
TEMPLATE DESIGN © 2008

www.PosterPresentations.com

Preventing Chip-Killing Glitches on CDC Paths with Automated Formal Analysis
Jackie Hsiung, Mediatek Inc.

Sulabh Kumar Khare, Mentor- A Siemens Business

Ashish Hari, Mentor- A Siemens Business

Introduction

 A CDC path that is completely glitch safe at the

RTL can run into chip-killing glitch defects post

synthesis if the combinational logic and multiplexer

logic in crossing paths is not synthesized in a

glitch-free manner

CDC Crossing Broken During Synthesis

 Stage1: Complete static CDC analysis to prune

out paths that do not contain any combinational

logic at the gate level

 Stage2: Comprehensive expression analysis of the

combinational logic tree in the data path to identify

potential glitch candidates

 Stage3: Utilize formal engines to verify the glitch

propagation condition conclusively

Analysis Of Proposed Glitch Detection

Methodology

 Quality of results and minimal noise

• Proposed methodology always resulted in less

than a few hundred glitches for millions of paths

 Ability to run very large SoCs

• The hierarchical CDC approach was utilized

1. Propagate constraints from the top run to the

block level:

2. Complete the CDC and glitch analysis on blocks

followed by glitch analysis at the top level:

 Ease of debug

• Due to deep combinational logic on glitch prone

paths, it was essential to zero-in on the exact

area where the glitch needs to be addressed

• Paths with glitch signals and the source of

glitches are highlighted in the schematic

 Reduction in verification cycles

• Significantly reduce the verification cycles as

glitch verification can be performed with existing

RTL setups and the results pinpoint the exact

glitch signal

Case Study

 Proposed methodology is illustrated with an

example of a real glitch which was observed in

gate-level simulation of one of the SoCs

 SoC was signed off for CDC but glitch scenario

was identified in a gate-level simulation of the

netlist

 Multiplexer implemented with case was converted

to glitch prone logic at gate-level:

 Proposed methodology applied with hierarchical

CDC runs to propagate constraints for blocks:

 Using the proposed methodology, we were able to

identify the glitch case with source of the glitch and

additional glitch paths with minimal noise:

 Validation on real SoC confirms that proposed flow

and techniques are practical, hence must be

applied as a signoff methodology for prevention of

chip killing glitches before tape-out

Glitch Prone CDC Detection Challenges On Gate

Level Netlist

• Glitch captured on a Clock Domain crossing (CDC)

path can cause chip to fail

• A glitch logic can be fixed by adding additional

logic that stops the glitch propagation

CDC path in RTL is glitch free

Static-1 glitch in CDC path after synthesis

Additional logic added to stop glitch generation

Automatic Formal Based Glitch Detection

Methodology

Proposed automatic formal-based glitch analysis

Highlight glitch signal and its converging points

Mediatek glitch verification flow

Table: Glitch results on various SoCs

RTL to gate-level analysis of the real glitch

scenario

Real glitch scenario in a SoC

 The proposed method utilizes a combination of

structural CDC analysis, expression analysis, and

formal analysis to prune and prove the real

glitches in the design at the gate level

 Glitches are undesired transitions that occur

before the signal settles to its intended value

 Static glitch: Signal temporarily change its value

while it is supposed to remain static at logic 1 or 0

 Dynamic glitch: Signal oscillate while changing

value from 0 to 1 or 1 to 0 before reaching the final

value

 Simulation to capture glitch:

• Receiver flop may be sampled in gate level

simulation to identify glitch presence

• Simulators have difficulties in sampling signal

path when glitch is present

 Assertions to identify glitch

• Assertions to check if glitch can happen in

simulation

• Simulators do not model asynchronous behavior

 Static checks at the netlist level:

• Flagging every CDC path where combinational

logic is present

• Manual inspection to make sure combo logic is

glitch free

 Preventive steps at the RTL:

• Marking mux logic is don’t touch for synthesis

• Huge effort and some path may still escape

• Need to prove at gate level that logic is still

glitch free

Hierarchical CDC runs to generate constraints for

blocks (partitions)

Formal glitch analysis can be done on blocks and

top level separately

S.No. Project Name Clock Domains
Glitch Sources

(All partitions)

Run time (Sum

of all partitions

/Maximum a

partition) hrs

Glitch Result

1 Project A 1155 1848 93/31 data-mux glitch found in one module (288 paths ECO)

2 Project B 1028 1639 87/38 All waived

3 Project C 641 1241 69/23 no-sync glitch found in one module (166 paths ECO)

4 Project D 823 1487 56/6 All waived

5 Project E 828 1534 77/29 All waived

6 Project F 754 2846 103/34 All waived

7 Project G 963 2262 84/32 All waived

