

Probing UPF Dynamic Objects: Methodologies to

Build Your Custom Low-Power Verification Platform

Progyna Khondkar

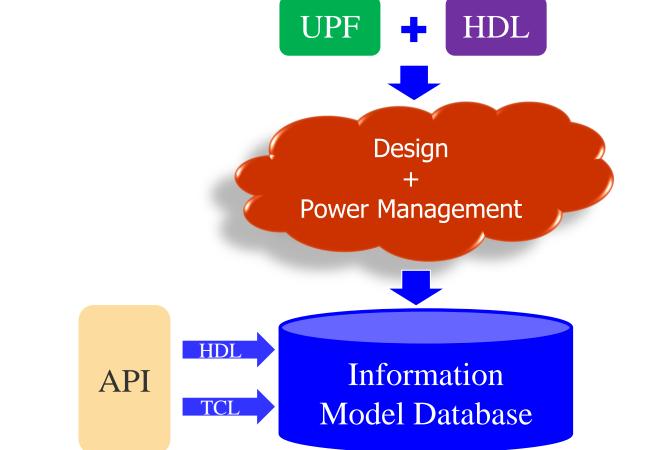
SYSTEMS INITIATIVE

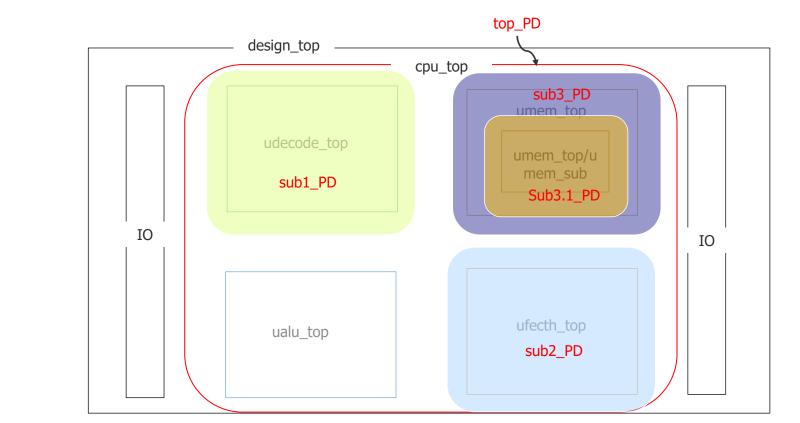
Mentor Graphics, A Siemens Business

OUTLINE & CONTRIBUTION

- This paper proposes a completely new low-power verification methodology
- On the key concepts of low-power (UPF) information model (UPFIM)
- Allows to query any dynamic properties of UPF objects -
- like continuously probe ON, OFF status of a power domains (during elaboration steps)
- Through Tcl API and passed the objects information on to
- Appropriately instantiated SV API based design codes.
- Example: Tcl API can be used on the simulation execution fly
- To populate any attributes for low-power SystemVerilog checker modules
- Already quarried and bound during elaboration steps into RTL design through

UPF & LOW POWER (TERMINOLOGIES?)


DESIGN AND VERIFIC


CONFERENCE AND EXHIBITION

ELRDPE

- UPF: Unified Power Format/IEEE 1801- Not just power spec language
- Full set for verification, architecting & implementing low power artifacts on any design
- UPFIM: A database with UPF objects processed in phases
- 5 phases before UPF objects on a design can be quarried
- bind_checker: A mechanism of custom low power checker
- Done by embedding the binding of the design and checker within the UPF/Tcl file
- Provides consolidated verification, messaging & debug environment and
- Simulator access all instances of a target design with a custom checker
- bind_checker assertions are distinctively different from SVA
- They can access all the UPF objects i.e. UPF power supply, power states etc. through Tcl query or HDL native API available in UPFIM.

RESULTS

- Complete user perception that allows to query UPFIMDB
- On simulation fly & populate any attributes of user low-power SV checker modules
- That are bound in elaboration steps into RTL design through UPF bind_checker.

Phases	UPF Processed on Designs in each Phases
Phase 1	Read UPF specifications
Phase 2	Build UPF model
Phase 3	Recognize the implemented UPF and process simulation controls
Phase 4	Apply UPF model to the design, including any checkers introduced by the UPF bind_checker
Phase 5	Query UPF model through Tcl and HDL API based quarry. This phase also implements checkers quarries resulting from the bind_checker

• At design optimization (i.e. vopt)

•

• Simulator leverages consolidated UPF flow

RESULTS

Regular Power Management UPF `dut_top.upf' create power domaon PD -elements {<list of elements e.g.> top vl top vl1}

. *## Retention Strategy*

53

46 set_retention pd_retention \ -domain pd -save_condition {!UPF_GENERIC_CLOCK && sc} \ -restore condition {UPF GENERIC CLOCK && !UPF GENERIC ASYNC LOAD && rc} ## Regular UPF Commands/Options ## For e.g. defining other PD, PD's supply set, association, ## Power state etc. ## Binding design module, Regular UPF and Custom Retention Checker through UPF bind_checker bind checker \$instance name -module checker retention -bind to tb -ports \$ports list ## Utilization of UPF Tcl Query Functions in Consolidated UPF flow foreach RET_STRATEGY [upf_query_object_properties \$PD -property upf_retention_strategies]

{set ret_save_signal [upf_query_object_properties \$RET_STRATEGY -property upf_save_signal] set ret_sav_sig_port [list sav_sig [upf_query_object_properties \ set **ret_restore_condition** [upf_query_object_properties \$RET_STRATEGY -property upf_restore_condition] set ret res cond port [list res cond \$ret restore condition] set RET_STRATEGY_NAME [upf_query_object_properties \$RET_STRATEGY -property upf_name] set RET_QUERY [query_retention \$RET_STRATEGY_NAME -domain \$PD -detailed] array set RET DETAILS [join \$RET QUERY]

set RET CLK \$RET DETAILS(upf generic clock)

Consist of UPF commands & UPFIM Tcl API in single UPF file	<pre>set ret_clk_port [list ret_clk \$RET_CLK] set ports_list {} lappend ports_list \$ret_sav_sig_port \$ret_res_sig_port \$ret_sav_cond_port ## Printing Useful Information for the Retention Strategy ## Output for the Retention for</pre>
<pre>## Custom SV Checker 'ret_checker.sv' import UPF::*; module checker_retention(sav_sig, res_sig, sav_cond, res_cond, ret_clk); input sav_sig, res_sig; input upfExpressionT sav_cond; input upfExpressionT res_cond; input ret_clk; wire clk; assign #1step clk = ret_clk; property p1;</pre>	<pre>puts "RET INFO STRATEGY: \$RET_STRATEGY\n PATH: \$ret_path\n type: \$cell_type\n"} ## Useful Information for the Retention Strategy Loading module checker_retention STRATEGY: /tb/pd.pd_retention1 PATH: /tb/pd.pd_retention1 type: upfRetentionStrategyT ## Assert Property p1 and p2 # ** Error: (vsim-8906) QPA_RET_SEQ_ACT: Time: 36 ns, clock toggled during retention period for retention element(s) in scope '/tb/top_vl': q # File: ~/test.upf, Line:46, Power Domain:/tb/pd # 37 pwr= 1, ret= 1, ret1= 0, clk= 1, rst= 0, d=1, q_vl= 01 01, q_vl1= 01 # # >>> 37 Save not executed</pre>
endmodule	# >>> 37 Restore success

CONCLUSIONS

- Propose methodology allows to create LP checker
 - User can readily utilize object passing by query function,
 - Hierarchical references as well with or without native SV HDL representations.
- Recognize UPF 3.1 LRM lack clarification on coordinating
 - **upfExpressionT** (creates relational objects to captures Boolean expressions for save, restore) with
 - Retention strategy record field or UPF generics, like the UPF_GENERIC_CLOCK, UPF_GENERIC_DATA
 - Specifically UPF mirror object function and *bind_checker* for generic requires clarification IEEE 1801.

[1] Progyna Khondkar, "Low-Power Design and Power-Aware Verification", Hard Cover ISBN: 978-3-319-66618-1, October, 2017, Springer International Publishing.

REFERENCES

[2] Design Automation Standards Committee of the IEEE Computer Society, "IEEE Standard for Design and Verification of Low-Power, Energy-Aware Electronic Systems", IEEE Std. 1801[™]-2018.

[3] Progyna Khondkar, et al., "How UPF 3.1 Reduces the Complexities of Reusing Power Aware Macros" March, DVCon 2020."

[4] Progyna Khondkar, et al., "Low Power Coverage: The Missing Piece in Dynamic Simulation", February March, DVCon 2018.

[5] Progyna Khondkar, et al., "Free Yourself from the Tyranny of Power State Tables with Incrementally Refinable UPF", February March, DVCon 2017.

[6] Design Automation Standards Committee of the IEEE Computer Society, "IEEE Standard for Design and Verification of Low-Power, Energy-Aware Electronic Systems", IEEE Std. 1801-2015, 5 December 2015.

- Proposed and implemented a novel methodology that paved the way to continuously probe UPF dynamic objects and
 - Allows to build custom low-power verification portfolio on existing low-power ____ simulation platform.
 - If carefully designed, these custom checkers can be reused across any low-power projects.

© Accellera Systems Initiative