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Abstract: As design sizes continue to grow and geometries continue to shrink, more and more SoCs are at risk of falling prey 

to the silent chip-killer — glitch defects on asynchronous path s. Glitches detected on a SoC at the  last minute can cause  panic 

and waste  months of verification cycles. Worse, if it’s detected post manufacturing, it can lead to very costly recalls.  

Glitches are  undesired transitions that occur before the signal settles to its intended value.  These glitches, which are pulses of 

very short duration, may be captured by a register when crossing clock domain, thereby causing a functional failure . Clock do-

main crossing (CDC) paths with multiplexer or combinational logic are often prone to glitch defects that can be introduced dur-

ing the synthesis process. Since CDC verification is usually done at the RTL, such glitch defects can be missed and lead to logic 

failure resulting in costly chip respins. These defects are tricky and can often escape  undetected. These cannot be accurately iden-

tified in gate-level simulation as simulators have difficulty sampling the glitch since it is hard to create a pattern to cover glitch 

conditions and an existing glitch in a waveform seldom hits the clock edge  on asynchronous paths. Similarly, static CDC verifica-

tion checks that warn for combinational logic i n a data path do not work well on gate-level designs as these checks would be very 

noisy. At the  gate level every CDC  path is bit blasted and any multiplexer or combinational logic is synthesized as O AI (or-and-

invert) or AO I (and-or-invert) logic, and it would take considerable effort to reach  a select few real glitch paths out of over a mil-

lion CDC paths using this approach.  

In this paper we present a unique method based on automatic formal analysis to zero -in on real glitch paths that can kill  your 

chip if not addressed early. This paper further addresses the challenges involved in fixing the glitch paths once these are i denti-

fied. Appropriate  debug aids based on combinational expression analysis of the data path logic are  presented to quickly zoom to 

the logic that’s responsible  for introducing the glitch . We walk through a case study on a real design utiliz ing the combination of 

formal technique s and a structured glitch resolution methodology to significantly improve glitch detection accuracy, utilize  ad-

vanced debug techniques to identify and fix glitches , and save crucial verification cycles late  in the design tape -out phase.  

 

 

I. INTRODUCTION 
 

Glitches are unwanted spikes in signals that can propagate through the combinational logic. At times, signals display an in-

correct intermediate value before reaching the final, steady state value; this results in a glitch. Fig 1 shows glitches in combina-

tional logic. A signal may temporarily change its value while it is supposed to remain static at a logic 1 or 0 value, or it may os-

cillate while changing value from 0 to 1 or 1 to 0 before reaching the final value.  

 

 
 

Fig1: Examples of glitches on combinational logic 

 

In combinational logic, a glitch can occur if there are multiple paths with opposite polarity converging at an AND or OR 

gate and the path delays from the source of the signal to the converging point do not match. Glitches can occasionally cause 

functional errors that may lead to chip failures. Typically, glitches can be introduced during synthesis due to glitch prone im-

plementation of combinational logic. Fig 2 shows a simplified synthesis flow; it takes an RTL description of the design in an 

HDL language like Verilog or VHDL with design constraints and converts it to a gate-level netlist. The synthesis process per-

forms some optimizations to satisfy the design constraints and meet power, area , and frequency requirements. During the syn-

thesis process, it may implement basic RTL elements like multiplexers in a way which is prone to glitches.  
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Fig 2: Synthesis may produce glitch prone logic when it converts RTL to a gate-level netlist  

 

A glitch generated in one clock domain can be captured by a register in another clock domain if the glitch passes through a 

clock domain crossing (CDC) path. Some unsynchronized paths at the RTL may be deemed safe due to stable signals , such as 

configuration registers. In other cases , some synchronized CDC paths which use a data-mux type of synchronizer are structur-

ally verified at the RTL and considered good CDC paths. There are other types of complex synchronizers , such as FIFO and 

handshake, that include a multiplexer or combinational logic at the CDC path in RTL and are considered good CDC paths with 

combinational logic because the protocol involved in the data transfer is followed. A CDC path that is completely glitch safe at 

the RTL can run into chip-killing glitch defects post synthesis if the combinational logic and multiplexer logic in crossing paths 

is not synthesized in a glitch-free manner. The challenge with glitch problems is that they manifest very late in the design cycle 

yet often are the culprit behind crucial silicon re-spins. This problem becomes more acute as SoCs move towards lower geome-

tries and higher performance. The real challenge is to identify CDC paths with potential glitches  from among the huge number 

of CDC paths, typically over a million in a netlist, and then provide sufficient guidance to the verification engineer to quickly 

address them.  

In this paper, we first examine the glitch problem in CDC paths then discuss the various attempts made to identify glitch 

paths in the netlist and the challenges faced in each method. We also talk about inherent limitations of each method. We pro-

pose a new solution based on automatic formal analysis and show how it can be employed practically in large SoCs. The pro-

posed methodology was applied for complete glitch verification on a set of real SoCs. We illustrate a real glitch scenario in  a 

design and summarize the results obtained using our proposed methodology. 
 

II. THE PROBLEM OF GLITCHES ON CDC PATHS IN NETLISTS 
 

As an example of how a glitch can be introduced in a CDC path, consider the logic in Fig 3, which is an example of a syn-

chronized CDC path in RTL. It is a data-mux synchronizer in which a control signal is synchronized in the receiver domain and 

data is transferred from the transmitter to the receiver domain when the multiplexer is enabled by a synchronized control signal. 

When the multiplexer is not enabled by the control signal, the receiver holds the data. Structurally the schematic in Fig 3 satis-

fies all requirements of the synchronizer.  

 

 
 

Fig 3 : CDC path in RTL is glitch free 



 

Every CDC synchronizer has a protocol, and the data-mux synchronizer has a protocol that the transmit data should not 

change when the multiplexer is enabled. Typically at the RTL, in addition to structural verification, the protocol of the syn-

chronizer is validated using simulation or formal methods to ensure that data is transferred safely across the CDC path. Thus, 

the schematic in Fig 3 represents a completely valid CDC synchronizer at the RTL when the protocol for synchronizer is fol-

lowed.  

Fig 4 shows the schematic of the same CDC crossing after synthesis with combinational logic. The synthesis tool creates 

such logic while mapping the multiplexer to gates. The combinational logic is equivalent to the multiplexer in functionality, but 

it has the potential to glitch under certain conditions . For example when the SEL is 0 and RX is 1, the RX should hold its value 

and the output of the OR gate should always stay 1. But in this schematic, when the TX changes its value from 1 to 0, there is a 

possibility of delay through the inverter and the output signal may momentarily become 0. So even when SEL is 0 the output of 

the OR gate can create glitches for TX value changes. If the RX register in the receiving clock domain samples the glitch, it may 

cause a CDC bug. This kind of bug will be missed in the CDC verification. If the designer is lucky, it might be detected in gate-

level simulation; if unlucky, it may escape to silicon and cause chip failure.  

   

 
 

Fig 4: Static-0 glitch introduced in CDC path after synthesis  

 

The glitch prone logic can be fixed by adding extra combinational logic, as shown in Fig 5. With the additional logic, when-

ever the transmitter and receiver are 0 it makes sure that the output is always 0, and it prevents the transmitter from making any 

glitches at the OR gate output. This is typically done by an engineering change order (ECO). ECOs are the process of inserting 

a logic change directly into the netlist after it has already been processed by an automatic tool. ECOs are usually done to save 

time before the chip masks are made because they avoid the need for full ASIC logic synthesis, technology mapping, place and 

route, and timing verification. 

 
 

Fig 5: Additional logic added to stop glitch generation 

 

Another example of glitch prone logic on a CDC path are unsynchronized paths. An unsynchronized path at the RTL may 

be considered valid if it has stable signals , such as a configuration register on the transmitter side. A combinational logic may 

be allowed on the unsynchronized path since it is guaranteed that the configuration register will not change its value once s et. 

If the combinational logic involved a controlling signal from the transmitter domain and if it is synthesized to a glitch prone 

logic, any change in the control signal can create a glitch at the output of the combinational logic which may be captured by a 

receiver register in another clock domain.  



 

III. CHALLENGES DETECTING GLITCH PRONE CDC ON A NETLIST  

 

As discussed in the previous section, glitches can be introduced on good RTL paths which were completely CDC clean 

and had good functionality during the synthesis process. Verification engineers have attempted to identify the presence of 

combinational logic capable of inducing the glitches in signals traversing between clock domains in a variety of ways. Each 

such method has some limitations in terms of the accuracy it provides and effort required to identify the true glitch paths. Be-

low are some examples of methods tried by engineers  and the challenges faced. 

 

- Simulation to capture glitch:  For each of the clock domain crossing paths with combinational logic, the receiver value 

can be sampled in a gate-level simulation. Sampled values then can be used to identify the presence of glitch logic in 

the clock domain crossing path. Due to the asynchronous nature of signal paths crossing clock domains, many simula-

tors have difficulty sampling the signal paths at the times when glitches may be present. Even if the simulator catches a 

glitch path and a waveform is present, it is difficult to manually identify the source of the glitch path. There are typical-

ly over a million CDC paths in the netlist and if an ECO is required at the netlist level to resolve the glitch with addition-

al logic or stop the propagation of the glitch, it is necessary to know all the glitch sources and the exact point of glitch 

origin. 

 

- Assertions to identify glitch: Some verification engineers have elected to write assertions to check if the simulators are 

sampling the signal paths at the correct time, but the results of sampling checks are often not accurately captured by 

the simulator. Assertions also have some semantic limitations when it comes to asynchronous clocks, and all simula-

tors may not handle these kind of assertions. So writing assertions may itself become a difficult task.  

 

- Static checks at the netlist level:  Verification engineers have also performed static checks on the circuit design to 

identify portions of the circuit that may be susceptible to inducing glitches in signals traversing a clock domain cross-

ing. These static checks typically include flagging every clock domain crossing that contains combinational logic in its 

path for manual inspection by the verification engineers . While manual inspection can identify combinational logic ca-

pable of inducing signal glitches, the procedure is error-prone and time-consuming. This becomes a mammoth effort at 

the gate-level because every data path with mux logic is now transformed as a path with significant combinational log-

ic. The presence of design for test (DFT) and power logic also makes the relatively simpler RTL data paths more com-

plicated. 

 

- Preventive steps at the RTL:  Preventive steps at the RTL that mark data paths with mux logic as “don’t touch” during 

synthesis are often used and significantly reduce glitches that propagate to the netlist. However, a combination of fac-

tors and processes in the design cycle inevitably leads to a few glitch errors manifesting during synthesis or escaping 

detection until late in the design cycle. The problem of ensuring that the design being taped out is glitch proof still re-

mains to be addressed. 

 

With the current challenges, an approach than can help zero-in on the real glitch paths out of the millions of CDC paths is 

highly desirable and can significantly reduce the verification effort late in the design cycle and eliminate any risk of silicon re-

spin on account of glitches on asynchronous paths. 

 

IV. AUTOMATIC FORMAL BASED GLITCH DETECTION METHODOLOGY 
 

Fig 6 shows the steps in our proposed automatic, formal-based glitch detection methodology. The proposed method utiliz-

es a combination of structural CDC analys is, expression analysis , and formal analysis to prune and prove the real glitches in 

the design at the gate level. This approach works on gate-level designs and is hence fool proof. The detected real glitches are 

very few and can be investigated quickly utilizing the visualization aids available. The approach has various stages that are 

interlinked, and the entire methodology is automated.  

 

The first stage is complete static CDC analysis of paths to prune out paths that do not contain any combinational log ic at 

the gate level. These are regarded as glitch-free paths. This requires a dedicated CDC solution that can understand RTL setups 

and automatically convert them to the gate level and that can also infer additional information about the DFT constraints at the 

gate level.  

 



The next step is to do a comprehensive expression analysis of the combinational logic tree in the data path to identify po-

tential glitch candidates that can cause the glitch to propagate. This further prunes the list of glitch candidate s; however the 

real challenge is to identify the scenarios under which the glitch really propagates. To accomplish this, we utilize formal en-

gines to verify the glitch propagation condition and conclusively give counter examples of scenarios under which th e glitch 

will propagate. This results in glitches being detected that have been proven to exist and propagate during design operation.  

The counter example helps the verification engineer convince the IP team of the exact scenario under which the glitch can 

propagate and cause a silicon failure. 

 

 

 
 

 Fig 6: Proposed automatic formal-based glitch analysis flow 

 

The combinational logic on the data path of glitch prone paths can be extremely deep. So for the select few paths that are 

glitch prone, comprehensive expression analysis helps result in identifying the exact location at which the signal and its com-

plementary term are expected to converge, resulting in a glitch during real design operation. This expression analysis technique  

coupled with GUI visualization substantially reduces the glitch investigation and resolution effort.  

 

The method was critically analyzed on the following factors:  

- Quality of results and minimal noise - At the netlist level, verification cycles are already stretched so quality of results 

have a critical impact on meeting tape-out schedules. The proposed formal-based approach for glitch verification al-

ways resulted in less than a few hundred glitches for millions of paths thereby reducing the verification effort. Utilizing 

this formal approach eliminated noise in results ; as well, very few reported glitches were deemed invalid (and these 

were due to some missing constraints in setups). 

 

- Ability to run very large SoCs  – The hierarchical CDC verification approach was utilized to propagate constraints from 

the top run to the block level, complete the CDC and glitch analysis on blocks, and then do glitch analysis at the top 

level. In addition, constraints from the RTL setup were transformed and reused to quickly bring up the CDC solution a t 

the gate level to get accurate results quickly. It was essential for the glitch verification solution to automatically con-

sume and transform RTL directives to gate-level directives. Fig 7 and 8 show the hierarchical approach followed to run 

very large SoCs. 



 
 

Fig 7: Hierarchical CDC runs to generate constraints for blocks (partitions) 

 

                    
 

Fig 8: Formal glitch analysis can be done on blocks and top level separately 

 

- Ease of debug – Due to deep combinational logic on glitch prone paths, it was essential to zero-in on the exact area 

where the glitch needs to be addressed. This required review of schematics , and the time to review each proven glitch 

path was noted. This was generally in the order of a few minutes due to additional guidance  on convergence points in 

the data paths and the ability to use expression analysis to identify the exact paths that represent the complex glitch 

scenario. Paths with glitch signals and the source of glitches are highlighted in the schematic as shown in Fig 9. The 

precision of debug information helps reduce the time to reach the root cause of the issue to just a few minutes , down 

from many hours without this information. 

 

 
 

Fig 9: Highlight glitch signal and its converging points  

 

- Reduction in verification cycles  – Utilizing the proposed approach significantly reduces the verification cycles as 

glitch verification can be performed with existing RTL setups and the results pinpoint the exact glitch signal and the 

point where the glitch was introduced. With this approach, no simulation setup and test vectors are required, and it is 

much faster than simulation to get the results.  

  



V. CASE-STUDY 

We will now illustrate the proposed methodology with an example of a real glitch which was observed in gate-level simula-

tion of one of the SoCs. Fig 10 shows the details of the glitch: a FIFO’s output selection logic was creating a glitch, and it was 

captured in an asynchronous domain leading to functional issues. The CDC crossing path was a valid FIFO path at the RTL, 

and it was signed off for CDC. The glitch scenario was identified in a gate-level simulation of the netlist. It was clear from the 

simulation results that the glitch scenario was valid, but the source of the glitch was not clear from the simulation waveform. 

The glitch needed to be fixed at the source. Also it was essential to identify all such cases in the design if they existed. For 

each glitch path we needed to make a decision on how to guard against them before tape-out. Fig 11 shows the analysis of the 

netlist glitch with RTL. A case statement from the Verilog RTL, which was used to select FIFO output, was synthesized into 

glitch prone AOI (and-or-invert) logic by the synthesis.  

 
Fig 10: Real glitch scenario in a SoC 

 

 
Fig 11: RTL to gate-level analysis of the real glitch scenario 

 

Using the proposed methodology on the SoC, we were able to identify the glitch case with complete details of the source of 

the glitch. With the exact location of the glitch source available it was easy to make an ECO in the netlist to ensure that the 

glitch is prevented and does not enter into another domain. Additional glitch paths were identified by the automatic formal-

based analysis, which were further reviewed and fixed.  

            After completing glitch analysis and verification successfully in one of the SoCs , we used the proposed methodology 

on a set of other real SoC netlists with sizes ranging from 1 million to 100 million gates. Fig 12 shows the details of the method-

ology used on SoCs. The hierarchical approach helped to make sure that the constraints for large partitions were generated 

correctly, and we have separate reports and debug databases available for teams to review the results. W e captured the total 

number of glitch source paths that contained combinational logic at the gate level. The number of glitch sources reported was 

minimal compared to the total number of CDC paths at the gate level. The reason for low noise is the pruning of paths during 

various stages of the glitch identification methodology.  



 

 
Fig 12: Mediatek glitch verification flow  

 

Table 1 shows the details of the multiple SOCs and glitch analysis results. Glitch analysis noise was much less, and we were 

able to complete glitch analysis within the schedule for tape-out. Out of the detected glitch sources, two real glitch issues were 

identified. In Project A, the glitch issue was found on a data-mux crossing, and an ECO was done on 288 paths to block the 

glitch’s propagation. In Project C, the glitch issue was identified on a missing synchronizer crossing. This case was considered 

safe at the RTL, but in the gate-level netlist, the combinational logic synthesized was glitch prone. In other cases the glitch 

source and the glitch paths were considered safe after debug and waived. The proposed automatic formal analysis based glitch 

detection methodology saved valuable time for us late in the verification process.  

 

Table 1: Glitch results on various SoCs 

 

S.No. Project Name Clock 

Domains 

Glitch Source (Sum 

of all partitions) 

Run time (Sum of all 

partitions/Maximum 

for a partition) hrs 

Glitch Result 

1 Project A 1155 1848 93/31 data-mux glitch found in one module 

(288 paths ECO) 

2 Project B 1028 1639 87/38 All waived 

3 Project C 641 1241 69/23 no-sync glitch found in one module 

(166 paths ECO) 

4 Project D 823 1487 53/6 All waived 

5 Project E 828 1534 77/29 All waived 

6 Project F 754 2846 103/34 All waived 

7 Project G 963 2262 84/32 All waived 

 

 

 



VI. CONCLUSION 
 

  The proposed automatic formal-based technique significantly improves the quality of results for glitch detection, and it re-

duces the time required to identify glitches on CDC paths. This methodology identifies a few relevant proven glitches out of 

millions of CDC paths and helps users focus on verifying them effectively. The generation of counter examples under which 

glitches would propagate makes it obvious that reported issues are genuine and pose serious threats to our next SoC. Ad-

vanced debug techniques that highlight the glitch introduction point help in fixing the glitches efficiently.  

 

Validation on real SoCs confirms that the proposed flow and techniques are practical and must be applied on modern de-

signs as a signoff methodology to prevent chip-killing glitches before tape-out. 
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