

There are several considerations for instrumenting a probing. In this section, the usual challenges and solutions are 

discussed of both methodologies. 

A. The binding host 

No matter what methodology one may take, a bind directive will be used to inject a structure into the DUT. As the 

bind directive can be specified in a module, in an interface or in a compilation-unit scope, there are at least two 

straightforward places to consider as possible hosts. 

Placing the bind into the verification top module seems quite straightforward, but as the bind command may contain 

hierarchical paths from the DUT, a modification will also be required if there is a structural change in the DUT. 

Furthermore, this cripples the flexibility of the testbench to accept different kind of DUTs if their inner structure isn’t 

exactly similar regarding the probing targets. 

module dut (...); 
  addr_t addr; 
endmodule 
 
module dut_wrapper (interface tb_if); 
  dut dut_inst(...); 
  bind dut_inst probe_if probe_if_inst (.contact(addr)); 
  initial uvm_config_db#(virtual probe_if)::set(..., dut_inst.probe_if_inst); 
endmodule 
 
module top; 
  dut_wrapper dut_wrapper_inst(...); 
endmodule 

Figure 4 – A detached wrapper structure example 

Encapsulating the bind into a wrapper structure as shown in Figure 4 seems to be a better choice, as for example, a 

DUT wrapper could follow the changes in the DUT while being detached from the rest of the testbench. This kind of 

separation could be used without modification until the wrapper structure’s ports are changed and possibly even after 

that, if the wrapper employs generic interfaces as ports.  

This proves to be especially useful if the DUT and the testbench use different repositories or version handling 

systems and can be modified individually. With such a structure, it is also possible to use the very same testbench for 

different versions of the DUT, as the hierarchical path definitions follow the appropriate module instantiation. 

B. The probe API 

As soon as the probes are in place, processing components are needed. There could be a theoretical debate about if 

they can be named monitors in the UVM’s terminology, as they may or may not be part of an agent. However, since 

they translate bus level signals to the TLM world, this paper will address those components as monitors.  

The mandatory requirement of the monitor is to know the type of the virtual interface or polymorphic class it is 

expecting from the DUT. As the interface construct doesn’t support polymorphism, the exact type shall be declared, 

greatly reducing the component’s vertical reuse capability. The class-based access is much more simple and flexible, 

as the superclass is widely advertised, and the actual object will be compatible with it. 



 

 

class probe_monitor extends uvm_monitor; 
  /*  exact interface type required  */ 
  virtual probe_if probe_vif; 
  /*  only the superclass type required  */ 
  probe_abstract probe_inst; 
 
  function void build_phase(uvm_phase phase); 
    super.build_phase(phase); 
    uvm_config_db#(virtual probe_if)::get(..., probe_vif); 
    uvm_config_db#(probe_abstract)::get(..., probe_inst); 
  endfunction 
endclass 

Figure 5 – Accessing the probes in UVM with both methodologies 

Now that the monitor has access to the probe, it is time to compare the API options of the methodologies. 

The interface-based approach gives the most freedom to the processing components, as the native port signals and 

net values are accessible. While usually it can be considered as an advantage, it also makes the monitors error-prone 

to both human mistakes and interface connection or port list changes. However, as there are no access restrictions 

enforced, any kind of data transformation or lookup change is possible without modifying the bound component. 

The introduction of a new signal to the monitor and to the interface is a simple task, as only the interface’s port list 

and bind statement needs to be updated. Since different monitors may use different signals, adding another one to the 

port list will not change the operation of the existing components, since they will simply ignore the new item. Such 

an extension example is shown on Figure 6, where a new data field is added to the existing probe infrastructure and a 

bind statement that ignores this port. 

typedef logic[127:0] data_t; 
 
interface probe_if(addr_t address, data_t data); 
endinterface 
 
module top; 
  ... 
  bind dut_inst probe_if probe_if_inst (.address(addr), .data('z)); 
endmodule 

Figure 6 – Extending a probe interface with a new field 

On the other hand, as the polymorphic solution uses getter functions for data retrieval, the monitor’s access is 

restricted to the implemented methods. While this makes this probing methodology more robust, adding another API 

lookup function might become a far from trivial task to accomplish, especially if a common superclass is used in 

multiple probe variants. If an abstract superclass is used as the base of the specialized probes, there is a chance that 

the API functions are declared as pure virtual functions. In this case, adding a new one also requires supplying an 

implementation in each non-abstract descendant class, thus modifying all specialized subclasses. 

virtual class probe_abstract; 
  pure virtual function addr_t get_address(); 
  /*  data is always [7:3]  */ 
  virtual function data_t get_data(); 
    get_data = -1; 
  endfunction 
endclass 

Figure 7 – Mixing virtual and pure virtual methods 

While there is the option to use a virtual method instead of a pure virtual one and skip this requirement, it introduces 

uncertainty to the probing infrastructure, as there is no easy way to tell if the value returned came from the function 

of the superclass or the child class. Of course, if there is an identifiable valid range of values that the function can 



 

 

return in a legal use-case and a default invalid return value is specified in the super class, using a simple virtual method 

can be justified, just as shown in Figure 7. 

C. The parametrized complexity 

Until this point, the presented examples haven’t contained any parameters for the sake of simplicity. However, one 

may wonder what happens if parameters are introduced to enhance the reusability of probe infrastructure. Both 

methodologies share some common points, as the bound interface needs to be supplied with parameters; in the 

interface bind case to set the width of the ports; in the polymorphic case to supply the specialized class with parameters. 

Figure 8 and Figure 9 show parametrized examples for both variations. 

interface probe_if #(int ADDRW=32)(logic [ADDRW-1:0] contact); 
endinterface 
 
module top; 
  dut dut_inst(); 
  bind dut_inst probe_if#(16) probe_if_inst (.contact(addr)); 
  initial uvm_config_db#(virtual probe_if#(16))::set(..., dut_inst.probe_if_inst); 
endmodule 

Figure 8 – Parametrized interface bind structure and configuration database access 

virtual class probe_abstract #(int PW=32); 
  pure virtual function logic[PW-1:0] return_data(); 
endclass 
 
interface poly_if #(int ADDRW=16)(input logic[ADDRW-1:0] contact); 
  class probe_specialized extends probe_abstract #(ADDRW); 
    function logic[ADDRW-1:0] return_data(); 
      return_data=contact; 
    endfunction 
  endclass 
 
  probe_specialized probe_inst; 
  initial probe_inst=new(); 
  initial uvm_config_db#(probe_abstract#(ADDRW))::set(null, "*", "probe", probe_inst); 
endinterface 

Figure 9 – Parametrized polymorphic class structure and configuration database access 

As the interface binding methodology makes the bound structure accessible to the testbench components via a 

virtual interface variable, the probe monitor needs to know the exact parameterization of the interface to have a type-

compatible variable that will be used as a handle. Since such parameters (pseudo-constants) need to be supplied during 

elaboration time, they shall appear as class parameters to the monitor and its upstream parental chain, as seen on 

Figure 10. 

class probe_env extends uvm_env; 
  probe_monitor   #(32) probe_mon_32; 
  probe_subscriber#(32) probe_subscr_32; 
endclass 
 
class probe_monitor #(int DATAW=64) extends uvm_monitor; 
  virtual probe_if #(DATAW) probe_vif; 
 
  function void connect_phase(uvm_phase phase); 
    uvm_config_db#(virtual probe_if#(DATAW))::get(..., probe_vif); 
  endfunction 
endclass 

Figure 10 – Parametrized environment and monitor accessing a bound interface 



 

 

The other methodology has seemed to be more flexible so far; however, it suffers from the same problems. The 

abstract class typed handle needs to match in parameters with the instantiated one, so the same type of parameter 

propagation is also required here. Figure 11 demonstrates this scenario:  

class probe_monitor #(int DATAW=64) extends uvm_monitor; 
  probe_abstract#(DATAW) probe_inst; 
 
  function void connect_phase(uvm_phase phase); 
    uvm_config_db#(probe_abstract#(DATAW))::get(this, "", "probe", probe_inst); 
  endfunction 
endclass 

Figure 11 – Parametrized monitor accessing a polymorphic class 

In both cases, if the TLM analysis components are parameter-dependent, their parental chain and even the mediator 

transaction may need to be parametrized. As the parental chain may go as deep as the uvm_test descendant class, 

implementing a fully parametrized environment might be a serious effort. So it needs to be considered if it worth the 

invested time. A more detailed discussion and possible workarounds are presented in [5]. 

D. Interchanging capabilities 

In both methodologies, the bound interface is strongly typed and not polymorphic, it may only be changed within 

the compilation time, without editing the interface’s instantiation. Several solutions are discussed in [6], but it seems 

that the easiest one is to interchange files in the compilation script of the testbench. Other methods include parameter-

based compiler directives for example, but these methods introduce complex structures and/or code redundancy, thus 

reducing reusability. To ensure compatibility, the bound interfaces shall share their name and port list, and the 

specialized classes shall descend from the same superclass.  

On the TLM side of the probing infrastructure, type override methods can be employed to change monitor instance 

types, and while the interface or the superclass compatibility is ensured, their workflow shouldn’t be disturbed at all.  

III. LARGE SCALE PROBING 

Until now, this paper discussed the possibilities of probing from an academic perspective, like what structures can 

be employed and how they should be used. However, as one moves toward a real-world application, the value of 

certain qualities, like reusability and maintainability, increases by a substantial amount. This is especially true if the 

verification environment employs tens or hundreds of probes with differing requirements of port widths and port 

numbers, and maintaining many different components is not possible. This chapter will discuss the options of 

generalization and presents a solution based on the “maximal footprint” approach. 

A. Generic interface 

SystemVerilog provides a generic port construct which serves as a placeholder for an interface, acting as a weakly-

typed variable that accepts all kinds of connected interfaces. This approach pushes the responsibility to the 

implementer that each referenced signal of interface will be found in the supplied interface. However, there is no such 

thing as generic interface declaration.  

interface probe_if(addr_t contact); 
endinterface 
 
module top; 
  probe_if probe_if_inst; 
  initial uvm_config_db#(virtual interface)::set(..., probe_if_inst); 
endmodule 

Figure 12 – Generic interface to the configuration database and a syntax error 

A virtual interface is a strongly-typed variable that represents an instance of an actual interface. Since of this 

representation, it is a strongly-typed property and there is no such thing as configuration database access with a generic 



 

 

interface type; although it would be one of the ultimate solutions for probing and interface access in general. Figure 

12 illustrates this case, but similar to the example in Figure 2, the result is an error. 

B. Generalized interface 

As it was shown, it is not possible to use a fully generic interface due to language limitations. Instead, one may try 

to generalize the employed interface to enable wide range of horizontal and vertical reuse. A well-established method 

for this is the so-called “maximal footprint” approach, where the signal bundle sizes are determined to encompass the 

largest possible use case size and let the built-in vector truncation and extension of SystemVerilog manage the rest of 

the values. To enhance flexibility, instead of a propagated parametrization, a global package-based parametrization 

may be used, while omitting the interface parametrization entirely, as suggested by Figure 13. 

package testbench_base_pkg; 
  parameter int ADDRW =   64; 
  parameter int DATAW =  512; 
  parameter int PARW  = 2048; 
endpackage 
 
interface generalized_probe_if( 
    input var logic             sync_rst, 
    input var logic             async_rst_n, 
    input var logic             event_one, 
    input var logic             event_two, 
    input var logic [ADDRW-1:0] address_one, 
    input var logic [ADDRW-1:0] address_two, 
    input var logic [DATAW-1:0] data_word_one, 
    input var logic [DATAW-1:0] data_word_two, 
    input var logic [PARW -1:0] parameter_one, 
    input var logic [PARW -1:0] parameter_two 
  ); 
endinterface: generalized_probe_if 

Figure 13 – A simple generalized interface example 

This solution may appear ineffective for several reasons at first sight, since the memory footprint of the virtual 

interface variables may grow quite large, but as this shall not account more than a few megabytes, it is negligible. 

Furthermore, this approach suffers from the same error proneness that was discussed in II.B, but this can be relieved 

by several well-defined rules and conventions. Such rules may include connection conventions, like using the address 

ports only for addresses and adjusting the least significant bit (LSB) of the address to the LSB of the port, etc.  

As the interface serves as a listening only instrument in this application, it is possible to force the input ports to be 

variable types instead of ambiguous logic or strict net types. This allow the signals to fulfill ref argument roles in 

functions and tasks, thus allowing more agile application in the probe monitor. 

C. Generalized polymorphic class 

Likewise, the polymorphic methodology may as well be generalized by employing a similarly parametrized host 

interface for the specialized class and a corresponding parametrized API function, as illustrated on Figure 14. 

However, in many cases, architecting getter functions without any kind of added functionality (e.g. data 

transformation, etc.) seems redundant, and the including functionality might cripple reusability. As the UVM monitor 

is completely decoupled from the type and implementation of the probe class instance, the separation of data 

manipulation could easily result in faulty results due to implementation mismatches. Therefore, to avoid such errors, 

if data processing is restricted to the monitor, the polymorphic accessor API doesn’t offer a lot in terms of added value. 

Another disadvantage of the API functions is that they cannot be used natively as a value reference for other 

functions. They need some kind of trigger event to initialize reevaluation, while a var declared port of the interface 

will fit the reference’s role perfectly. This seems to be a small nuisance, but it is often desirable to deploy several fire-

and-forget checks both for synchronous and asynchronous triggers, without creating a specific task with specific signal 



 

 

names to work with. In this case, supplying the checker tasks with references of the probe values seem to be the 

straightforward option. 

virtual class generalized_probe_abstract; 
  pure virtual function logic[ADDRW-1:0] get_address(); 
endclass 
 
interface generalized_poly_if ( 
    input var logic [ADDRW-1:0] address_one 
  ); 
  class generalized_probe_specialized extends probe_abstract; 
    function logic[ADDRW-1:0] get_address_one(); 
      get_address_one=address_one; 
    endfunction 
  endclass 
endinterface 

Figure 14 – A simple generalized polymorphic class example 

To illustrate this with an example, take the following situation: the probe needs to check the value of a data field 

when another data field changes value and do some further processing, like writing a transaction to an analysis port. 

While clock gating and timing implementation are possible in the specialized probe class (as illustrated in [2, Fig. 4.] 

for example), it requires a workaround to track the value changes of an asynchronous signal purely from the TLM 

side. Opposed to this, the interface described in Figure 13 will solve this problem with a monitor shown below in 

Figure 15 with ease. The lack of this nimble ability is a huge disadvantage for the polymorphic methodology. 

class probe_example extends probe_base; 
  generalized_probe_if probe_vif; 
  uvm_analysis_port#(uvm_transaction) blue_ap; 
  uvm_analysis_port#(uvm_transaction) red_ap; 
 
  task run_phase(uvm_phase phase); 
    fork 
      check_data_field(address_one, data_one, blue_ap); 
      check_data_field(address_two, data_two, red_ap); 
    join_none 
  endtask 
 
  task check_data_field( 
      ref logic[FIELDW-1:0] _trigger, 
      ref logic[FIELDW-1:0] _value, 
      ref uvm_analysis_port#(uvm_transaction) _ap 
    ); 
    forever @(_trigger) begin 
      if (_trigger==3'h3) begin  
        /*  write transaction to analysis port etc.  */ 
      end 
    end 
  endtask 
endclass 

Figure 15 – Asynchronous deployment example in a probe monitor 

D. The suggested methodology 

Taking all the above into consideration, the suggested probe methodology that ensures maximum flexibility on the 

TLM level consists of the following components:  

• A generalized, maximal footprint interface, similar to the one shown at Figure 13, to avoid parametrization 

altogether  



 

 

• Bind statement wrapper structures around the DUT, similar to the one described in Figure 4, to guarantee 

DUT version tracking ability and decoupling option 

• A specialized UVM monitor component that is a descendant of a probe monitor base class or uvm_monitor, 

to ensure factory override and interchange capability 

• Furthermore, the aforementioned bound interface deployment conventions need to be created 

 Such a probing environment takes the most advantages from each of its components, while it preserves simplicity 

and offers easy extensibility.  

IV. CONCLUSION 

This paper has presented the current options of probing found in SystemVerilog, describing both the interface 

binding and the polymorphic class access methodologies. Practical considerations have been made regarding the 

complexity of deployment, the amount of required overhead and the pitfalls of parametrization. A solution has been 

suggested that employs the “maximal footprint” approach to avoid the difficulties of parameter handling, while 

providing flexibility and reusability on the TLM level of the testbench. Examples have been used to illustrate the key 

point of the design and to point out advantages and disadvantages in different levels of the methodologies to help 

verification engineers solve common probe-related problems. 

This generalized interface technique was successfully applied to a highly complex neural network related 

automotive design. The ability to have an array of probes deployed with different configurations, with minimal 

modification of the verification environment saved considerable amount of time and effort. The author firmly believes 

this approach can be used effectively in other projects and ported to different use cases. 

REFERENCES 

 

[1]  IEEE, "Standard for SystemVerilog — Unified Hardware Design, Specification, and Verification Language," in IEEE Std 1800-2012.  

[2]  D. Rich and J. Bromley, "Abstract BFMs Outshine Virtual Interfaces for Advanced SystemVerilog Testbenches," in Proceedings of 

DVCon 2008, San Jose, CA.  

[3]  D. Rich, "The Missing Link: The Testbench to DUT Connection," in Proceedings of DVCon 2012, San Jose, CA.  

[4]  S. Bhutada, "Polymorphic Interfaces: An Alternative for SystemVerilog Interfaces," Verification Horizons, vol. 7, no. 3, pp. 19-24.  

[5]  J. Bromley, "Slicing Through the UVM's Red Tape," in Proceedings of DVCon EU 2016, Munich.  

[6]  G. Blake and S. Chappel, "One Compile to Rule Them All: An Elegant Solution for OVM/UVM Testbench Topologies," in Proceedings 

of DVCon 2013, San Jose, CA.  

[7]  Verification Academy, UVM Cookbook, Mentor Graphics.  

 

 

 


	I. Methodologies
	A. Interface binding
	B. The polymorphic class

	II. Application
	A. The binding host
	B. The probe API
	C. The parametrized complexity
	D. Interchanging capabilities

	III. Large Scale Probing
	A. Generic interface
	B. Generalized interface
	C. Generalized polymorphic class
	D. The suggested methodology

	IV. Conclusion
	References

