
© Accellera Systems Initiative

• This paper proposes a completely new low-power verification methodology

• On the key concepts of low-power (UPF) information model (UPFIM)

• Allows to query any dynamic properties of UPF objects –

• like continuously probe ON, OFF status of a power domains (during elaboration steps)

• Through Tcl API and passed the objects information on to

• Appropriately instantiated SV API based design codes.

• Example: Tcl API can be used on the simulation execution fly

• To populate any attributes for low-power SystemVerilog checker modules

• Already quarried and bound during elaboration steps into RTL design through

bind_checker.

OUTLINE & CONTRIBUTION

RESULTS

UPF & LOW POWER (TERMINOLOGIES?)

• UPF: Unified Power Format/IEEE 1801– Not just power spec language

• Full set for verification, architecting & implementing low power artifacts on any design

• UPFIM: A database with UPF objects processed in phases

• 5 phases before UPF objects on a design can be quarried

• bind_checker: A mechanism of custom low power checker

• Done by embedding the binding of the design and checker within the UPF/Tcl file

• Provides consolidated verification, messaging & debug environment and

• Simulator access all instances of a target design with a custom checker

• bind_checker assertions are distinctively different from SVA

• They can access all the UPF objects – i.e. UPF power supply, power states etc. through Tcl

query or HDL native API available in UPFIM.

RESULTS

• Complete user perception that allows to query UPFIMDB

• On simulation fly & populate any attributes of user low-power SV checker modules

• That are bound in elaboration steps into RTL design through UPF bind_checker.

Mentor Graphics, A Siemens Business

Progyna Khondkar

Probing UPF Dynamic Objects: Methodologies to

Build Your Custom Low-Power Verification Platform

CONCLUSIONS

• Propose methodology allows to create LP checker

– User can readily utilize object passing by query function,

• Hierarchical references as well with or without native SV HDL representations.

• Recognize UPF 3.1 LRM lack clarification on coordinating

– upfExpressionT (creates relational objects to captures Boolean expressions for save,

restore) with

– Retention strategy record field or UPF generics, like the UPF_GENERIC_CLOCK,

UPF_GENERIC_DATA

– Specifically UPF mirror object function and bind_checker for generic requires

clarification IEEE 1801.

• Proposed and implemented a novel methodology that paved the way to continuously

probe UPF dynamic objects and

– Allows to build custom low-power verification portfolio on existing low-power

simulation platform.

– If carefully designed, these custom checkers can be reused across any low-power

projects.

UPF HDL

Design
+

Power Management

API
HDL

TCL

Information

Model Database

udecode_top

umem_top

ualu_top ufecth_top

IO IO

cpu_top

design_top

umem_top/u
mem_sub

top_PD

sub1_PD

sub2_PD

sub3_PD

Sub3.1_PD

Phases UPF Processed on Designs in each Phases

Phase 1 Read UPF specifications

Phase 2 Build UPF model

Phase 3 Recognize the implemented UPF and process simulation controls

Phase 4 Apply UPF model to the design, including any checkers introduced by the UPF bind_checker

Phase 5 Query UPF model through Tcl and HDL API based quarry. This phase also implements checkers quarries resulting from the bind_checker

• At design optimization (i.e. vopt)

• Simulator leverages consolidated UPF flow

• Consist of UPF commands & UPFIM Tcl API in single UPF file

Custom SV Checker ‘ret_checker.sv’

import UPF::*;

module checker_retention(sav_sig, res_sig, sav_cond, res_cond, ret_clk);

input sav_sig, res_sig;

input upfExpressionT sav_cond;

input upfExpressionT res_cond;

input ret_clk;

wire clk;

assign #1step clk = ret_clk;

property p1;

@(posedge clk) (sav_sig |-> sav_cond.current_value);

endproperty

assert property (p1) $display(">>>%t ----- Save success", $time());

else $display(">>>%t ----- Save not executed", $time());

endmodule

Regular Power Management UPF ‘dut_top.upf’

create_power domaon PD –elements {<list of elements e.g.> top_vl top_vl1}

...

Retention Strategy

46 set_retention pd_retention \

47 -domain pd \

52 -save_condition {!UPF_GENERIC_CLOCK && sc} \

53 -restore_condition {UPF_GENERIC_CLOCK && !UPF_GENERIC_ASYNC_LOAD && rc}

Regular UPF Commands/Options

For e.g. defining other PD, PD’s supply set, association,

Power state etc.

Binding design module, Regular UPF and Custom Retention Checker through UPF bind_checker

bind_checker $instance_name -module checker_retention -bind_to tb -ports $ports_list

Utilization of UPF Tcl Query Functions in Consolidated UPF flow

foreach RET_STRATEGY [upf_query_object_properties $PD -property upf_retention_strategies]

{set ret_save_signal [upf_query_object_properties $RET_STRATEGY -property upf_save_signal]

set ret_sav_sig_port [list sav_sig [upf_query_object_properties \

set ret_restore_condition [upf_query_object_properties $RET_STRATEGY -property upf_restore_condition]

set ret_res_cond_port [list res_cond $ret_restore_condition]

set RET_STRATEGY_NAME [upf_query_object_properties $RET_STRATEGY -property upf_name]

set RET_QUERY [query_retention $RET_STRATEGY_NAME -domain $PD -detailed]

array set RET_DETAILS [join $RET_QUERY]

set RET_CLK $RET_DETAILS(upf_generic_clock)

set ret_clk_port [list ret_clk $RET_CLK]

set ports_list {} lappend ports_list $ret_sav_sig_port $ret_res_sig_port $ret_sav_cond_port

Printing Useful Information for the Retention Strategy

puts "RET INFO STRATEGY: $RET_STRATEGY\n PATH: $ret_path\n type: $cell_type\n"}

Useful Information for the Retention Strategy

-- Loading module checker_retention

STRATEGY: /tb/pd.pd_retention1

PATH: /tb/pd.pd_retention1

type: upfRetentionStrategyT

...

Assert Property p1 and p2

** Error: (vsim-8906) QPA_RET_SEQ_ACT: Time: 36 ns, clock toggled during retention period for retention element(s) in

scope '/tb/top_vl': q

File: ~/test.upf, Line:46, Power Domain:/tb/pd

37 pwr= 1, ret= 1, ret1= 0, clk= 1, rst= 0, d=1, q_vl= 01 01, q_vl1= 01

>>> 37 ----- Save not executed

>>> 37 ----- Restore success

REFERENCES

[1] Progyna Khondkar, “Low-Power Design and Power-Aware Verification”, Hard Cover ISBN: 978-3-319-66618-1, October, 2017, Springer

International Publishing.

[2] Design Automation Standards Committee of the IEEE Computer Society, “IEEE Standard for Design and Verification of Low-Power,

Energy-Aware Electronic Systems”, IEEE Std. 1801™-2018.

[3] Progyna Khondkar, et al., “How UPF 3.1 Reduces the Complexities of Reusing Power Aware Macros" March, DVCon 2020.”

[4] Progyna Khondkar, et al., “Low Power Coverage: The Missing Piece in Dynamic Simulation”, February March, DVCon 2018.

[5] Progyna Khondkar, et al., “Free Yourself from the Tyranny of Power State Tables with Incrementally Refinable UPF”, February March,

DVCon 2017.

[6] Design Automation Standards Committee of the IEEE Computer Society, “IEEE Standard for Design and Verification of Low-Power, Energy-

Aware Electronic Systems”, IEEE Std. 1801-2015, 5 December 2015.

