
Pre-Silicon Power Management Verification 

of Complex SOCs: Experiences with Intel© 

Moorefield 
 

Rajeev Muralidhar+, Nivedha Krishnakumar+, Bryan Morgan*, Robert Karas$, Billy Dennie$, Neil 

Rosenberg$ 
Intel Corporation 

+ 23-56P, Sarjapur Outer Ring Road, Bangalore, India 560085 
* 77 Reed Road, Hudson, MA 01749 

$1300 S. Mo Pac Expy, Austin, TX 78741  

 
Abstract - Power management (PM) verification of complex SOCs is a big challenge from hardware as well as from a 

system level perspective as it spans the entire platform and has become a growing concern with the complexity of SOCs and 

rapid cadence at which they need to be productized. This paper presents the system level PM verification that was done on 

Intel© Moorefield platform. A system-level approach to pre-silicon verification was used that included Android OS boot, 

OS driver power management flows and system and SOC-level low power states verification in pre-silicon models. This 

yielded significant benefits in overall bug-free silicon/system and faster time to market (TTM). We believe that such a 

system-level and HW/SW co-design approach to pre-silicon power management verification is crucial and the learning from 

this paper can be used for other devices/SOCs in the industry.  

 

I.   INTRODUCTION 

Power management verification of complex SOCs is a big challenge from hardware as well as from a system level 

perspective, since power management spans the entire platform. Power management has also become harder with the 

increase in complexity of today’s SOCs and the need to productize them at a rapid cadence. Ideally, each system 

component (IP/hardware/firmware/software) needs to be verified for its power management capability (both 

individually as well as how they work in relation to other components), and in addition, system-level power flows 

(low power idle/standby states, etc.) also need to be verified before silicon tape-in is achieved. Bugs, especially in 

hardware, can result in subsequent silicon spins, causing both delay in time to market as well as increased costs of 

additional silicon/system verification. This paper presents the system level power management techniques that were 

done on Intel© Moorefield platform. Intel© Moorefield is a 22nm based quad core SOC that has been used in several 

key recent products (Asus Zenfone 2, Google Nexus player, Dell Iconic tablet, etc.).  

 

A. Problem Description – Pre-Silicon Power Management Verification of Complex SOCs 

The last decade or so has seen an unprecedented explosion in multiple aspects of SOCs – complexity, cost, rapid 

cadence, etc. that have been primarily fueled by the demand for smart phones, tablets, connected devices, etc. On such 

increasingly large and complex digital IC and SoC designs, design power closure and circuit power integrity are 

starting to become one of the main engineering challenges, thereby impacting the device’s total time-to-market. For 

example, in [27], the authors mention that the cost of showstopper bugs after tapeout was a few silicon spins, impacting 

schedule. However, a similar showstopper bug at revenue release time would cost an estimated $1 million per day, 

and bugs that show up a year after release would cost over $150 million in recalls, damaging corporate reputation, etc. 

Hence getting HW/SW right the first time is critical for survival in this industry. Given this, verification of power 

management features at all levels of design hierarchy has become crucial; at the same time, increasing in complexity 

and highly compressed time to market puts fundamental limits on how many features can be tested fully before silicon 

arrival. Bugs, especially in hardware, can result in subsequent silicon spins, causing both delay in time to market as 

well as increased costs of additional silicon/system verification.  

Broadly speaking, the semiconductor industry uses several techniques for low power verification of hardware 

power management features. Some of these are described in Section II. The focus of this paper is system-level 

verification of key power management features in pre-silicon environments.  



B. Intel© Moorefield Platform Overview 

The Intel© Moorefield platform [4] based on 22nm process has all the major ingredients of a modern SOC for 

high-end smartphones/tablets/devices – quad core 

Silvermont cores (that can burst at 2.4 GHz), high-end 

GPU (PowerVR G6430 that can clock up to 533 MHz), 

high end cameras, 4GB LPDDR3 memory @ 533 MHz, 

Intel XMM 6360/6260 modem (that supports 150 Mbps 

downlink, HSPA+ 42Mbps for DSDS configuration), 

and a minute IA-based Sensor hub that provides an 

integrated sensor solution using ultra low power sensing 

modes. It also supports 64-bit Android L-dessert and 

upwards. The power management architecture on 

Moorefield platform spans from user space down to 

kernel/firmware, and finally the underlying SOC 

components that perform fine grained power 

management.  

Moorefield supports several power features/modes 

that help in achieving longer battery life for key use 

cases, which we will describe subsequently – validating 

these as early as possible are crucial to ensuring silicon 

health and reduce unnecessary silicon spins. 

 

C. System Level Pre-Silicon PM  

In this paper, we describe the following important approach we took for system level PM verification: 

1. HW-SW Co-design approach to aggressively “shift-left” silicon and software development together to de-risk 

silicon health.  

2. Identification, and use of targeted pre-silicon platforms specifically tuned/enhanced for power management 

features at different levels of hardware, firmware and software. A combination of virtual platforms, hybrid and 

compact SLEs, FPGAs/Hybrid FPGAs were used, and we also had different customized Android OS kernel 

images booting on these platforms.  

3. Multi-pronged strategy to system level power management verification – this included full Android OS boot, OS 

driver power management flows and system idle/low power states verification in emulation models. We also 

ensured that real/production PM firmware was developed/validated in cadence with RTL, and OS/driver/system 

flows were validated with each major version/release of RTL models/production firmware.  

We believe that these aggressive and well-planned/executed methodologies yielded significant benefits in overall 

bug-free silicon/system and faster TTM. We believe that such a system-level and HW/SW co-design approach to pre-

silicon PM verification is going to be important for complex SOCs/systems. 

 

D. Organization of this paper 

The rest of this paper is organized as follows. This section is in the Introduction. Section II details some of the 

related work in this area. Section III describes the Moorefield PM architecture in detail, and highlights the key areas 

that were critical for pre-silicon verification. Section IV describes the Pre-Silicon test methodology that we followed. 

In Section V we provide some of the key results and offer our conclusions/future areas of work in Section VI.  

 

II. RELATED WORK 

Power management verification is a vast area of both academic and industrial relevance. In this section we survey 

some relevant pre-silicon verification methods at different levels of design abstraction. A more detailed survey can be 

found in [7]. Power management brings a host of new types of bugs which are not in the class of traditional functional 

bugs. The table below shows the different classes of bugs and the new verification techniques required.  

Power Management Issue Verification Techniques required 

Isolation/level shifting bugs Verify connection, placement, isolation/level shifting 

Control sequencing bugs Include power intent files like UPF 

Retention scheme and control errors Formulate test plan for architectural flows correctly 

Electrical problems like memory corruption Reach good power state coverage 

Power/voltage sequencing bugs Verify design in all states, transitions, sequences 



Hardware/software deadlocks Verify FW/SW control sequences  

Power gating collapse/dysfunction, Clock 

domain/crossover bugs 

Verification at each stage of design, not just RTL; verify 

netlist at each handoff, power switch/rail connectivity 

Power-on/reset bugs Wide coverage of test cases across power-on/reset flows 

Thermal runways/cooling inefficiencies Verify thermal conditions, thermal modeling for different 

form factors/designs 

Bugs due to concurrent access from multiple IPs 

during end-to-end use cases 

Verify end to end system level power sequences, 

including FW, SW, drivers to uncover race conditions 

Table 1: Power Management issues, and different techniques for verification 
Some of the above are hard to verify in pre-silicon – for example, voltage sequencing (due to lack of integrated 

power delivery models into SOC emulation models), thermal runways (usually happens on form factor devices). In 

this paper we attempted to cover most of the other issues above through a combination of silicon and system level 

verification methodologies. We cover some important areas for future work towards the end. 

It is quite clear that without a carefully planned rigorous methodology in place, correctness guarantees will be 

hard to come by. Broadly, we can categorize pre-silicon power management verification into the following categories 

– (1) Low power transformations at gate-level – clock gating, etc. (2) Low power transformations at 

higher/architectural level – RTL (3) System level low power verification 

 

A. Verification of Low Power transformations at gate level 

Formal verification, especially equivalence checking, has achieved considerable success in the context of low 

power verification. Combinational equivalence checking checks two acyclic, gate-level circuits. Combinational 

equivalence checkers can also be used to check equivalence of two sequential designs, provided the state encodings 

of the two designs are the same. Although this technique has widespread use in many commercial tools, the real 

challenge of sequential verification is in verifying two designs with different state encodings. Sequential satisfiability 

engines [14], [15] and sequential ATPG engines [12], [13] solve this problem to a large extent by unrolling the circuit 

until a given time frame. However, these techniques operate at the gate level, where they reason in the Boolean domain. 

 

B. Verification of Low Power transformations at RTL/architectural level 

Given the nature of power management and the hardness of the problem at lower levels of design, more 

verification is usually focused on RTL and higher levels of abstraction. [16] describes methods to verify RTL power 

gating through transaction level models. Some attempts have been made to apply sequential equivalence checking to 

the behavioral RTL descriptions of designs. [17] describes a methodology for checking the combinational equivalence 

between C and RTL is described. [18] and [19] present dedicated rewriting, a rewriting methodology to automatically 

prove the correctness of low power transformations at the RTL-level. They propose a highly automated deductive 

verification technique which is fine tuned for low power transformations. They prove the equivalence of two Verilog 

RTL designs, one derived from the other after the application of a low power transformation. 

 

C. Verification of Low Power features at Platform / System level 

Industrial designs rely very heavily on ensuring that once the silicon arrives, power management can be validated 

as soon as possible, and thermal solutions can be built accurately for the specific form factor(s) in consideration. In 

order to accomplish this, typically companies use complex and costly FPGAs to emulate the entire chip/SoC RTL, 

and build platform level validation/verification tools that can include the ability to boot entire operating system on 

such FPGA complexes. SoftSDV from Intel [20] is a pre silicon functional verification tool. However, this does not 

allow for detailed power estimation/modeling/verification. Several such internal, proprietary validation systems are 

used typically across the industry for validation power management features. [21] presents a good overview of the 

different techniques used in system level low power verification and the importance of using power intent 

specifications like UPF, simulation tools/methodologies that can accurately model power states/sequences, etc. [9] 

describes System-C based virtual prototyping techniques to perform power intent/sequence validation, and also 

proposes using system level low power abstractions as possible extensions to UPF. This includes abstract definition 

of voltage relationships, dynamic aspects such as operating conditions. Addressing power-aware design and 

verification at higher level abstractions is certainly a very novel research area and is an important emerging area. 

[10] talks about the importance of HW-SW co-design early in the product phases including pre-silicon, and the need 

for understanding and simulating end-to-end use cases in such verification methodologies. [8] discusses the 

implications of power management on verification of wireless SOCs, especially the impact of verification of 

wireless/RF components.  



Closer to the topic of this paper, [22] discusses the challenges and experiences of the verification of Intel Atom 

processors with details on specific verification techniques used. This paper expands the power management 

verification of these Atom SOCs into system level pre-silicon PM verification. 

 

III. INTEL MOOREFIELD POWER MANAGEMENT ARCHITECTURE 

A. General Concepts in Power Management 

Power consumption varies proportional to V2F, where V is the operating voltage and f is the operating frequency. 

Total platform power consumption is sum of idle, active and leakage power.  

1) Idle Power  

In general, power management features are crucial for both idle scenarios (when the device is not being used 

frequently), and during active scenarios (gaming, etc.). Idle power management refers to how effectively the platform 

can manage power when idle. For eg. CPU C- states, device D-states and Platform S-states, as defined by ACPI 

(Advanced Configuration and Power Interface) [3] which is an industry standard that defines several aspects of 

platform power like active or sleeping. The CPUIDLE framework in Linux guides the CPU idle power management 

on a per-core basis [1].  

2) Active Power 

Active power management refers to how effectively the platform can perform work. For example, dynamic voltage 

frequency scaling (DVFS) is done in the CPU via different P-states (frequency states). P0 refers to the highest 

frequency state where the core can operate at during its C0 state. There are different levels of operational efficiency 

in C0 state such as P1, P2, Pn. The number of P states differs and depends upon the core. Change in frequency consists 

of two stages – a frequency transition and a voltage transition. When a transition to higher frequency is requested 

voltage transition happens first followed by frequency transition. When CPU operates at highest frequency, 

performance is better and higher the power. CPUFREQ framework in the Linux manages the performance states of 

the cores [2]. In general, race to idle refers to complete its task as fast as possible (high performance) and then shut 

off. Crawl-to-idle refers to delaying the task as long as possible, while consuming as little power as possible. Both get 

the work done, but the key differentiator will be the energy consumed. An intelligent management system will have 

to choose correctly whether to race to idle or crawl to idle. 

3) Leakage Power 

Leakage power depends on the silicon, voltage and temperature. For eg. in some process technologies, for every 10oC 

change in temperature, silicon leakage varies. Techniques such as LTEC (Low Temperature Effect Compensation) 

and TDP (Thermal Design Power)-based sharing are used to compensate for low/high temperature scenarios. These 

are typically implemented in firmware algorithms, with some user configuration (of thermal limits, for example). 

 

B. Moorefield Power Management 

Moorefield supports several power management features at different levels – IP/hardware, SOC/platform, 

software/firmware/OS, etc. The power management architecture on Moorefield platform spans from user space down 

to kernel/firmware, and finally the underlying SOC components that perform fine grained power management.  

Moorefield contains the Silvermont CPU cores that are described well in [23] and [26]. Silvermont greatly 

improves Atom’s single-thread performance while still 

supporting multicore scaling – it scales from dual and quad 

core versions to 8-core micro-servers. One of the biggest 

change is its out-of-order (OOO) design; it is to be noted 

that Silvermont does not support hyper-threading, since 

the OOO design can cover misprediction penalties by 

executing subsequent instructions. In addition, Silvermont 

includes supports for newer x86 instructions like 

SSE4.1/4.2, is fully 64-bit compatible, supports extended 

page tables (VT-x2), and also supports real time 

trace/debug functions. As shown in the figure, two 

Silvermont CPUs are paired in a module along with a 

shared L2 cache. The CPUs share no function blocks other 

than the L2 cache. Each module connects to memory and other units through the system agent.  

Each module has implemented a number of power-saving modes. The L2 cache, as well as each CPU, has its own 

voltage plane. The company can place each CPU in the C6 power-off state and can place the cache in an ultra-low-

voltage state that can retain memory while the CPUs are inactive. Before the CPU enters a C6 state, the L2 cache can 

flush partially (but with the PLL still on) to turn off its unused parts, it can retain cache at a lower voltage while the 



PLL is off, or it can turn off the entire cache and power it down. Intel calls these power states “subclasses” of the C6 

state. It has also implemented a Fast C6 mode in which the CPU state saves to a dedicated on-chip memory. 

Moorefield platform is not PC-compatible in several aspects - no BIOS, no ACPI, no legacy devices, no PCI 

enumeration in South complex, no real IOAPIC, etc. Most of these changes are available in the upstream kernel now. 

Refer to [5] and [6] for more details of the core kernel changes done for x86-based Intel platforms. The Moorefield 

power management architecture is built around the idea of aggressively turning off subsystems without affecting the 

end user functionality and usability of the system. This is enabled by several platform hardware and software changes: 

1. On die clock and power gating of subsystems - applicable to all subsystems, fabrics, peripherals, etc. 

2. Subsystem active idle states – applicable to all OS/driver controlled components. These states are termed as D0ix 

states. Traditionally (according to ACPI, for example), subsystems/devices can be in active power state (D0) or 

in low power state (D1/D2/D3). Most subsystems/platforms implement D0 and D3, however, not many 

platforms/systems implement really active idle states, where the platform is active, but subsystems, even though 

are idle are in lower power state. In Moorefield, devices can be in one of the following power states - D0 (Normal 

operational state), D0i1 (OS-transparent clock gated state), D0i3 (driver directed management of the subsystem 

with no OS control of the subsystem or D3 (OS directed, device driver is involved in the management of the 

subsystem and it must perform state retention and restoration in the driver). All devices will be managed through 

the runtime Linux power management infrastructure. Device drivers must implement D0i3 (driver managed 

autonomous power management) through the Linux Runtime power management framework, and aggressively 

(and intelligently) manage the power of their corresponding subsystems. Additionally, device drivers must also 

support standard Linux suspend/resume callbacks for implementing D3. 

3. Platform idle states - extending idleness to the entire platform when all devices are idle. These are termed S0ix 

states, and are explained subsequently.  

The power management architecture on Moorefield platform spans across multiple layers - Android user space, 

Middleware, Kernel, Firmware, and finally the underlying SOC components that perform fine grained power 

management.  
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The key components of power management architecture on Moorefield are: 

1. Standard cpuidle-based CPU power management components (native drivers and governors). 

2. Platform-specific S0ix extensions to the cpuidle driver (intel_idle-based) for the CPU 

3. Power Manager Unit (PMU) driver - This driver interfaces with both North and South Complex Power 

Management Units (PMUs). It also provides platform-specific implementation of deep idle states to the intel_idle-

based processor drive and coordinates with the rest of the platform using standard kernel Power Management 

interfaces like PM_QOS, Linux Runtime PM, etc. 



4. PMU Firmware that coordinates power management between the Platform PMUs: P-UNIT for north complex 

(CPU, Gfx blocks, ISP), and SCU for south complex (everything else: IO devices, storage, comms, etc.) 

5. Multi-core CPU idle power management – Moorefield supports a new power-aware scheduling technique at the 

OS level with a knowledge of the underlying CPU topology. For more details, see [28]. 

6. Device idle power management – device low power states, and corresponding kernel device driver support for 

Linux Runtime Power Management Framework 

7. Active power management features 

a. cpufreq-based drivers and governors to support CPU Performance states / DVFS – Moorefield supports 

quad core burst at 2.3 GHz 

b. Graphics and ISP DVFS – both IPs support DVFS that is controlled by the corresponding device drivers. 

Drivers support corresponding Linux devfreq framework 

c. Power Sharing between multi-core CPUs and rest of the SOC when the device is performing high activity 

usages. A power manager (called the PUNIT) allocates the power budget among the CPUs and other 

modules, such as the graphics unit. This power manager also directly monitors temperature, thus 

enabling more dynamic and more accurate power allocation. A different power manager, called the 

System Controller Unit (SCU) coordinates the rest of the SOC/device power management (clock/power 

gating, voltage rails/shared resource management, etc.). In addition, the SCU also coordinates entry/exit 

of system idle/standby states.  

This is summarized in the table below, and the key Linux/Android components that are responsible for coordinating 

the different power management states of components and the system as a whole. While some of these terminologies 

maybe Intel-specific, most complex SOCs today support similar features for power management. Hence the techniques 

for HW-SW co-design could be readily adopted in other designs as well. 

Component State Description Linux / Android framework 
CPU Core 

power states 

C0  CPU is busy executing instructions CPUIDLE Infrastructure in Linux 
C1, C2, 

C6 

CPU is idle, not executing instructions, 

clocks/power may be taken off 

CPUIDLE driver predicts next expected 

interrupt and provides C-state hint through 

MWAIT() instruction 
Device 

power states 

 

 

D0 Active power state of device Normal operating state, fully ON. 
D1, 

D2, D3 

Devices are in suspended state 

clocks/power may be taken off 

Linux Runtime PM Framework: Driver 

directed management of the Subsystem.  

The device driver MUST coordinate and 

manage the subsystem state, including 

save and restore of context. 

Linux Suspend/resume Framework: OS 

directed management of the subsystem.  

Device driver is involved in the 

management of the subsystem and must 

perform state retention and restoration in 

the driver. 

System 

power 

States 

 

S0 Active state of the system, most 

components fully ON/operational 
 

S0i1,  Low latency idle state, can be 

entered/exited seamlessly transparent to 

applications. Most of the SOC can be in 

power-off state, except key peripherals 

performing low power operations (audio 

playback, sensing, memory transfer, etc.). 

Entry + exit latencies are in the order of 

~750us - 1ms.  

Low latency states with different entry/exit 

latencies, and power consumption. 

Completely transparent to 

OS/drivers/applications. Entry point from 

OS is a deeper C-state than C6, with a 

different hint to the CPUs to perform 

additional PM flow sequencing with PM 

firmware components/microcontrollers.  
S0i3 Similar to S0i1, with deeper power-off 

state across entire platform/SOC except 

for key always-on logic that can monitor 

the system for wakes. Entry + exit 

latencies are in the order of ~2ms. 

Completely transparent to 

OS/drivers/applications. Entry point from 

OS is a deeper C-state than C6, with a 

different hint to the CPUs to perform 

additional PM flow sequencing with PM 

firmware components/microcontrollers. 



S3 System is suspended and the state of the 

system is stored in memory and all other 

components are turned OFF 

Suspend. Applications are frozen, all 

system context is lost except system 

memory. CPU, cache, and chip set context 

are lost in this state. Hardware maintains 

memory context and restores some CPU 

and L2 configuration context. 
Special Low 

power modes 

S0ix-

display 

Entire SOC is in S0i1/S0i3 state except the 

display, which can be kept ON. 

Coordinated by cpuidle and Gfx/display 

drivers based on the workload and idle 

prediction. Enabled on both command and 

video mode display panels. 

 S0ix-

sensing 

Ultra low power sensing mode where 

everything in the SOC is OFF except some 

sensors and periodic sensor processing in 

the minute IA-based sensor hub 

Coordinated by cpuidle, ISH and sensor 

drivers 

 S0ix-

audio 

Low power audio playback, with the audio 

engine/DSP performing local playback 

and DMA to/from memory without 

waking up the rest of the SOC 

Coordinated by audio, cpuidle drivers. 

Table 2: Idle Power States and their management 

 

IV. PRE-SILICON PM VERIFICATION USING SYSTEM LEVEL EMULATION ENVIRONMENTS 

As it can be seen, the system level power management architecture described earlier requires PM verification 

spanning hardware, firmware, device drivers, OS kernel and interactions between these components. Hence a multi-

pronged strategy was used: 

a. Use of targeted pre-si environments for enabling specific PM features 

b. “Real” PM firmware developed/validated in cadence with RTL 

c. Customized Android kernel on major RTL + FW release for SW development 

d. Device driver PM validation on major RTL + FW release and Android release 

e. System Level PM flows/sequences validated on each major RTL + FW release 

A detailed project plan was created for each of these steps, along with a master project plan, calling out the most 

important silicon tape-in gate items, key items that were crucial to be done before silicon power-on, PM checklist 

for power-on, etc.; all these were tracked across different teams, assigned the right priorities/resources and 

continuous progress was ensured.  

In this section we will describe the different environments/techniques used in Intel, and call out the specific 

methodologies/environments that were used for effective HW-SW co-design for Intel© Moorefield platform. 

 

A. Pre-Silicon Environments 

Targeted verification of each IP block, including CPU cores, Graphics, etc. were done using traditional silicon 

verification (SV) techniques through a combination of random, targeted and functional PM tests. Since the SOC 

integrated third party IP blocks, specific PM related SV tests were also designed for such IPs; all these were done 

completely by in-house silicon verification teams. Given the mix of different kinds of IPs, sources (third-party vs 

internal), etc., the silicon verification teams used a combination of SV, Verilog, VHDL test cases/methodologies.  

As described in [24] and [25], Intel uses a combination of different platforms/environments for different aspects 

of pre-silicon verification. These include Virtual Platforms, FPGAs, Hybrid Virtual platforms (VP + FPGA), System 

Level Emulation (SLE) platforms, Hybrid SLEs, Full Chip SLEs, Hybrid Gen-1/FPGA (this refers to using the 

previous generation of silicon along with a FPGA prototype). Each environment is best suited for a specific 

set/category of pre-silicon verification. Some of them can support production OS boot in reasonable times for SW 

development/co-design/debug. Also, not all of these can be used for effective power management verification. For 

example, Hybrid FPGA + VP platforms include high speed with RTL accuracy, reuse of RTL models, mitigating the 

lack of a 3rd party virtual platform model, enabling pre-silicon systems with at-speed real-world devices, and “true” 

pre-silicon hardware/software co-validation. However, what goes into the FPGA and what goes into the virtual 

platform is an important decision that determines the efficacy of the environment.  

 

B. Pre-Silicon Environments for PM Verification 

From a pre-silicon environment perspective, the industry is moving towards a continuum of connected 

hardware/software development engines, including virtual platforms, simulation, emulation, and FPGA prototyping. 



While there are many types of hybrids, some have “TLM-emulation” [transaction-level modeling] hybrids for early 

OS and software bring-up. An example of this include the Cadence Palladium/Virtual System Platform hybrid solution 

depicted below. Virtual models, CPUs, and “smart memory” reside on the virtual platform side. Other system 

components run in the emulator. Users need to decouple the two domains so the virtual platform side can run at high 

speeds. 

 
Historically, PM verification involved verification/test cases at the logic, RTL and focused/synthetic tests level. 

However, as SOCs became more complex with respect to the system level use cases, these traditional methodologies 

were not sufficient to uncover PM related bugs that spanned the whole system. This is fundamentally because there 

can be multiple modes of operations of the entire SOC involving hardware, firmware and software interactions across 

different applications, leading to complex dynamic power profiles of those applications. Hence, a system-level 

approach was adopted to cover different aspects of PM. We partitioned the testing across the following environments: 

 
1. Virtual platforms – Here, the CPU cores are modeled in Simics, and had specific PM related messages/handshakes 

simulated with the underlying CPU power management controller. This was used for basic PM related OS driver 

development and very simple functional testing of CPU C-states, etc. This had the benefit of very fast full Android 

OS boot (within a few minutes), hence was ideal for SW driver developers to ensure their code is kept in alignment 

with the latest internal Android/Linux kernel codebase.  

2. Hybrid SLE – This had the quad core CPUs simulated in Simics, and most of the SOC in RTL (except some 

specific complex IPs that needed separate emulators like Graphics, Imaging). These models also had several 

customized IP transactors for key IPs (like eMMC, USB, SDIO, I2C, etc.) that enabled PM touch-points (specific 

PM registers, handshakes, wake sequencing, interrupts, etc.). This could also boot a customized Android OS 

within 15-20 minutes, hence could be used for most driver PM flows verification. Hence this could be used to 

validate PM flows of most IPs, using the latest driver codebase mentioned above.  

3. Compact SLE – This had the quad core CPUs and most of the SOC in RTL, hence could be used to validate most 

of the system level SOC PM flows/sequences – quad core CPU idle/performance states, SOC standby modes, etc.  

4. The Graphics/Imaging IPs were modeled separately in full RTL emulation models, and corresponding PM 

registers/interfaces were accessible through memory-mapped registers, thus allowing SW drivers to enable PM 

flows/transactions.  

5. Full Chip SLE – this had full SOC RTL, and was very slow for OS level debug; hence this was used only for 

ensuring OS boot prior to power on.  



Additionally, in the above models, special clocking schemes were introduced going beyond normal fixed clocking 

for emulators/FPGAs; the infrastructure simulated the entire SOC clocking scheme with variable clock speeds, thereby 

we could validate changing core/bus speeds on the fly. Each environment above greatly helped PM testing. 

 

C. System Level Pre-Silicon Methodologies PM Verification 

In this section, we show how a system-level approach can benefit complex SOC pre-silicon power management 

verification. Broadly, we used the following coverage techniques/methodologies – (1) Silicon Verification test content 

focused on power management, (2) Customized Android OS that boots on different emulation environments, (3) 

System level, OS and driver PM flows verification with Android stack that complements synthetic silicon verification. 

Each of these are described subsequently.  

 
Focused Silicon Verification (SV) for PM 

Typically, SV comprises of focused IP-level testing (clock/power gating, isolation, firewalls, etc.) and synthetic 

tests (multiple IPs simultaneously – for eg., eMMC doing DMA to memory). Exhaustive SV test cases touched all 

SOC components - quad core CPU Power/Performance states with different fuse settings, DVFS of CPU, graphics, 

camera (through simulated workloads like Dhrystone), wake sequences (wakes due to snoops from devices, platform 

GPIO wakes, USB/modem wakes, etc.), graphics PM flows along with simulated/stubbed driver, PM flows involving 

new IPs like SSIC (voice call and PM sequences therein for modem components), etc. SV PM testing thus covered 

key HW PM scenarios.  

 
Customized OS/fast boot techniques for SLE environments 

In order to have easily usable Android/Linux kernel for SW/kernel developers, and specifically for power 

management drivers, a customized Android kernel was forked off the internal development mainline. The Android 

boot path was optimized for boot time by bypassing the kernel and initial file system decompression steps during 

initial kernel boot since memory-intensive operations (decompression) are slow in emulation. Tradeoffs were made 

with respect to the kernel configuration to provide the necessary components for PM validation in order to again speed 

up boot times. We optimized boot times further by injecting code into the boot loader to bump up the core frequency. 

In this manner, a reduced kernel configuration was created to match the emulation/firmware components thus 

providing an Android kernel that could boot on emulation models in all the environments described above. Once this 

methodology was established, each release of SOC RTL and firmware components had accompanying releases of 

Android kernel that could be used for extensive PM verification to ensure maximum coverage as the emulation models 

matured towards silicon tape-in and power on.  

 
OS/driver PM flows verification 

Extensive OS PM testing was then added to the above. On Compact SLE models, we enabled full Quad core CPU 

power/performance states – multi-core PM functionality such as individual core/module and package C-states were 

verified with OS by enabling the Linux cpuidle idle driver and menu governor. CPU DVFS was verified by enabling 

the Linux cpufreq infrastructure, with ondemand governor and CPU intensive workloads (like Dhrystone). 

Additionally, SOC standby (S0ix) flows and corresponding SW/FW/HW interactions/wakes were validated with 

thousands of back-to-back S0ix sequences on these models. In parallel, most IP PM flows were validated on hybrid 

SLE model with corresponding Android/Linux device drivers where Linux Runtime PM sequences tested out IP level 

clock/power gating sequences through the HW PM capability exposed by each IP transactor. Thus, significant OS 

power management validation was done on different pre-silicon environments.  

 

V. RESULTS 

The above infrastructure and methodologies enabled validating significant system level PM flows/sequences. 

Most of the important power management features were functional with full Android stack within a few days of Power 

On of the first silicon stepping. This aggressive use of pre-silicon testing helped to uncover and fix several bugs in the 

pre-silicon phase itself that led to overall quicker TTM.  

PM 

Feature 

Power 

States 

Verification performed before Silicon 

power-on/bring-up 

Post Silicon PM enabling results 

CPU Core 

power, perf 

states 

C0-C6 All C-states entry/exit sequences validated 

on bare-metal as well as with full Android 

stack. Exit sequences verified included 

All CPU PM states, including DVFS and 

turbo features enabled with full Android 

OS stack within a week of silicon arrival 



interrupts, wakes, timers, etc. CPU DVFS 

including quad core DVFS validated with 

real benchmarks (like Dhrystone) on full 

compact SLE models 

Device 

power 

states 

 

 

D0, 

D0i1, 

D0i3, D3 

All power states of devices validated with 

driver code based on latest Android/Linux 

codebase/mainline. Driver power flows 

including power on, clock/power gating, 

and use of Linux Runtime PM for 

autonomous power management 

validated.  

All device PM states (D0ix/D3) enabled 

with full Android OS stack within a week 

of silicon arrival 

 S0i1, 

S0i3  

Hundreds of S0i1, S0i3 cycles (entry and 

exit/wake flows) validated on compact 

SLE models 

Basic S0i1/S0i3 states enabled with full 

Android stack within a couple of weeks of 

Silicon arrival 

S3 System is suspended and the state of the 

system is stored in memory and all other 

components are turned OFF. Firmware 

flows were validated in pre-silicon 

Android Suspend-to-RAM enabled fully 

within a couple of weeks of Silicon arrival 

Special 

Low power 

modes 

S0ix-

display 

Not validated in Pre-silicon testing With basic S0ix functional, enabling 

advanced features took much less time 

 S0ix-

sensing 

Not validated in Pre-silicon testing With basic S0ix functional, enabling 

advanced features took much less time 

 S0ix-

audio 

Basic low power audio playback 

sequences validated in pre-silicon 

With basic low power audio enabled, 

enabling advanced features took much less 

time 

Table 3: Results of aggressive system level PM verification in pre-silicon 
VI. CONCLUSIONS, FUTURE WORK 

Power management verification of complex SOCs is a big challenge from hardware as well as from a system level 

perspective, since power management spans the entire platform. Ideally, each system component 

(IP/hardware/firmware/software) needs to be verified for its power management capability (both individually as well 

as how they work in relation to other components), and in addition, system-level power flows (low power idle/standby 

states, etc.) also need to be verified before silicon tape-in is achieved. Bugs, especially in hardware, can result in 

subsequent silicon spins, causing both delay in time to market as well as increased costs of additional silicon/system 

verification. 

This paper described a system-level approach that we took to enable power management features early on in the 

silicon design phase, adopting an aggressive HW/SW co-design approach. Different pre-silicon environments were 

used for targeted PM test cases/sequences to ensure broad coverage of PM features as much as possible.  

While this helped uncover a lot of bugs involving silicon/firmware/SW, and interactions across these layers, there 

are still a lot of improvements that can be done for future complex SOCs. Some of these (in no specific order of 

priority) are: 

1. Some features are hard to validate in pre-silicon like low temperature effect compensation, power sharing between 

CPU and rest of SOC, since it is very hard to get dynamic current/power consumption data in pre-silicon 

environments.  

2. Integration of power delivery components into SOC environments is still in its early stages since this involves 

integration of analog and digital components; this is an important area for the industry to collaborate on. 

3. Non-logic issues like analog/RF/digital integration, process, etc. have become dominant aspects of post silicon 

verification cycles; doing this in pre-silicon is currently a very hard problem.  

4. Pre-silicon environments today can at best do functional PM flows/sequences; power modeling/estimation is still 

done in a different domain using complex architectural models. Hence there is very limited capability to estimate 

power consumption during dynamic use cases that are run in pre-silicon models (for example, while we can run 

Dhrystone on multi core CPU models, it is very hard to estimate the power consumed in pre-silicon). This is an 

important area for future SOCs. 
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