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Abstract—Virtual Prototyping is a proven methodology for early hardware architectural exploration, performance 
analysis and software development. To meet its objectives, Virtual Prototypes are expected to meet certain 
requirements around accuracy, early availability and simulation speed. While there has been much research around 
modeling techniques to help improve simulation performance of Virtual Prototypes, there hasn’t been much focus on 
good profiling tools to measure and analyze simulation performance of Virtual Prototypes. Most off-the-shelf profiling 
tools, like gprof, oprofile, perf, etc. are primarily designed to profile pre-compiled software code and report generated 
by these tools is organized for analysis of software function calls. For the purpose of Virtual Prototypes, a much 
desirable format is a one based on design hierarchy of the SoC being modeled. This paper presents a Virtual Prototype 
profiler developed to provide a detailed design hierarchy level breakdown of simulation execution time. The profiler is 
built into the Virtual Prototype and is designed to have negligible overhead. 
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I.  INTRODUCTION 

Virtual Prototyping is a proven methodology for early hardware architectural exploration, performance analysis 
and software development. To meet its objectives, Virtual Prototypes are expected to meet certain requirements 
around accuracy, early availability and simulation speed. Modeling Virtual Prototypes to accurately represent actual 
system being simulated helps increase confidence on reliability of results obtained using Virtual Prototypes. Early 
availability of Virtual Prototypes to architects and software developers during project phase help increase the utility 
and impact of Virtual Prototypes on project execution. Besides accuracy and early availability, simulation speed of 
Virtual Prototype is an equally important aspect – high simulation speed of Virtual Prototypes allows architects and 
performance analysts to explore large design space in a timely manner as well as helps software developers bring-
up full software stack on Virtual Prototype in a relatively short time span. While there has been much research 
around modeling techniques to help improve simulation performance of Virtual Prototypes, there hasn’t been much 
focus on good profiling tools to measure and analyze simulation performance of Virtual Prototypes. Most off-the-
shelf profiling tools, like gprof, oprofile, perf, etc. are primarily designed to profile pre-compiled software code 
generated by a C/C++ compiler or JVM like code which is JIT compiled but is not updated during the course of 
application run. Moreover, report generated by these tools is organized for analysis of software function calls, while 
for the purpose of Virtual Prototypes a much desirable format is a one based on design hierarchy of the SoC being 
modeled. Off-the-shelf profilers provide information regarding time spent for each function at a software level, 
however, these profilers don’t have any information about design hierarchy being simulated in a Virtual Prototype, 
so can’t provide any visibility into how different component models in a system consume simulation execution 
time. For example, if a common function is used to implement a component which is instantiated multiple times in 
Virtual Prototype, off-the-shelf profilers will not be able to distinguish how much time this common function takes 
in context of different instantiations of same component model. 

Due to lack of such a profiler, Virtual Prototype model developers generally rely on analyzing end-to-end 
simulation time obtained by simulating performance benchmark suites representing typical workloads to be used 
on Virtual Prototype or a coarse-grained analysis of simulation time spent between simulation kernel and certain 
component models. This paper presents a Virtual Prototype profiler developed to overcome these limitations to 
provide a detailed design hierarchy level breakdown of simulation time. Moreover, the profiler is built into the 
Virtual Prototype and is designed to have negligible overhead. The paper presents the detailed design of the profiler, 
results obtained by application of this profiler in several full-system Virtual Prototypes and its impact in uncovering 
several hard-to-find performance issues in simulation. The paper also shows the result on full system simulations 
with and without enabling the in-built profiler to show that the profiler has negligible overhead as desired.  
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II. RELATED WORK 

Much of the prior work listed in references has focused on general techniques for developing high performance 
software in general and avoiding modeling aspects known to degrade simulation performance. General software 
techniques include coding styles, in-lining, carefully selecting data structures and containers, avoiding unnecessary 
logging and I/O, making as fewer copies as possible, etc. Typical modeling techniques recommended for simulation 
models include avoiding context switches, higher abstraction levels and bursty communication. Typical modeling 
techniques for instruction set simulators (ISS) include just-in-time (JIT) compilation instead of interpretive 
execution and direct memory access. Also, much of the prior work focused around applying standard off-the-shelf 
profilers like gprof, perf, oprofile for Virtual Prototypes which provide only function call level details of time spent 
during simulation and help in optimizing some of the most-time taking methods to a certain level. However, with 
regards to Virtual Prototypes, these software function level reports are of limited applicability since it doesn’t 
provide any insight into how various component models are consuming simulation time. Method employed in [2] 
& [3] report simulation time between simulation kernel vs certain important component models, with the focus on 
optimizing the kernel. This paper extends the concept to provide a mechanism to get a detailed design hierarchy 
level breakdown of simulation execution time.  

III. INFRASTRUCTURE 

The profiler presented in this paper is designed to work with Functional Virtual Prototypes modeled in C/C++ 
and/or System C and using Transaction Level Models (TLM). Simulation can be controlled via System C kernel or 
custom C/C++ simulation kernel. A C++ modeling library was developed to abstract much of the complexity 
involved around simulation kernel and interface semantics and provide simple C/C++ APIs which can be 
implemented by individual models of the Virtual Prototype. The profiler was developed as part of this modeling 
library. 

Following figure shows a high-level view of a Functional Virtual Prototype. It comprises of many transaction 
level models of embedded processors, interrupt controller, complex accelerators, abstract interconnect networks, 
IO peripheral and memory controllers along with associated devices and memory models. 

 

Every component model is classified into two categories in our modeling library, based on whether it needs to 
be provided simulation time or not by the simulation kernel. All the processor models and some of the complex 
accelerator models need to be provided simulation time – these are referred to as Execution Control components 
in our modeling library. All Execution Control components work in a co-operative multi-threading fashion where-
in each is given a time-slice by the simulation kernel and it yields after performing desired amount of work so that 
the time-slice can be given to next Execution Control component by the simulation kernel and the simulation 
proceeds in this fashion. 
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Most of the interconnect, IO peripheral and memory controller models along with device and memory models 
don’t need to be provided simulation time as they perform all their work in blocking fashion in context of the 
Execution Control components. Such models are referred to as Non-Execution Control components in our 
modeling library and are not provided time-slice by the simulation kernel. 

The simulation profiler is designed to profile all the component models and provides wall-clock time consumed 
by each model during simulation. The library to measure the wall clock time consumption should be carefully 
selected to have negligible performance overhead of its own. The major requirement for this was that the library 
call should be using Time Stamp Counter (TSC) register of the underlying processor of the host machine on which 
Virtual Prototype is being run, instead of relying of the system calls of the host operating system. Also, high time 
resolution should be supported by the library call so that even very minuscule change in wall-clock time can be 
measured. boost::posix_time or std::chrono libraries meet these requirements and can be used. Our framework is 
independent on the library chosen for wall-clock time measurements and any library of choice can be used. 
get_timestamp() is the API which the modeling library expects to be implemented using the library of choice to 
return the current timestamp on each invocation of this method. 

Following was the code snippet for Execution Control component models for time-slicing without profiler. 

 

 

 

 

 

To enable profiler, following updates were done to this. 

 

Wall clock timestamp was measured just before and just after the call to do_stuff() method which is implemented 
by individual component models to perform the desired amount of work for the current time-slice. The delta 
between the two timestamps provides the wall-clock time consumed by the component model during the current 
time-slice. The profiler maintains separate wall-clock timestamp buckets (profile.bucket) for each component 
model in Virtual Prototype and keeps incrementing it with the delta for each invocation of time slice for that 
component. 

Since Non-Execution Control components perform their work in context of Execution Control components, 
any simulation overhead due to such components gets accumulated with the initiating components. The model-to-
model interface methods of the modeling library were updated to measure wall clock time spent outside of the 
component as shown in the code snippets below. Following was the code snippet from the default interface 
implementation without profiler. 

 

 

 

 

 

void do_timeslice(..) { // declared as SC_METHOD 
… 
do_stuff(..); // implemented by individual component models 
… 
next_trigger(time_elapsed, sc_core::SC_NS); // dynamic sensitivity (optional) 
} 

void do_timeslice(..) {  
… 
if (profiling_enabled) now =  get_timestamp(); // library call to get current wall clock time stamp 
do_stuff(..);  
if (profiling_enabled) profile.bucket[idx] += (get_timestamp() – now); 
… 
next_trigger(time_elapsed, sc_core::SC_NS); 
} 

void do_interface_access(..) { // called from do_stuff 
… 
socket->b_transport(*trans, delay); // implemented by target component model 
… 
} 
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To enable measurement of wall clock time spent outside of the component, following updates were done. 

 

 

 

 

 

 

Wall clock timestamp delta before and after the call to blocking transport provides the wall clock execution 
time spent during the current invocation of blocking transport. The profiler maintains separate external wall clock 
time buckets (profile.bucket_ext) for each component model in Virtual Prototype and keeps accumulating the time 
delta for each invocation of blocking transport call from that component. The difference between the profile.bucket 
and profile.bucket_ext provides the wall clock time spent during execution of the component itself. This is 
elaborated using following figure. 

 

 

 

 

 

 

 

 

 

 

 

 

Simulation Kernel provides time-slice to each Execution Control component (EC1, EC2, EC3) and wall clock 
timestamp measurements are done for each of these which includes the overall execution time of the Execution 
Control component and all Non-Execution Control components (A1, A2, A3, B1, B2, B3) called in the context of 
the current Execution Control component during the current time-slice. Let these be T1, T2, T3, etc. as shown in 
the figure. Let the wall clock timestamp measurements at the interface levels be X1, X2, X3, Y1, Y2, Y3, etc. as 
shown in the figure. Then the following formula can be applied to get the execution timestamp of each component 
for the current time-slice: 

 

 

 

 

 

 

 

 

void do_interface_access(..) {  
… 
if (profiling_enabled) now =  get_timestamp(); 
socket->b_transport(*trans, delay);  
if (profiling_enabled) profile.bucket_ext[jdx] += (get_timestamp() – now); 
… 
} 

EC1 execution time: T1 - X1    
EC2 execution time: T2 - X2 
EC3 execution time: T3 – X3 
A1 execution time: X1 - Y1 
A2 execution time: X2 - Y2 
A3 execution time: X3 – Y3 

B1 execution time: Y1 
B2 execution time: Y2 
B3 execution time: Y3 
… 
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Wall clock execution time for each component in the Virtual Prototype is logged at the end-of-simulation. A 
debug callback to get this information dynamically at run-time is also supported.  

IV. RESULTS 

Virtual prototype profiler presented in this paper can be applied to any Virtual Prototype development 
methodology and helps in gaining useful information about simulation execution time spent among various 
components at a design hierarchy level. This helps gaining valuable insight into performance of different 
component models and helps optimizing the Virtual Prototype to achieve maximum simulation speed. Moreover, 
since the profiler is built into the Virtual Prototype and can be enabled/disabled at run time, it is useful in measuring 
the impact of integrating any new component model into the Virtual Prototype, impact of integrating any third-
party model on overall simulation performance of the Virtual Prototype as well as how different software and run-
time configurations impact simulation performance of the Virtual Prototype. 

Following is an example of the report generated by the profiler for 8-core benchmark 

 

 

For one of the software workloads, the profiler helped uncover that one of the UART model instances was 
consuming most simulation time, which was both undesirable and unexpected. But having this uncovered, it was 
simple to fix the issue by removing the unnecessary synchronization requirement enforced by the model and help 
improve simulation performance by around 200%. 

% of wall-clock execution time

top.cluster0.cpu0 top.cluster0.cpu1 top.cluster1.cpu0 top.cluster1.cpu1 top.cluster2.cpu0

top.cluster2.cpu1 top.cluster3.cpu0 top.cluster3.cpu1 top.mc.core0 top.ddrc0

top.ifc top.ocram qman top.duart1
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In another scenario, one of the CPU model instances was found to take significantly higher simulation time that 
other CPU model instances in an SMP system. It turned out to be a run-time configuration issue of the Virtual 
Prototype which caused that CPU model instance to get stuck in an infinite loop of exceptions and hence 
significantly degrading simulation performance of the overall Virtual Prototype. Fixing it helped improve 
simulation performance by around 800%. 

Following chart shows the profiler overhead over a range of 20 benchmarks comprising of SMP Linux boot, 
IP-Fwd, IP-Sec, EEMBC and SPEC.  

 

The measured overhead of the in-built profiler across a range of 20 benchmarks was less than 1.5% on an 
average and approx. 2.8% in the worst case.  

V. CONCLUSION 

The Virtual prototype profiler presented in this paper was applied to several Virtual Prototypes developed for 
both architectural exploration and software development. The profiler was enabled at run-time to measure impact 
of different types of software applications and different run-time configuration settings of Virtual Prototypes on 
simulation performance of the different component models. This helped in uncovering and fixing several 
performance issues in simulation models as well as figuring out the best possible configurations of various Virtual 
Prototype run-time configuration options to achieve maximum possible simulation speed for different types of 
software workloads. The paper provided details of some of the examples where the profiler helped improve 
simulation performance significantly. Lastly, but not the least, the paper shows simulation results obtained across 
a variety of software workloads and benchmarks to showcase that the in-built profiler has a negligible overhead.  
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