
Pragmatic Verification Reuse in a Vertical World

Mark Litterick
Verilab GmbH.

Munich, Germany
mark.litterick@verilab.com

Abstract—	
 Successful application of block-level verification reuse
improves the effectiveness of the top-level environment by
providing additional checks, coverage and messages (and in some
cases stimulus) which, as well as detecting more bugs, helps speed
up debug for other system-level defects by providing improved
internal visibility and enhanced bug isolation. Despite these
benefits consistent efficient reuse is simply not being achieved in
many companies. This paper revisits the vertical reuse problem
from a fresh standpoint and addresses the fundamental issues
involved, provides a comprehensive set of pragmatic reuse
guidelines and also suggests how to go about retrofitting reuse to
existing block-level environments.

Keywords—Vertical Reuse; Verification Reuse;

I. INTRODUCTION
Successful application of block-level verification reuse

improves the effectiveness of the top-level environment by
providing additional checks, coverage and messages (and in
some cases stimulus) which, as well as detecting more bugs,
helps speed up debug for other system-level defects by
providing improved internal visibility and enhanced bug
isolation.

The detailed understanding of block-level protocol and
associated expertise that has been built into the automatic
checks such as scoreboards, the ability to collect functional
coverage based on coherent transactions and the capability to
provide concise and informative messages based on signal
decoding is of course also reused. This allows the top-level
team to concentrate more on appropriate concerns such as
overall functional correctness of the application, external
interface behavior, module and sub-system interaction, access
to shared resources, low-power operation, performance and
interconnection verification requirements.

Reuse of block-level verification environments at the top-
level is potentially well supported by modern verification
methodologies such as the Universal Verification Methodology
(UVM) [1]. However, the evidence from scores of projects in
many different companies is that successful and effective
vertical reuse is simply not being consistently achieved.

This paper revisits the vertical reuse problem from a fresh
standpoint and addresses the fundamental issues involved1,

1 The red warning triangle symbol,  , is used throughout this

document to indicate a hazard observed in real verification environments.

provides a comprehensive set of pragmatic reuse guidelines2
and also suggests how to go about retrofitting reuse to existing
block-level environments. The discussion is essentially
language independent, but any major differences between e and
SystemVerilog methodologies are highlighted where
appropriate, however UVM terminology is used throughout.

II. VERTICAL & HORIZONTAL REUSE
The world of verification is not flat. The terms “vertical”

and “horizontal” are used to describe the context into which
verification artifacts are reused. In this respect horizontal
typically means using a verification component in a different
system or project but at roughly the same level of abstraction
and with the same functional role. Vertical reuse on the other
hand refers to using a verification component in a different
hierarchy level, usually with an implied change of role.

For example, a verification component used in block-level,
sub-system, and top-level environments within the same
project, exhibits vertical reuse. In this case we would expect
the stimulus to be nested inside higher-level stimulus until the
stage where the associated interfaces are no longer external
signals, but embedded connections internal to the design, at
which point the role of stimulus generation would no longer be
applicable.

This paper focuses on vertical reuse attributes and
especially those related to the change of role when going from
block-level to top-level verification hierarchies.
Comprehensive block-level verification is essential to full chip
success, but at the end of the day nobody tapes-out a block, it is
the top-level chip that brings in the money - in that respect we
live in a vertical world.

III. TOP-DOWN OR BOTTOM-UP
The two engineering paradigms of top-down and bottom-up

design can also be applied to the concept of vertical reuse. In
an ideal world without real project pressure, it would be
reasonable to assume all verification environments were
composed in a bottom-up manner where block-level
environments are combined and layered in a well-structured
manner until we arrive at a top-level environment with implicit
reuse [2]. Indeed the standard verification methodologies often
portray this as normal practice rather than an ideal goal.

2 The right arrow symbol, ð, is used throughout this document to

indicate guidelines and recommendations.

www.verilab.com

The evidence from many of projects at a variety of clients
is that the real world does not conform to this ideal  . The
main reasons for this are threefold; firstly that the top-level
verification environments have different requirements; they
must support highly constrained real-life scenarios and directed
tests, perhaps also running real software and firmware, in many
cases with accurate behavioral models for analog blocks
integrated into the digital chip. Secondly, these top-level
environments are almost always on the critical path and are
therefore developed in parallel with the corresponding block-
level environments. Thirdly, the sheer variety of quality and
capability in what is often an ad-hoc collection of block-level
sub-systems means that forming a coherent homogeneous
amalgamation that meets all the top-level requirements is just
not feasible.

This leads to the situation where the top-level environment
may well be developed in a top-down manner in order to
achieve its goals independently from the block-level testbench
developments. At a later stage in the project the block-level
verification components are imported to enhance the
effectiveness of the top-level environment by supplementing
the external Device Under Test (DUT) operation validation
with comprehensive internal checks, coverage and messages.

IV. VERIFICATION REQUIREMENTS
The top-level testbench has quite specific verification

requirements that differ from the comprehensive but isolated
constrained random concerns dealt with by the block-level
environments. Top-level requirements include:

• Functional correctness of overall application

• Interaction of all module and sub-systems

• Access to shared resources such as memory and bus
structures

• Operation with realistic clock and power domain
behavior

• Overall performance of the system

• Parallel external interface behavior

• Connectivity of all blocks and sub-systems

We cannot achieve closure on all of these verification
requirements by looking only at the external pins in a complex
top-level chip. These requirements mean we need to measure
coverage and check operation of critical functional data paths
inside the DUT including validating relationships between
blocks while running top-level test scenarios. If the top-level
tests fail to address these concerns then it represents significant
risk to the overall quality of the application.

One additional advantage of re-using the block-level
verification environments in the top-level is that we close the
loop on functional expectations for the block – often a block
that is comprehensively validated in a stand-alone system finds
itself under different and unexpected conditions in the top-level
environment (for example starved of resources) – so sometimes
the block level environment and requirements are themselves
improved by the application of reuse.

V. DEBUG REQUIREMENTS
It is not enough to provide a top-level verification

environment that proves functional operation of a perfect chip.
The path to perfection will no doubt include failures that need
to be debugged effectively and efficiently during top-level
simulations. The time taken to debug failures, especially in the
top-level environment, is probably the biggest drain on
engineering resources at later stages of the project and can put
the simulation effort firmly on the critical path. Additional
internal checks and messages can go a long way to helping
debug requirements become a reality. Localized checking at
block and sub-system boundaries improves the observability of
failures and can quickly isolate problems. Additional
informative messages for operational paths and internal
interfaces are also invaluable for identifying which aspects of
the chip are behaving as expected even though the overall test
indicates a fail. The best way to achieve this level of bug
isolation within a complex top-level environment is by making
extensive reuse of block-level artifacts operating in passive
mode as detailed in the next section.

VI. ACTIVE & PASSIVE OPERATION
All modern verification methodologies make a clear

distinction between active and passive operation of verification
components and environments. This can be summed up as
follows:

• Active components provide and affect stimulus driven
to the DUT

• Passive components do not provide or affect the
stimulus in any way

In this context stimulus is more than just generating inputs
to the DUT from a proactive master, but also includes
providing responses from reactive slaves, clock generation and
side effects like delays. All of these are affected by active
components and none are affected in any way by components
operating in passive mode.

Both the functional capability and the run-time architecture
of the corresponding verification environment are affected by
the active or passive mode setting. Consider for example the
active block-level verification environment shown in Figure 1.

Figure 1. Active Block-Level Environment

In the active environment shown in Figure 1:

• Stimulus is provided by sequencers and drivers

o proactive master generates request stimulus

o reactive slave generates response stimulus

• Checks are performed by interfaces, monitors &
scoreboards

• Coverage is collected by monitors

• Messages are generated by all components

The corresponding passive version of this block-level
verification environment is shown in Figure 2:

Figure 2. Passive Block-Level Environment

In the passive environment shown in Figure 2:

• No stimulus is performed by the passive components in
the environment

o sequencers and drivers are not present

• Checks are still performed by interfaces, monitors and
scoreboards

• Coverage is still collected by the monitors

• Messages are generated by the remaining components

Typically passive mode is used in situations where the
relevant DUT block is instantiated in a higher-level sub-system
or top-level chip. In this case verification stimulus is provided
by active components of the verification environment outside
the scope of the re-used block-level environment. This is
illustrated in Figure 3, which shows the passive block-level
verification environment being used in the context of a top-
level testbench.

Figure 3. Passive Block-Level in Top Environment

In this case all of the checks, coverage and available debug
messages are reused to ensure a more effective validation of
the block in context of the top-level DUT as well as supporting
more comprehensive top-level testbench operation.

A. Active/Passive Mode
In order to select between active and passive mode of

operation, all relevant sub-components must include an
active/passive configuration flag. Note that the complete block-
level environment must take into account active and passive
settings and not just the lower-level interface verification
components. Often engineers make a reasonable job of the low-
level verification components but fail to implement correctly
structured active/passive mode settings for the enclosing
environment  . The intent is to provide the top-level
integrator with a complete and properly encapsulated passive
environment that contains all of the necessary lower-level
verification components configured in an appropriate manner.

ð Complete environment must consider active/passive
configuration, not just verification components

The active/passive mode setting should be used during the
creation (build or generate phases) of the environment and
affects the actual constructed instances of sub-components
within the agent and environment classes. Active components
like sequencers and drivers are not constructed in passive
mode.

ð Do not create active components during passive
construction

Since the active components are not present in a passive
agent or environment, it follows that we cannot connect to their
Transaction Level Modelling (TLM) ports or assign internal
pointer references to other components.

ð Do not attempt to connect to active components
during passive mode

B. Scoreboards
Scoreboards are a special kind of checker that performs

comparisons between transactions published by different
monitors in the system. These checks may comprise
transformation checks, where one transaction type is modified
to generate a different transaction type, or they may be
validating propagation and distribution for transactions of the
same kind.

Scoreboards are critical to validating functional paths
throughout the design and therefore reuse of block-level
scoreboards adds extremely important checker capability to the
top-level environment. Since these scoreboards live in passive
environments, the transactions destined for scoreboard
comparisons must come from passive components and not
active components (which are not present in the passive
architecture). However, even though this is a fundamental rule
in each of the standard verification methodologies, it also
appears to be the biggest single violation in block-level
architectures  . It is also the hardest architectural defect to
recover from when attempting to retrofit verification reuse
capability as discussed later.

ð Do not connect scoreboards to active components

The main cause of bad scoreboard connectivity appears to
be that some verification engineers recognize a shortcut is
possible which saves effort for the monitor development, but
overlook the fact that vertical reuse is totally compromised.
Specifically, for an active environment the transaction field
information typically exists in the form of a sequence item that
is provided to the driver. It is easier to send this sequence item
(which represents a request to drive a transaction) to a
scoreboard than to correctly implement the monitor to fully
decode the interface signals (the observed traffic), construct a
transaction object from this, and then post it to the scoreboard.
However, for robust functional verification, the monitor must
independently decode the actual traffic on the resolved signals
for the interface and publish this information via analysis ports;
this ensures reliable checker operation and supports passive
reuse.

C. Functional Checks
In addition to the transaction comparisons done in the

scoreboard, all functional checks for transaction content and
protocol behavior should also be done in passive components,
typically monitors. Everyone knows that. Why then do people
choose to implement timeout checks and error messages inside
drivers?  In principle drivers may need to check some
aspects of protocol behavior in order to correctly react to DUT

responses and recover correctly from anticipated failures, but
actual protocol checks and error messages need to be
implemented independently inside the corresponding monitor
as well.

ð Perform functional checks in passive components

Protocol operation and timing checks are often
implemented using SystemVerilog Assertions (SVA), which
notionally belong to the monitor but must be implemented
outside of the class-based environment, usually in the
corresponding interface construct [3]. Since the interface is also
instantiated in passive environments these SVA protocol
checks are still operational in passive mode.

D. Functional Coverage
The vast majority of the functional coverage should be

implemented in passive components to allow for reuse at the
top-level. This approach also tends to strengthen the quality of
the functional coverage since, for example, we do not cover
that we requested a particular transaction to be sent to the
DUT, but rather we cover what was actually sent when the
monitor has decoded the observed traffic.

Occasionally some stimulus coverage is deemed
appropriate and cannot be measured by a monitor, for example
some error injection modes that would result in traffic that
cannot be reliably decoded by a monitor [4]. In such cases
separate isolated coverage in the driver is appropriate, but
cannot of course be reused in the top-level environment and
therefore does not contribute to the verification goals for top-
level  .

ð Collect functional coverage in passive components

E. Configuration Updates
It is often the case that there are pseudo-static configuration

fields related to protocol operation that must be kept up-to-date
to ensure correct functional operation of the verification
environment. These settings can change during the running of a
test, typically in response to some traffic on one or more
interfaces to the DUT. Since the value of these configuration
fields is affected by stimulus in the block-level environment, it
is tempting to update the configuration directly from the
sequences or driver  . However, since these active
components are not present in a top-level reuse scenario and it
is still crucial to maintain the configuration accuracy, then
these fields need to be updated by passive components,
typically monitors.

ð Update configuration only from passive components

F. Information Messages
Something that is often overlooked is the importance of

preserving relevant informative messages in a passive reuse
scenario in order to help debug failures and isolate working
aspects of the top-level chip  . All sub-components and
methods in the verification environment are allowed to
generate informative messages; however, only the messages
from passive components will be available when the
environment is used in passive mode.

ð Generate important messages in passive components

G. Warning Messages
Many block-level verification environments include the

capability to inject errors from the active components as part of
the stress test features for comprehensive block-level
verification requirements. Typically transactions sent to the
DUT with illegal content are not reported as an error under
these circumstances (since that would cause the test to fail), but
rather a warning  . The verification environment will expect
specific error detection and recovery operation from the DUT
as a result of the error injection and if that does not occur then
a real failure message is generated. In a top-level environment
we may want to reclassify illegal transactions arriving at an
embedded block as an error since this could help isolate real
problems in the situation where the upstream RTL block
generates illegal input signals.

Under these circumstances the monitor, which is always a
passive sub-component even though it is present in both active
and passive environments, would use the active/passive flag
setting only to determine the message severity.

ð Consider promoting warning messages to errors in
passive mode

H. End-of-Test Control
Normally the components of a block-level environment

make a combined decision of when would be appropriate to
end the test. This can be a mixture of active stimulus decisions
and passive observations such as waiting for an ongoing
transaction to end. The usual mechanism for controlling test
flow is called objections – basically any component can object
to the test ending until it sees fit.

However, when the passive block-level components are
reused in a top-level context it may no longer be appropriate
for the monitor on an internal interface to object to test
completion  . For example we must be able to tolerate
termination of the test during a partial transaction on any one of
many internal or even external interfaces, likewise a direct
memory access (DMA) transfer need not necessarily complete
if the top-level scenario does not require this. This is another
case where the passive component (like a monitor or
scoreboard) needs to be aware of the active/passive flag in
order to behave appropriately.

ð Do not control end-of-test from components in passive
mode

I. Stimulus Reuse
When a block-level verification component is reused in

active mode as part of the stimulus hierarchy in a top-level
environment additional care is required with the sequence API.
Top-level stimulus is typically more constrained than the
equivalent stimulus at the block-level and normally the
stimulus is encapsulated inside a higher-level protocol or
running in parallel with multiple verification components to
create interesting scenarios. It is not appropriate to put too
many constraints into sequence items  (e.g. distribution

constraints) since the user will typically not be generating items
directly, but rather most of the user constraints should reside in
sequences and the sequence item should only contain legality
constraints.

ð Put user constraints in sequences not sequence items

Likewise the sequence API should not be at too low a level
for the top-level scenario generator (i.e. with all sequence item
fields exposed as control knobs), but rather powerful high-level
functional sequences should be provided as well as more
generic low level sequences. It is unlikely that the block-level
supplier can predict all use-cases in the top-level environment
 , but they can provide a comprehensive sequence library that
supports full functionality of the verification component
protocol. If the verification component has more than one
active agent, then the user component supplier should
encapsulate all sequences into a single sequence library
registered with the highest-level virtual sequencer in the
verification component environment.

ð Provide a comprehensive sequence library that
encapsulates low-level and high-level functionality

VII. PROBLEMS OF SCALE
The sheer scale of integrating many block-level

components into a single top-level environment introduces
additional demands on the block-level suppliers related to build
encapsulation, configuration, namespace isolation and interface
operation that may not be at all apparent when working in a
block-level only domain. Consider for example the potential
headaches involved with badly encapsulated block-level reuse
as shown in Figure 4.

Figure 4. Un-encapsulated Reuse

Typically the top-level verification environment is already
complex with many external interfaces and internal paths all
operating in parallel and of course the full scope of DUT
behavior needs to be catered for including modeling analog
blocks, clock domains and power islands. In order to support
the top-level team in validating the verification requirements

necessary for tape-out, the block-level suppliers have a duty to
make things as easy to integrate and reuse as possible.

A. Environment Encapsulation
Typically it is the entire cluster of components from the

verification environment that is required for reuse, excluding
the lower-level tests. It is not appropriate to expect the top-
level to reconfigure and connect the various lower-level
verification components into an appropriate topology  , but
rather this must be provided by the block-level environment
encapsulation itself.

The chances are that this encapsulation is already done to
some degree in the block-level environment, but the real
question is if it can be reused as-is without having to copy
additional code into the top-level environment. For example, if
the block-level environment topology is pulled-together in a
base-test component, then it is by definition not reusable since
the tests are not ported to the top-level  . Likewise if the
uppermost environment in the block-level does not consider
active/passive settings then the environment needs additional
work before it can be reused. The best solution here is to
encapsulate all components and settings into a single
environment component and use it in both the block-level base-
test and the top-level environment.

ð Encapsulate all sub-components in a single reusable
environment

B. Configuration Encapsulation
It is assumed that most block-level verification

environments make use of multiple interface and module
verification components, each of which must be configured to
match the requirements of the block. It is not appropriate to
pass the responsibility for configuring all these sub-
components up to the top-level  . Rather, the block-level
environment should configure all the lower-level settings that
are invariant for the block in this project setting and
encapsulate what few flexible configuration settings remain
into an object made visible to the top-level. Hence the top-level
environment only has to care about one configuration object
for each complete block-level environment and the
configuration object only provides relevant fields that can be
changed in the environment.

ð Encapsulate configuration objects correctly and
manage content

C. Interface Encapsulation
Normally each agent in the verification components within

an environment has its own dedicated interface construct
handling a single functional group of signals. With several
verification components grouped together in the environment
we end up with several individual interfaces to instantiate,
connect and associate with virtual interfaces inside the class
world. This is not usually a problem until we consider the scale
of the top-level environment encompassing many passive
block-level components.

Under these circumstances it is not appropriate to present
the top-level integrator with a set of fragmented signal
interfaces (or signal maps for e) in order to reuse a single
block-level environment  . Specifically, there is a real danger
of missing a vital connection, making incorrect connections or
failing to associate the virtual interface references
appropriately. The risk is compounded because the reused
block-level environment is connecting to internal signals in the
DUT, using white-box probing, and not external ports. So we
need to communicate more precisely exactly what needs to be
connected for the block-level environment to continue to
operate, and the best way to do this is through encapsulation.

The block-level supplier should provide a single
hierarchical interface which instantiates all the required lower
level interfaces. This interface encapsulation enables more
effective white-box probing of the embedded block in the DUT
since only one HDL path to the embedded block is required
and the top-level integrator only has one virtual interface
assignment to make.

ð Combine multiple signal interfaces into a hierarchical
interface

D. SVA Encapsulation
Functional protocol checks are often implemented using

SVA and therefore cannot be in located in the SystemVerilog
classes for the verification component to which they belong  .
These assertions should therefore be located inside the
corresponding signal interface construct for the verification
component so that they are automatically included when the
interface is instantiated in the testbench module [3]. There is no
need to independently bind a collection of block-level
assertions that belong to the verification components to the
internal signals in the DUT, since this connectivity is required
for the interface signal connections anyway. Design assertions
that are not embedded in RTL will have to be handled
separately, but this can also be achieved by encapsulation
inside an interface construct.

ð Encapsulate SVA protocol checks inside the interface

E. Namespace Collisions
Importing multiple packages into the same scope can cause

namespace collisions if the artifacts in each package are not
correctly named. This is not just restricted to global constructs
like macro definitions, but also class, constant and type
definitions within each package, including enumeration literals
 . The increased scale of top-level is much more likely to
uncover namespace collisions than individual block-level
environments since many packages are imported into the same
scope.

In general, things like constant definitions and class names
do not suffer from defects here, but the smaller items get
overlooked. For instance it is not appropriate to have a
BUS_WIDTH macro definition since at the top-level there will
be many busses each with different widths. Likewise it is
tempting to use short names for the enumeration literals inside
an enumerated type definition, (e.g. IDLE), but when multiple
packages are imported into the same scope using the wildcard

operator (*), any enumeration literals with the same name
collide even though the enumeration type name itself may be
unique. The recommended approach is to prefix all named
items visible in the package scope (e.g. class, constant, macro
and types, but not class members) with a unique string derived
from the verification component’s name.

ð Avoid namespace collisions by using unique prefix
throughout package scope

F. Benefits of Encapsulation
Following the guidelines for correct encapsulation and

naming of the block-level verification components and
environments results in much easier and less error-prone
integration into the top-level testbench. The resulting
environment is more modular and easier to maintain as well.
Figure 5 illustrates an improved encapsulation compared with
that shown previously in Figure 4.

Figure 5. Encapsulated Reuse

VIII. ADDITIONAL CONCERNS
Not all vertical reuse concerns are directly related to the

change of role associated with block-level verification
environments being reused in the top-level hierarchy, although
that is the focus for this paper. This section outlines some
additional concerns that need to be taken into account in many
projects and is included in order to give the reader a more
comprehensive view of the overall problem space;
unfortunately a detailed analysis of each of these topics is
outside the scope if this paper.

A. Formal Verification
Formal verification is normally applied at the block-level

due to tool limitations and the need to contain the scope of the
mathematical proofs. Vertical reuse of formal verification
artifacts is however not only desirable, but also a requirement,
in order to ensure correct integration and dynamic operation of
the associated block  . In particular it is essential to validate
that the assumptions used in the formal analysis hold true in the
top-level environment by reusing the assume statements as

assertions in the simulation environment. The functional
properties may, in general, also be reused in the top-level
environment to validate correct dynamic behavior of the block
and provide confidence on the accuracy and completeness of
the formal analysis.

ð Validate assume statements from formal verification

B. Power-Aware Simulations
Most block-level verification environments do not execute

power-aware simulations and yet this might well be a critical
verification requirement for the top-level environment.
Specifically most signal-based transactors (e.g. drivers and
monitors) in the verification components and associated SVA
checks may not behave correctly, or recover in an appropriate
manner, if the signals (including clock and reset) transition to
undefined values in the top-level simulation due to power-
domain manipulation  . All verification components in
applications where power-aware simulations will be required
need to take power-intent attributes into account [5]. As a
minimum the drivers, monitors and SVA checks need
additional power state indicators which can be used to prevent
false failures, ensure correct recovery from power-off states
and of course validate the actual power state sequencing. If the
block-level verification requirements include power-intent
simulations, then the corresponding meta-data must be
correctly encapsulated for reuse in a higher-level environment.

ð Verification components must be power-aware for
low-power applications

C. Assertion-Based Verification
Many RTL blocks are instrumented with embedded, or

separately bound, assertions intended to validate important
design requirements. These assertions can be invaluable in
detecting and isolating functional failures and abuse of the
RTL block in the top-level system. However, caution is
required. Typically RTL assertions are focused at a very low-
level and could therefore quite significantly affect the
performance of the top-level verification environment if all the
assertions for all blocks are active and evaluating some
property on every clock cycle  . Having many thousands of
relatively uninteresting design assertions can also contribute to
a false sense of security  – these assertions are only valid if
they really protect the block from misuse or they contribute
directly to top-level verification requirements. For some reason
the quality of design assertions varies significantly, perhaps
due to the different mind-sets of the originators – while this
situation might be tolerable at block-level it can be a killer in
the top-level situation.

Block-level RTL assertions should be well documented and
encapsulated such that individual checks can be selectively
enabled or disabled in the top-level environment. This can be
achieved using labeled assert statements in SVA or by
providing control knobs for continuous assertions embedded in
supplementary checker code.

ð Enable only appropriate RTL assertions for top-level

D. Clock-Domain Crossing
Verification of Clock Domain Crossing (CDC) signals is

almost always part of the requirements for modern top-level
environments. Even if the CDC behavior is partially visible at
the block level, this might not be enough to validate interaction
of all the clock domains at the top-level  . This is especially
true when low-power features like Dynamic Voltage and
Frequency Scaling (DVFS) are controlled by application-
specific software for example. If CDC assertions are available
for the block-level environment, then these should be reused at
the top-level as discussed in the previous section.

ð Reuse CDC assertions in top-level

For a bottom-up CDC flow it is also possible to attach
waivers to block-level artifacts and import these into the top-
level analysis in order to minimize the information overload
often associated with full-chip CDC analysis. Note however
that extreme caution is required here since the clock
relationships and operational modes may not be fully
understood at block-level and can change for new derivatives
using the same legacy blocks  .

ð Exercise caution with bottom-up CDC waiver reuse

E. Transaction-Level Operation
An additional application of vertical reuse concerns

targeting verification components to operate with a different
abstraction level for the DUT, for example RTL and
transaction-level SystemC models. Typically the same
environment can be used to validate cycle-accurate SystemC
models and RTL implementations (in fact the SystemC model
does not normally have to be cycle-accurate but does require a
signal interface for this to work). However, if the verification
requirement needs to support transaction-level modeling
without a signal interface, including stimulus and monitoring,
then the drivers and monitors need to be designed with that in
mind  . This would typically involve separating protocol
layers from the physical signal interface layer in the agent
architecture – when done correctly most of the remaining
architecture is unchanged and reusable between the two
abstraction levels including sequence libraries, checker
operation (especially scoreboards), and functional coverage.

ð Supporting multiple abstraction levels requires
architectural partitioning

F. Analog-Mixed-Signal
Analog Mixed Signal (AMS) simulation is used to validate

correct interoperation of analog and digital sub-components.
These simulations are usually done at a block-level due to tool
performance issues involved with evaluating continuous analog
behavior (as opposed to discrete event-based digital
simulation). The AMS simulation environment is also used to
validate behavioral models of the analog blocks, which are then
used in the higher-level digital simulations. Typically the
behavioral model would be instrumented with a comprehensive
set of assertions (either actual Analog-SVA, or ad-hoc
continuous assertions). Often these assertion-style checks are
extremely inefficient and can severely affect performance in

the top-level environment if the DUT has a significant analog
content  . For that reason the analog assertions also need to
be well documented and individually controllable in order to
get the most effective usage checks and support top-level
verification requirements without compromising overall top-
level regression effectiveness.

ð Enable only appropriate AMS assertions for top-level

G. Emulation and Acceleration
Many top-level verification strategies make use of

hardware-assisted emulation or acceleration to enable much
faster “simulation” of scenarios closer to real application speed.
These environments synthesize the DUT and part of the
testbench (typically the bus-functional signal interfaces as well
as both RTL and testbench assertions) into actual hardware
(FPGAs in the emulator system). The remainder of the
testbench runs in the simulator, which communicates with the
emulator box interactively during test execution. Architecture
guidelines for vertical reuse in an emulation system are outside
the scope of this paper, but some limited information is
available in [6].

H. Multi-Language Operation
Another aspect of verification reuse that should be

mentioned for completeness is that of multi-language inter-
operation. Most simulators support the ability to operate with
different functional languages such as e, SystemVerilog and
SystemC, however the actual verification components from
each language do not communicate in a standard manner and
the current situation is far from the desired plug-and-play
scenario. Relevant topics include: coordination of phases,
scheduling, configuration, stimulus generation, constraint
solving, data communication, message maintenance and
functional coverage unification. Full analysis of this topic is
also outside the scope of this paper, but more information is
available in [7].

IX. TUNING REUSE
Taking into account the change of role associated with

vertical reuse and the different focus for higher-level
verification requirements, many block-level components need
to have their behavior modified in order to add value in the top-
level environment.

A. Tuning Coverage
Since the top-level environment has different verification

requirements, it is unlikely that the block-level functional
coverage groups can be reused effectively without modification
 . The top-level environment makes use of the block-level
decoding capability and coverage collection mechanisms, but
may require to modify the actual coverage groups and bins for
each cover-point. In addition the top-level environment needs
to create additional coverage to measure relationships between
different blocks and sub-systems, which can be layered on top
of existing block-level mechanisms.

Verification environments using the e language can tune
coverage directly using the Aspect Oriented Programming

(AOP) mechanisms to redefine the original classes.
SystemVerilog environments need to overload the coverage
group definitions typically by using a factory pattern to do
class substitution (e.g. as provided by UVM). In either case,
functional coverage code is quite different to the normal
functional code in the corresponding monitor component and
benefits from correct encapsulation in a separate coverage-only
class definition. For SystemVerilog it is essential that only the
coverage is isolated in this class to enable safer factory class
substitution without affecting normal monitor behaviour and
minimizing maintenance problems when bugs are fixed in
monitor functional code, whereas for e this just represents good
coding practice.

ð Encapsulate functional coverage constructs in
dedicated class

There are several models for doing coverage encapsulation;
the most appropriate for a particular application depends on the
coverage requirements. Valid options include:

• Instantiate a coverage class in the monitor

• Extend the monitor to add (only) coverage code

• Provide subscriber class coverage component

Instantiating a coverage class inside the monitor is the most
flexible solution and can provide transaction coverage as well
as cross coverage of other monitor utility fields. Subscriber
coverage is limited to transaction content, since it relies on the
transaction being published to trigger the coverage collection.
Extending the monitor to add coverage can lead to
complications if the factory is used to replace the original
monitor with a modified class.

B. Filtering Messages
It is absolutely essential that reused block-level

environments do not pollute the top-level logfiles with
excessive information about block behavior except when
configured to do so by the controlling environment  . This is
also somehow related to scale; at block-level we probably do
not care if we have too much information about this particular
block, since that is the focus for the tests, and as a result
inappropriate messages with incorrect verbosity settings may
be present in the final environment. Examples of such defects
include printing messages without verbosity controls (e.g.
using the SystemVerilog $display function, or an unguarded
item.print) or printing too much information at too low a
verbosity setting (e.g. printing a complete transaction at LOW
verbosity)  .

Typically the top-level will disable all messages from
block-level components during regression runs and only
selectively enable message generation for the block-level
environments in order to debug errors. Errors and warnings are
not affected by verbosity levels and are always printed. The
block-level should stick to a simple verbosity scheme such as
that shown below and the supplier should check this as part of
the release procedures by actually running the block level
regressions under different verbosity settings.

• LOW: messages that happen once per run or reset

• MEDIUM: single-line summary of each transaction

• HIGH: print each transaction or sequence once

• FULL: anything, including method parameter settings

ð Ensure message verbosity is appropriate and
controllable

C. Controlling Checks
In general we expect to reuse all available checks from the

block-level environment in order to validate continued correct
operation of blocks embedded in the top-level DUT. However,
there are some checks that might cause problems due to the
different use case. One good example of this is an end of test
check for a scoreboard, which generates a failure if the
scoreboard is not empty  . At block-level this is appropriate
behavior since the environment is in control of when the test
ends, however at top-level different criteria are applied for
managing end of test conditions as previously discussed.

In this case the user should provide a separate control flag
for the end of test scoreboard check so that the user can disable
this check if required. Typically disabled checks should
generate a warning instead of an error under these
circumstances.

ð Allow checks to be disabled where appropriate

X. RETROFITTING REUSE
It is not absolutely necessary to validate internal top-level

verification requirements by applying a reuse strategy, since we
could chose to develop additional monitors, coverage and
checks independent of the available block-level components.
Reuse does not come for free, but the implementation effort is
not huge and is generally much less than the cost of reinventing
the code especially in terms of engineering time. In reality the
trade-off is generally not a choice between opting to reuse or
reinvent, but rather whether or not to validate some of the
internal top-level verification requirements at all  , which
carries an extremely high price tag in terms of quality and risk.

It would not be far off the mark to assume that if a
verification component has not yet been reused in a different
context, then it is not yet reusable  . The good news is that
retrofitting reuse to an existing environment is a feasible
proposition and the effort can be justified by the consumer’s
project as a cost comparison between modifying the code for
reuse or reinventing from scratch. It is very unlikely that the
cost of fixing even seriously broken block-level environments
will be more than coding a passive equivalent from scratch. In
addition, changes to support vertical reuse are generally related
to encapsulation and composition, and therefore are relatively
low risk in terms of introducing bugs but just show up as
compile or elaboration types of errors. The following flow can
be used:

• Determine the scope of effort

• Review against reuse guidelines

• Implement all repairs in the supplier code-base

• Validate changes using block-level regression

Experience suggests that determining the scope of effort is
usually hampered by out-of-date and inaccurate documentation
for the verification environment, or indeed no documentation at
all; however, using the factory.print mechanism from OVM
and UVM or the eDocs facility from Specman is usually a
good place to start to explore the actual topology of supplied
verification environments. It is absolutely essential to have a
working block-level regression to facilitate code improvements
and prevent accidental damage.

Once the reuse enhancements have been retrofitted to the
block-level environment it is time to test it out. Instantiating an
extra instance of the block-level environment in the block-level
base-test, and configuring it for passive operation as shown in
Figure 6, is a great way for suppliers and integrators to weed
out most of the reuse defects described in this paper. This extra
passive environment shadows the normal active testbench
behavior; its only purpose is to validate passive operation of
the full block-level environment.

• Instantiate a shadow instance of the environment in
block-level base-test

• Configure this shadow instance to passive mode

• Run block-level regressions

Figure 6. Shadow Passive Environment

ð Validate passive operation in block-level environment

Once passive mode has been validated in the block-level
environment an instance of the passive environment can then
be integrated into the top-level environment and attempt to tune
the coverage, control the messages and validate if any checks
need additional control flags to disable them.

• Instantiate passive instance in top-level environment

• Validate coverage tuning, check control and message
verbosity

Any defects or improvements should be fed back to the
supplier’s code-base which will ensure much more effective
reuse for other consumers at a later date and effectively

improve the quality of the block-level verification
environment.

XI. CONCLUSION
Many of the guidelines presented in this paper are standard

engineering practice and are repeated here for completeness
together with additional guidelines based on real-life
experiences. The techniques discussed in this paper have been
successfully used and adapted at a number of different
verification groups in various clients. It is hoped that
combining pragmatic observations with comprehensive reuse
guidelines and practical suggestions for retrofitting reuse into
real world projects will empower the reader to achieve
improved vertical reuse in their own project scenarios.

REFERENCES
[1] Accellera, Universal Verification Methodology, www.uvmworld.org
[2] R. Wang, “A comprehensive approach to scalable framework for both

vertical and horizontal reuse in UVM verification”, CDNLive Beijing
2012

[3] M. Litterick, “SVA Encapsulation in UVM – enabling phase and
configuration aware assertions”, DVCon 2013

[4] J. Montesano, “UVM Sequence Item Based Error Injection”, SNUG
Ottawa 2012

[5] Mentor, “Low Power Design and Verification Techniques”, white paper
[6] Cadence, “Comprehensive UVM/OVM Acceleration”, white paper
[7] Accellera, “Verification Intellectual Property (VIP) Recommended

Practices”, 2009

