@ A\MOTIVE

Proper Probing:

Flexibility on the TLM Level
Gergo Vékony

Motivation

Complex modules sometimes call for white
box test approaches, as there may be
some internal variables and signals that
cannot be reached from the module’s
outermost surface. One such test method is
probing where a testbench (TB) related
component is bound into the Device Under
Test's (DUT) structure to provide
information about its internal activities.

There are several probe methodologies
employing the Universal Verification
Methodology (UVM) that provide different
kinds of flexibility and configuration
options. As the probed values are usually
propagated via Transaction-level Modelling
(TLM) transactions to other UVM
components, code maintainability,
reusability and probe—-monitor decoupling
are strongly considered factors in choosing
most suitable implementation.

Conclusion

This generalized interface technique has
been well suited and applied to a highly
complex neural network related
automotive design. The ability to have an
array of probes deployed with different
configurations with minimal modification of
the verification environment saved
considerable amount of time and effort of
the verification team.

Such an approach provides clear benefits
against conventional parametrized
solutions, especially if horizontal and
vertical reuse is considered.

Methodologies

Interface binding Polymorphic class access

® An interface with an appropriate port list is
bound to the DUT.

® A widely available (abstract) superclass is
created for the probe.

® Ports serve as access points between the ® An interface with an appropriate port list
testbench and the DUT. and a descendant class definition and

® A compilation-unit scope hosts the binding instance is bound to the DUT.

and the ConfigDB access. ® This class instance can access every

® The testbench accesses the bound interface property of the interface.

like any other virtual interfaces. ® A compilation-unit scope hosts the
binding, the interface itself hosts the
ConfigDB access.

® The TB accesses the descendant class
instance like any other ConfigDB asset.

(=

Challenges

Probe access

Class based probes are communicating with the testbench via a getter API or variable
assignments that need to be implemented. Interface based probes may expose their full port list,
without restrictions.

Quality

Different probes shall use a similar way of communication, coverage collection and report
generation to ensure comparable results across the design.

Reusability

Probe functions shall be implemented with a level of abstraction in mind to ensure that the probe
is — at least horizontally — reusable in regression tests.

Version control

The testbench shall follow the changes in the DUT structure but also be decoupled from it.
Especially in the case of probes, as binding directly depends on the DUT hierarchy.

Parametrization Drawbacks

Implementing specialized probes — and probe monitors — without parameters is a bad ideq, as it
may cripple reusability and result in a lot of code for maintenance.

Implementing probes with parameters may help extension and reuse, but also requires a great
amount of pre-planning, as parametrization need to propagate through the (whole) TB
infrastructure, resulting in complex code.

Clearly, neither of these solutions is suitable in a simple and widely reusable implementation.

TRANSACTION

PROBE MON. lE— 3 PROBE AGENT JE— ~ n #m

PROPAGATION OF PARAMETERS

viva

PARAMETRIZED

INTERFACE

>
=

A Suggested Solution: Generalization

Generalized probes are based on the ,one size fits all” or ,maximum footprint” approach.
® Probe infrastructure complexity and extent are traded for runtime memory footprint increase.

® One set of parameters may be present to optimize the probe infrastructure, but can be
omitted entirely.

® Up to its maximum size, every signal can be handled by the probe infrastructure via
assignment truncation and extension.

® Thereis little to no need to use a vast array of different probes, thus maintenance effort is
reduced.

® Probe monitors can retain compatibility and interchangeability for UVM type or instance
overrides if they derive from a common superclass.

® Simplified probe and probe-monitor components encourage horizontal and vertical reuse.

UVM VOID

f

f

UVM COMP.

PROBE MONITOR
PARENT

PROBE MONITOR
SPECIALIZED

E—

Generalized Interfaces or Classes

Generalized interfaces have the following advantages:

® The full probe functionality could be encapsulated in the probe monitor, thus allowing
flexible, class based handling.

® As the interface ports can be classified as variables with the var keyword, they can be passed
natively as references for tasks and functions.

® This allows direct signal gating and timing functionality to be implemented in the probe
monitor without additional requirements.

Generalized class based probes have the following advantages:
® A stricter APl may be used within the probe. (Enforced by the abstract superclass.)

® Functionality might be separated between the probe and the probe monitor for reuse
purposes.

Note: signal and clock gating is possible in classes, with dedicated variables and assignment statements for example.

A Suggested Infrastructure

The suggested infrastructure consists of the following components:

® A generalized, variable based, maximal footprint interface: to avoid parametrization
altogether and enable timing control in the monitor component, thus reducing the bound
interface — and low level probe components — to the bare minimum.

® Bind statement wrapper structures around the DUT: to guarantee DUT and TB version
independent tracking and decoupling option for the bind statements.

® A specialized UVM probe monitor component: that is a descendant of an UVM probe
monitor superclass to ensure factory override and interchange capability.

® (Optionally) A bind and access pattern convention: to avoid signal clutter and
mismatches during the operation.

A testbench structure like this keeps the code complexity at an acceptable level, as only one
interface, a parent UVM component and several specialized UVM components are required.

Coverage collection and TLM connections can also employ the maximum footprint sizes for
their variables to maintain compatibility with the probe infrastructure and reduce the
parameter induced complexity.



