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Who guards the guards?

• VIPs have teams of bodyguards – but do they remain loyal?
• DV teams write many checkers – but do they remain functional?

Quis custodiet ipsos custodes /
Who will check the checkers?
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The drive for automated regression
• As design complexity increases, so too do DV needs increase;

• The DV team will create a suite of testbenches and testcases.
– Regression testing returns to, and reruns, the suite of testbenches and testcases;

– Regression involves automatically producing coverage and pass/fail statistics;

– We return in order to re-verify, as there will have been changes;

• While regressing, are all of our checks still functional, or are they 
compromised by the various changes?
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While regressing, are all checks still functional, or 
are they compromised by the various changes?

• Why might a previous check cease to become active?
– A qualifying condition is no longer met;

– It gets disabled;

– The sample clock is changed: deactivated, or masking duty-cycle;

– ‘define macros get redefined;

• Important that the DV regression proves all checks are still active;

© Accellera Systems Initiative 4



Methodology to check checkers during regression
• Need agnostic method to check all checkers remain functional;
• Problem:

– Need to be deliberately producing errors;
– Standard processing of regression results reports tests as:

• FAIL – if they contain one or more errors;
• PASS – if they have no errors;

• New methodology:
– On selected tests, introduce predefined number of deliberate errors – provoke checkers;
– Revised processing of regression results reports tests as:

• FAIL – if they do not match the predefined deliberate errors or have others errors;
• PASS – if they match the predefined number / style of deliberate errors and have no other errors;
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Processing of regression results

• The regression setup will study two main aspects of the simulation data:
1. The functional coverage data;
2. The simulation log files containing error, warning and other information;

• The methodology proposed involves:
– Using and adapting the Cadence® vManagerTM flow;
– Adding extra intelligence to the parsing of the simulation log files;

© Accellera Systems Initiative 6



Simplified vManager use-case flow
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Assert : source code  log file
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always @*
begin
if (en == 1) begin
#1;
ibias_s1_ass : assert (correct_ibias_s1)
else $error (" ibias_0u5 out of range %f at time %tus",ibias_0u5, $time);

end //En==1  
end //always

Time:       30.138 us Info: en = 1; ibias = 0. This deliberately 
provokes and proves a model-based assertion.
ncsim: *E,ASRTST (/PATHNAME/PROJECTX/LDC_BIAS_V1/systemVerilog/verilog.sv,152)
: (time 30139 NS) Assertion tb_LDC_BIAS.DUT.ibias_s1_ass has failed
ibias_0u5 out of range 0.000000 at time       30.139 usus
Time:       36.147 us Info: en = 1; ibias = 0.5e-6.



Assert : log file  attributes in vManager DB
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Time:       30.138 us Info: en = 1; ibias = 0. This deliberately 
provokes and proves a model-based assertion.
ncsim: *E,ASRTST (/PATHNAME/PROJECTX/LDC_BIAS_V1/systemVerilog/verilog.sv,152)
: (time 30139 NS) Assertion tb_LDC_BIAS.DUT.ibias_s1_ass has failed
ibias_0u5 out of range 0.000000 at time       30.139 usus
Time:       36.147 us Info: en = 1; ibias = 0.5e-6.



uvm_error : source code  log file
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class ctc_sb extends uvm_scoreboard;
...
task ctc_compare_values();

if (act_val != exp_val)
`uvm_error("CTC_SB",$sformatf("ctc_compare_values: act_val != exp_val\n"))

endtask
...

reporter [RNTST] Running test ctc_single_error_test...
...
UVM_ERROR /PATHNAME/ctc_uvm.sv(28) @ 100: uvm_test_top.m_ctc_env.m_ctc_sb
[CTC_SB] ctc_compare_values: act_val != exp_val
...



reporter [RNTST] Running test ctc_single_error_test...
...
UVM_ERROR /PATHNAME/ctc_uvm.sv(28) @ 100: uvm_test_top.m_ctc_env.m_ctc_sb
[CTC_SB] ctc_compare_values: act_val != exp_val
...

uvm_error : log file  attributes in vManager DB
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Adapted vAPI vManager use-case flow
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Down-grading of attributes in vManager DB
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Down-grading of attributes in vManager DB
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New attributes in vManager DB – count mismatch
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vManager DB – regression analysis, prior to vAPI
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vManager DB – regression analysis, after vAPI
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vManager – vPlan metrics for special tests
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vManager – vPlan coverage for special tests
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vAPI post-processing
• Controlled invocation from the vsif flow – “post session”;

• A python script is used – but other formats, Perl, are alternatives;
1. Read and parse the special test criteria file;
2. Using REST / JSON: traverse the attributes database – loop through all runs and 

all errors;
3. Down-grade error attributes which match special test criteria; keep tally;
4. If tally mismatches, introduce new error;
5. Write back down-grades and new errors to the attributes database;
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Special test criteria file – *.csv format – Ex. #1
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test_name count name description
tb_LDC_BIAS 1 ASRTST.AVDD_ass Assertion tb_LDC_BIAS.DUT.AVDD_ass has failed

tb_LDC_BIAS 1 ASRTST.ibias_s1_ass Assertion tb_LDC_BIAS.DUT.ibias_s1_ass has failed

tb_LDC_BIAS 1 ASRTST.ibias_s2_ass Assertion tb_LDC_BIAS.DUT.ibias_s2_ass has failed

tb_LDC_SWACC 2 ASRTST.vdd_ass Assertion tb_LDC_SWACC.DUT.vdd_ass has failed

tb_LDC_SWMGR 1 ASRTST.vdd_ass Assertion tb_LDC_SWMGR.DUT.vdd_ass has failed

tb_VDAC_TOP 1 ASRTST.ibdacen_ass Assertion tb_VDAC_TOP.DUT.ICORE.ibdacen_ass has failed

tb_VDAC_TOP 1 ASRTST.dacref_ass Assertion tb_VDAC_TOP.DUT.ICORE.dacref_ass has failed

tb_VDAC_TOP 1 ASRTST.vref_ass Assertion tb_VDAC_TOP.DUT.ICORE.vref_ass has failed

tb_VDAC_TOP 1 ASRTST.vdd_ass Assertion tb_VDAC_TOP.DUT.ICORE.vdd_ass has failed

tb_PWR_TEST 1 ASRTST.vdd_ass Assertion tb_PWR_TEST.DUT.vdd_ass has failed



Special test criteria file – *.csv format – Ex. #2

© Accellera Systems Initiative 22

test_name count name description
single_error_expected 1 CTC_SB ctc_compare_values
single_error_dual_expected 2 CTC_SB ctc_compare_values
dual_error_dual_expected 2 CTC_SB ctc_compare_values



Conclusions
• We started explaining the need to check the checkers;

• We showed that introducing deliberate errors will explicitly demonstrate 
that the checkers are active;

• We showed that a cleverer PASS/FAIL definition can understand real-
and deliberate-errors;

• This flow is now being actively used on a live project at ams;
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Questions
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Miscellaneous supplementary slides
• vsif flow – script excerpt;

• vAPI python – several script excerpts;
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Miscellaneous – vsif script excerpt
session MINI__Projectx_model_vs_schem {

top_dir : $ENV(SIM_DIR)/../vmgr_sessions;
...
post_session_script: "check_the_checker.py";

group model_configs {
run_script:  "runams –cell $ATTR(test_name) -view model_config -simulate batch ..."
special_test_criteria_file : "$ENV(DV_DIR)/bin/vsifs/MINI__model_vs_schem__special-test-criteria-file.csv";
...

test tb_LDC_BIAS;
...

};

group schem_configs {
run_script:  "runams -cell $ATTR(test_name) -view schem_config -simulate batch ...";
...

test tb_LDC_BIAS;
...

};

};
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Miscellaneous – vAPI.py – REST definitions
set_server(vmgr_project="vmgr",server='https://'+vmgr_server,user=vmgr_username,passwd=vmgr_password)
headers = {

'content-type':'application/json',

'X-VMGR-Routing-Finalize' : 'true'

}

request={

"filter" : { "@c"       : ".AttValueFilter",

"attName"  : "parent_session_name",

"operand"  : "EQUALS",

"attValue" : session_name

},

"projection" : {

"selection" : ["id", "test_name", "special_test_criteria_file", "index", 
"failures_count", "failed_runs_count", "errors_count", "sv_seed", "log_file"]

}

}

runs_response = post(url='/runs/list',request=request,headers=headers)
runs_response_list = runs_response.json()
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Miscellaneous – vAPI.py – loop through runs
# Loop over all the runs of the current session

for run_resp in runs_response_list :

if (run_resp.has_key('special_test_criteria_file')) :

print " =       P O S T   P R O C E S S I N G     ="

print " Run: special_test_criteria_file = " + run_resp['special_test_criteria_file']

exists = os.path.isfile(run_resp['special_test_criteria_file'])

if exists :

with open(run_resp['special_test_criteria_file'], 'rb') as csvfile:
spamreader = csv.reader(csvfile, delimiter=',', quotechar='/')

for row in spamreader:

if (HDR_found & HDR_real_data) :

expected_test_name       = row[0]

expected_count           = int(row[1])

expected_name            = row[2]

expected_description     = row[3]

else :

print " = N O   P O S T   P R O C E S I N G     ="
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Miscellaneous – vAPI.py – loop thru error attributes
# Read severe message for this run

severe_msg_response = post(url='/severe-messages/list',request=request,headers=headers)

severe_msg_response_list = severe_msg_response.json()

# Loop over all severe messages of this run.

for severe_msg_resp in severe_msg_response_list :

...
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Miscellaneous – vAPI.py – matching algorithm
if (re.match(expected_name, severe_msg_resp['name'])) :

if (re.match('(.*)'+expected_description+'(.*)' , severe_msg_resp['description'])) :

if (re.match('(.*)'+expected_test_name+'(.*)' , run_resp['test_name'])) :

sim_log_count += 1

if (sim_log_count == 1) :

print "\n   match for " + expected_name + " - downgraded error to warning"

...              ...
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Miscellaneous – vAPI.py – write-back attributes DV
request={

"update": {"severity": "warning",

"comment": "downgraded error to warning"

},

"rs":     {"filter":{"@c": ".AttValueFilter",

"attName": "id",

"operand": "EQUALS",

"attValue": severe_msg_resp['id']

}

}

}

severe_msg_update = post(url='/severe-messages/update',request=request,headers=headers)
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Guidelines (1)
• Please keep the default font size for main lines at 28pt (or 26pt)

– And use 24pt (or 22pt) font size for the sub bullets

• Use the default bullet style and color scheme supplied by this template
• Limited the number of bullets per page. 
• Use keywords, not full sentences
• Please do not overlay Accellera or DVCon logo’s
• Check the page numbering
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Guidelines (2)
• Your company name and/or logo are only allowed to appear on the title 

page. 
• Minimize the use of product trademarks
• Page setup should follow on-screen-show (4:3)
• Do not use recurring text in headers and/or footers
• Do not use any sound effects
• Disable dynamic slide transitions
• Limit use of animations (not available in PDF export)
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Guidelines (3)
• Use clip-art only if it helps to state the point more effectively (no generic 

clip-art)
• Use contrasting brightness levels, e.g., light-on-dark or dark-on-light. 

Keep the background color white
• Avoid red text or red lines 
• Use the MS equation editor or MathType to embed formulas
• Embed pictures in vector format (e.g. Enhanced or Window Metafile 

format)
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