
Processing deliberate verification errors
during regression

Alastair Lefley, ams AG, Kemble, UK (Alastair.Lefley@ams.com)
Roger Witlox, ams AG, Eindhoven, NL (Roger.Witlox@ams.com)

Clemens Süßmuth, ams AG, Premstätten, AT (Clemens.Suessmuth@ams.com)
Thomas Ziller, Cadence, München, DE (ThomasZ@cadence.com)
Kawe Fotouhi, Cadence, München, DE (Fotouhi@cadence.com)

© Accellera Systems Initiative 1

mailto:Alastair.Lefley@ams.com
mailto:Roger.Witlox@ams.com
mailto:Clemens.Suessmuth@ams.com
mailto:ThomasZ@cadence.com
mailto:Fotouhi@cadence.com

Who guards the guards?

• VIPs have teams of bodyguards – but do they remain loyal?
• DV teams write many checkers – but do they remain functional?

Quis custodiet ipsos custodes /
Who will check the checkers?

© Accellera Systems Initiative 2

The drive for automated regression
• As design complexity increases, so too do DV needs increase;

• The DV team will create a suite of testbenches and testcases.
– Regression testing returns to, and reruns, the suite of testbenches and testcases;

– Regression involves automatically producing coverage and pass/fail statistics;

– We return in order to re-verify, as there will have been changes;

• While regressing, are all of our checks still functional, or are they
compromised by the various changes?

© Accellera Systems Initiative 3

While regressing, are all checks still functional, or
are they compromised by the various changes?

• Why might a previous check cease to become active?
– A qualifying condition is no longer met;

– It gets disabled;

– The sample clock is changed: deactivated, or masking duty-cycle;

– ‘define macros get redefined;

• Important that the DV regression proves all checks are still active;

© Accellera Systems Initiative 4

Methodology to check checkers during regression
• Need agnostic method to check all checkers remain functional;
• Problem:

– Need to be deliberately producing errors;
– Standard processing of regression results reports tests as:

• FAIL – if they contain one or more errors;
• PASS – if they have no errors;

• New methodology:
– On selected tests, introduce predefined number of deliberate errors – provoke checkers;
– Revised processing of regression results reports tests as:

• FAIL – if they do not match the predefined deliberate errors or have others errors;
• PASS – if they match the predefined number / style of deliberate errors and have no other errors;

© Accellera Systems Initiative 5

Processing of regression results

• The regression setup will study two main aspects of the simulation data:
1. The functional coverage data;
2. The simulation log files containing error, warning and other information;

• The methodology proposed involves:
– Using and adapting the Cadence® vManagerTM flow;
– Adding extra intelligence to the parsing of the simulation log files;

© Accellera Systems Initiative 6

Simplified vManager use-case flow

© Accellera Systems Initiative 7

Test1

Checker_1

Checker_2
vManager

Checker_N

DV environment

Test1
TestN

Attributes
Database

Including
Special tests

vsif vPlan
Results/Reports
Pass/fail
Func. Cov.
Plan Cov.

regression

Assert : source code log file

© Accellera Systems Initiative 8

always @*
begin
if (en == 1) begin
#1;
ibias_s1_ass : assert (correct_ibias_s1)
else $error (" ibias_0u5 out of range %f at time %tus",ibias_0u5, $time);

end //En==1
end //always

Time: 30.138 us Info: en = 1; ibias = 0. This deliberately
provokes and proves a model-based assertion.
ncsim: *E,ASRTST (/PATHNAME/PROJECTX/LDC_BIAS_V1/systemVerilog/verilog.sv,152)
: (time 30139 NS) Assertion tb_LDC_BIAS.DUT.ibias_s1_ass has failed
ibias_0u5 out of range 0.000000 at time 30.139 usus
Time: 36.147 us Info: en = 1; ibias = 0.5e-6.

Assert : log file attributes in vManager DB

© Accellera Systems Initiative 9

Time: 30.138 us Info: en = 1; ibias = 0. This deliberately
provokes and proves a model-based assertion.
ncsim: *E,ASRTST (/PATHNAME/PROJECTX/LDC_BIAS_V1/systemVerilog/verilog.sv,152)
: (time 30139 NS) Assertion tb_LDC_BIAS.DUT.ibias_s1_ass has failed
ibias_0u5 out of range 0.000000 at time 30.139 usus
Time: 36.147 us Info: en = 1; ibias = 0.5e-6.

uvm_error : source code log file

© Accellera Systems Initiative 10

class ctc_sb extends uvm_scoreboard;
...
task ctc_compare_values();

if (act_val != exp_val)
`uvm_error("CTC_SB",$sformatf("ctc_compare_values: act_val != exp_val\n"))

endtask
...

reporter [RNTST] Running test ctc_single_error_test...
...
UVM_ERROR /PATHNAME/ctc_uvm.sv(28) @ 100: uvm_test_top.m_ctc_env.m_ctc_sb
[CTC_SB] ctc_compare_values: act_val != exp_val
...

reporter [RNTST] Running test ctc_single_error_test...
...
UVM_ERROR /PATHNAME/ctc_uvm.sv(28) @ 100: uvm_test_top.m_ctc_env.m_ctc_sb
[CTC_SB] ctc_compare_values: act_val != exp_val
...

uvm_error : log file attributes in vManager DB

© Accellera Systems Initiative 11

Adapted vAPI vManager use-case flow

© Accellera Systems Initiative 12

Test1

Checker_1

Checker_2
vManager

Checker_N

vAPI
post

processing

special test criteria file
testname, count,

name, description

DV environment

Test1
TestN

Attributes
Database

Including
Special tests

vsif vPlan
Results/Reports
Pass/fail
Func. Cov.
Plan Cov.

regression

DV knowledge

Including metrics
to check the checkers

Down-grading of attributes in vManager DB

© Accellera Systems Initiative 13

Down-grading of attributes in vManager DB

© Accellera Systems Initiative 14

New attributes in vManager DB – count mismatch

© Accellera Systems Initiative 15

vManager DB – regression analysis, prior to vAPI

© Accellera Systems Initiative 16

vManager DB – regression analysis, after vAPI

© Accellera Systems Initiative 17

vManager – vPlan metrics for special tests

© Accellera Systems Initiative 18

vManager – vPlan coverage for special tests

© Accellera Systems Initiative 19

vAPI post-processing
• Controlled invocation from the vsif flow – “post session”;

• A python script is used – but other formats, Perl, are alternatives;
1. Read and parse the special test criteria file;
2. Using REST / JSON: traverse the attributes database – loop through all runs and

all errors;
3. Down-grade error attributes which match special test criteria; keep tally;
4. If tally mismatches, introduce new error;
5. Write back down-grades and new errors to the attributes database;

© Accellera Systems Initiative 20

Special test criteria file – *.csv format – Ex. #1

© Accellera Systems Initiative 21

test_name count name description
tb_LDC_BIAS 1 ASRTST.AVDD_ass Assertion tb_LDC_BIAS.DUT.AVDD_ass has failed

tb_LDC_BIAS 1 ASRTST.ibias_s1_ass Assertion tb_LDC_BIAS.DUT.ibias_s1_ass has failed

tb_LDC_BIAS 1 ASRTST.ibias_s2_ass Assertion tb_LDC_BIAS.DUT.ibias_s2_ass has failed

tb_LDC_SWACC 2 ASRTST.vdd_ass Assertion tb_LDC_SWACC.DUT.vdd_ass has failed

tb_LDC_SWMGR 1 ASRTST.vdd_ass Assertion tb_LDC_SWMGR.DUT.vdd_ass has failed

tb_VDAC_TOP 1 ASRTST.ibdacen_ass Assertion tb_VDAC_TOP.DUT.ICORE.ibdacen_ass has failed

tb_VDAC_TOP 1 ASRTST.dacref_ass Assertion tb_VDAC_TOP.DUT.ICORE.dacref_ass has failed

tb_VDAC_TOP 1 ASRTST.vref_ass Assertion tb_VDAC_TOP.DUT.ICORE.vref_ass has failed

tb_VDAC_TOP 1 ASRTST.vdd_ass Assertion tb_VDAC_TOP.DUT.ICORE.vdd_ass has failed

tb_PWR_TEST 1 ASRTST.vdd_ass Assertion tb_PWR_TEST.DUT.vdd_ass has failed

Special test criteria file – *.csv format – Ex. #2

© Accellera Systems Initiative 22

test_name count name description
single_error_expected 1 CTC_SB ctc_compare_values
single_error_dual_expected 2 CTC_SB ctc_compare_values
dual_error_dual_expected 2 CTC_SB ctc_compare_values

Conclusions
• We started explaining the need to check the checkers;

• We showed that introducing deliberate errors will explicitly demonstrate
that the checkers are active;

• We showed that a cleverer PASS/FAIL definition can understand real-
and deliberate-errors;

• This flow is now being actively used on a live project at ams;

© Accellera Systems Initiative 23

Questions

© Accellera Systems Initiative 24

Miscellaneous supplementary slides
• vsif flow – script excerpt;

• vAPI python – several script excerpts;

© Accellera Systems Initiative 25

Miscellaneous – vsif script excerpt
session MINI__Projectx_model_vs_schem {

top_dir : $ENV(SIM_DIR)/../vmgr_sessions;
...
post_session_script: "check_the_checker.py";

group model_configs {
run_script: "runams –cell $ATTR(test_name) -view model_config -simulate batch ..."
special_test_criteria_file : "$ENV(DV_DIR)/bin/vsifs/MINI__model_vs_schem__special-test-criteria-file.csv";
...

test tb_LDC_BIAS;
...

};

group schem_configs {
run_script: "runams -cell $ATTR(test_name) -view schem_config -simulate batch ...";
...

test tb_LDC_BIAS;
...

};

};

© Accellera Systems Initiative 26

Miscellaneous – vAPI.py – REST definitions
set_server(vmgr_project="vmgr",server='https://'+vmgr_server,user=vmgr_username,passwd=vmgr_password)
headers = {

'content-type':'application/json',

'X-VMGR-Routing-Finalize' : 'true'

}

request={

"filter" : { "@c" : ".AttValueFilter",

"attName" : "parent_session_name",

"operand" : "EQUALS",

"attValue" : session_name

},

"projection" : {

"selection" : ["id", "test_name", "special_test_criteria_file", "index",
"failures_count", "failed_runs_count", "errors_count", "sv_seed", "log_file"]

}

}

runs_response = post(url='/runs/list',request=request,headers=headers)
runs_response_list = runs_response.json()

© Accellera Systems Initiative 27

Miscellaneous – vAPI.py – loop through runs
Loop over all the runs of the current session

for run_resp in runs_response_list :

if (run_resp.has_key('special_test_criteria_file')) :

print " = P O S T P R O C E S S I N G ="

print " Run: special_test_criteria_file = " + run_resp['special_test_criteria_file']

exists = os.path.isfile(run_resp['special_test_criteria_file'])

if exists :

with open(run_resp['special_test_criteria_file'], 'rb') as csvfile:
spamreader = csv.reader(csvfile, delimiter=',', quotechar='/')

for row in spamreader:

if (HDR_found & HDR_real_data) :

expected_test_name = row[0]

expected_count = int(row[1])

expected_name = row[2]

expected_description = row[3]

else :

print " = N O P O S T P R O C E S I N G ="

© Accellera Systems Initiative 28

Miscellaneous – vAPI.py – loop thru error attributes
Read severe message for this run

severe_msg_response = post(url='/severe-messages/list',request=request,headers=headers)

severe_msg_response_list = severe_msg_response.json()

Loop over all severe messages of this run.

for severe_msg_resp in severe_msg_response_list :

...

© Accellera Systems Initiative 29

Miscellaneous – vAPI.py – matching algorithm
if (re.match(expected_name, severe_msg_resp['name'])) :

if (re.match('(.*)'+expected_description+'(.*)' , severe_msg_resp['description'])) :

if (re.match('(.*)'+expected_test_name+'(.*)' , run_resp['test_name'])) :

sim_log_count += 1

if (sim_log_count == 1) :

print "\n match for " + expected_name + " - downgraded error to warning"

... ...

© Accellera Systems Initiative 30

Miscellaneous – vAPI.py – write-back attributes DV
request={

"update": {"severity": "warning",

"comment": "downgraded error to warning"

},

"rs": {"filter":{"@c": ".AttValueFilter",

"attName": "id",

"operand": "EQUALS",

"attValue": severe_msg_resp['id']

}

}

}

severe_msg_update = post(url='/severe-messages/update',request=request,headers=headers)

© Accellera Systems Initiative 31

Guidelines (1)
• Please keep the default font size for main lines at 28pt (or 26pt)

– And use 24pt (or 22pt) font size for the sub bullets

• Use the default bullet style and color scheme supplied by this template
• Limited the number of bullets per page.
• Use keywords, not full sentences
• Please do not overlay Accellera or DVCon logo’s
• Check the page numbering

© Accellera Systems Initiative 32

Guidelines (2)
• Your company name and/or logo are only allowed to appear on the title

page.
• Minimize the use of product trademarks
• Page setup should follow on-screen-show (4:3)
• Do not use recurring text in headers and/or footers
• Do not use any sound effects
• Disable dynamic slide transitions
• Limit use of animations (not available in PDF export)

© Accellera Systems Initiative 33

Guidelines (3)
• Use clip-art only if it helps to state the point more effectively (no generic

clip-art)
• Use contrasting brightness levels, e.g., light-on-dark or dark-on-light.

Keep the background color white
• Avoid red text or red lines
• Use the MS equation editor or MathType to embed formulas
• Embed pictures in vector format (e.g. Enhanced or Window Metafile

format)

© Accellera Systems Initiative 34

	Processing deliberate verification errors during regression
	Quis custodiet ipsos custodes /�Who will check the checkers?
	The drive for automated regression
	While regressing, are all checks still functional, or are they compromised by the various changes?
	Methodology to check checkers during regression
	Processing of regression results
	Simplified vManager use-case flow
	Assert : source code log file
	Assert : log file attributes in vManager DB
	uvm_error : source code log file
	uvm_error : log file attributes in vManager DB
	Adapted vAPI vManager use-case flow
	Down-grading of attributes in vManager DB
	Down-grading of attributes in vManager DB
	New attributes in vManager DB – count mismatch
	vManager DB – regression analysis, prior to vAPI
	vManager DB – regression analysis, after vAPI
	vManager – vPlan metrics for special tests
	vManager – vPlan coverage for special tests
	vAPI post-processing
	Special test criteria file – *.csv format – Ex. #1
	Special test criteria file – *.csv format – Ex. #2
	Conclusions
	Questions
	Miscellaneous supplementary slides
	Miscellaneous – vsif script excerpt
	Miscellaneous – vAPI.py – REST definitions
	Miscellaneous – vAPI.py – loop through runs
	Miscellaneous – vAPI.py – loop thru error attributes
	Miscellaneous – vAPI.py – matching algorithm
	Miscellaneous – vAPI.py – write-back attributes DV
	Guidelines (1)
	Guidelines (2)
	Guidelines (3)

