Preventing Chip-Killing Glitches on CDC Paths with Automated Formal Analysis

Jackie Hsiung, Mediatek Inc.

Sulabh Kumar Khare, Mentor- A Siemens Business Menlar®

Ashish Hari, Mentor- A Siemens Business A Siemens Business

Glitch Prone CDC Detection Challenges On Gate Analysis Of Proposed Glitch Detection Case Study

Level Netlist Methodology
» Glitches are undesired transitions that occur | | | » Proposed methodology is illustrated with an
before the signal settles to its intended value » Simulation to capture glitch: » Quality of results and minimal noise example of a real glitch which was observed in
* Receiver flop may be sampled in gate level * Proposed methodology always resulted in less gate-level simulation of one of the SoCs
> Static glitch: Signal temporarily change its value simulation to identify glitch presence than a few hundred glitches for millions of paths
while it is supposed to remain static at logic 1 or O * Simulators have difficulties in sampling signal > SoC was signed off for CDC but glitch scenario
path when glitch is present » Ability to run very large SoCs was identified in a gate-level simulation of the
1 . H « The hierarchical CDC approach was utilized netlist
0 H 0 » Assertions to identify glitch 1. Propagate constraints from the top run to the P ——
« Assertions to check if glitch can happen In olock level: i s [here!]
> Dynamic glitch: Signal oscillate while changing simulation So0 ¢ » Q
value from 0 to 1 or 1 to 0 before reaching the final » Simulators do not model asynchronous behavior M L
Value \ / DQS domain : MCK domain
, S , » Static checks at the netlist level: . _ o
0 | 0 H » Flagging every CDC path where combinational o Real glitch scenario in a SoC
logic |s|p_resent_ y ogic S B > Multiplexer implemented with case was converted
@ Glitch captured on a Clock Domain crossing (CDC)) g/:sgr??re'gs'jec“on to make sure combo logic Is JJ u J to glitch prone logic at gate-level.
" path can cause chip to fail . . . |
P P Hierarchical CDC runs to generate constraints for —
CDC Crossing Broken During Synthesis > Preventive steps at the RTL; . blocks (partitions) R
« Marking mux logic is don’t touch for synthesis
* Huge effort and some path may still escape 2. Complete the CDC and glitch analysis on blocks
» A CDC path that is completely glitch safe at the * Need to prove at gate level that logic Is siill followed by glitch analysis at the top level:
RTL can run into chip-killing glitch defects post glitch free
synthesis if the combinational logic and multiplexer w e Ej ot o
logic in crossing paths is not synthesized in a Automatic Formal Based Glitch Detection s RTL to gate-level analysis of the real glitch
glitch-free manner Methodology e T scenario
Automatic Formal Automatic Formal : : : :
. > The proposed method utilizes a combination of ET gltch analyss » Proposed methodology applied with h|erar.ch|cal
} o structural CDC analysis, expression analysis, and /\ CDC runs to propagate constraints for blocks:
- formal analysis to prune and prove the real w U
= glitches in the design at the gate level T 1
| - Formal glitch analysis can be done on blocks and e e e
CDC path in RTL is glitch free te“jj top level separately LJ
§ l \‘ > Ease of debug KB —
L H) Static Analysis * Due to deep combinational logic on glitch prone =
D=L J paths, it was essential to zero-in on the exact -+ b
Loy o area where the glitch needs to be addressed R = LU
| _SELO Combinational logic g
> Expression Analysis i i 11 I
| o | « Paths with glitch signals and the source of Mediatek glitch verification flow
Static-1 glitch in CDC path after synthesis J glitches are highlighted in the schematic > Using the proposed methodology, we were able to
l Formal analysis o identify the glitch case with source of the glitch and
] Lot t additional glitch paths with minimal noise:
Bl e Proposed automatic formal-based glitch analysis = Table: Glitch results on various SoCs
H L= > Stagel: Complete static CDC analysis to prune | N FrotNane | COckOomSnS (uipariions) piamim s
- ¥ out paths that do not contain any combinational T T T T
- logic at the gate level Highlight glitch signal and its converging points " | poac o125 | o g o ens moss 088 pare 20
Additional logic added itch . > Stage2: Comprehensive expression analysis of the > Reduction in verification cycles T e | s = T e
tional fogic added to stop glitch generation combinational logic tree in the data path to identity * Significantly reduce the verification cycles as @ Validation on real SoC confirms that proposed flow
potentia| g“tch candidates glItCh verification can be performed with eXIStlng < and techniques are practical hence must be
RTL setups and the results pinpoint the exact . . ’ .
Yy N | | | . . applied as a signoff methodology for prevention of
@~ A glitch logic can be fixed by adding additional > Stage3: Utilize formal engines to verify the glitch glitch signal L .]
g . . . | - _ chip killing glitches before tape-out
logic that stops the glitch propagation propagation condition conclusively

