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Abstract—	
  Successful application of block-level verification reuse 
improves the effectiveness of the top-level environment by 
providing additional checks, coverage and messages (and in some 
cases stimulus) which, as well as detecting more bugs, helps speed 
up debug for other system-level defects by providing improved 
internal visibility and enhanced bug isolation. Despite these 
benefits consistent efficient reuse is simply not being achieved in 
many companies. This paper revisits the vertical reuse problem 
from a fresh standpoint and addresses the fundamental issues 
involved, provides a comprehensive set of pragmatic reuse 
guidelines and also suggests how to go about retrofitting reuse to 
existing block-level environments. 
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I.  INTRODUCTION 
Successful application of block-level verification reuse 

improves the effectiveness of the top-level environment by 
providing additional checks, coverage and messages (and in 
some cases stimulus) which, as well as detecting more bugs, 
helps speed up debug for other system-level defects by 
providing improved internal visibility and enhanced bug 
isolation.  

The detailed understanding of block-level protocol and 
associated expertise that has been built into the automatic 
checks such as scoreboards, the ability to collect functional 
coverage based on coherent transactions and the capability to 
provide concise and informative messages based on signal 
decoding is of course also reused. This allows the top-level 
team to concentrate more on appropriate concerns such as 
overall functional correctness of the application, external 
interface behavior, module and sub-system interaction, access 
to shared resources, low-power operation, performance and 
interconnection verification requirements.  

Reuse of block-level verification environments at the top-
level is potentially well supported by modern verification 
methodologies such as the Universal Verification Methodology 
(UVM) [1]. However, the evidence from scores of projects in 
many different companies is that successful and effective 
vertical reuse is simply not being consistently achieved.  

This paper revisits the vertical reuse problem from a fresh 
standpoint and addresses the fundamental issues involved1, 

                                                             
1  The red warning triangle symbol,  , is used throughout this 

document to indicate a hazard observed in real verification environments. 

provides a comprehensive set of pragmatic reuse guidelines2 
and also suggests how to go about retrofitting reuse to existing 
block-level environments. The discussion is essentially 
language independent, but any major differences between e and 
SystemVerilog methodologies are highlighted where 
appropriate, however UVM terminology is used throughout. 

II. VERTICAL & HORIZONTAL REUSE 
The world of verification is not flat.  The terms “vertical” 

and “horizontal” are used to describe the context into which 
verification artifacts are reused. In this respect horizontal 
typically means using a verification component in a different 
system or project but at roughly the same level of abstraction 
and with the same functional role. Vertical reuse on the other 
hand refers to using a verification component in a different 
hierarchy level, usually with an implied change of role.  

For example, a verification component used in block-level, 
sub-system, and top-level environments within the same 
project, exhibits vertical reuse. In this case we would expect 
the stimulus to be nested inside higher-level stimulus until the 
stage where the associated interfaces are no longer external 
signals, but embedded connections internal to the design, at 
which point the role of stimulus generation would no longer be 
applicable. 

This paper focuses on vertical reuse attributes and 
especially those related to the change of role when going from 
block-level to top-level verification hierarchies. 
Comprehensive block-level verification is essential to full chip 
success, but at the end of the day nobody tapes-out a block, it is 
the top-level chip that brings in the money - in that respect we 
live in a vertical world. 

III. TOP-DOWN OR BOTTOM-UP 
The two engineering paradigms of top-down and bottom-up 

design can also be applied to the concept of vertical reuse. In 
an ideal world without real project pressure, it would be 
reasonable to assume all verification environments were 
composed in a bottom-up manner where block-level 
environments are combined and layered in a well-structured 
manner until we arrive at a top-level environment with implicit 
reuse [2]. Indeed the standard verification methodologies often 
portray this as normal practice rather than an ideal goal.  

                                                             
2  The right arrow symbol, ð, is used throughout this document to 

indicate guidelines and recommendations. 
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The evidence from many of projects at a variety of clients 
is that the real world does not conform to this ideal  . The 
main reasons for this are threefold; firstly that the top-level 
verification environments have different requirements; they 
must support highly constrained real-life scenarios and directed 
tests, perhaps also running real software and firmware, in many 
cases with accurate behavioral models for analog blocks 
integrated into the digital chip. Secondly, these top-level 
environments are almost always on the critical path and are 
therefore developed in parallel with the corresponding block-
level environments. Thirdly, the sheer variety of quality and 
capability in what is often an ad-hoc collection of block-level 
sub-systems means that forming a coherent homogeneous 
amalgamation that meets all the top-level requirements is just 
not feasible.  

This leads to the situation where the top-level environment 
may well be developed in a top-down manner in order to 
achieve its goals independently from the block-level testbench 
developments. At a later stage in the project the block-level 
verification components are imported to enhance the 
effectiveness of the top-level environment by supplementing 
the external Device Under Test (DUT) operation validation 
with comprehensive internal checks, coverage and messages.  

IV. VERIFICATION REQUIREMENTS 
The top-level testbench has quite specific verification 

requirements that differ from the comprehensive but isolated 
constrained random concerns dealt with by the block-level 
environments. Top-level requirements include: 

• Functional correctness of overall application 

• Interaction of all module and sub-systems 

• Access to shared resources such as memory and bus 
structures 

• Operation with realistic clock and power domain 
behavior  

• Overall performance of the system 

• Parallel external interface behavior  

• Connectivity of all blocks and sub-systems 

We cannot achieve closure on all of these verification 
requirements by looking only at the external pins in a complex 
top-level chip. These requirements mean we need to measure 
coverage and check operation of critical functional data paths 
inside the DUT including validating relationships between 
blocks while running top-level test scenarios. If the top-level 
tests fail to address these concerns then it represents significant 
risk to the overall quality of the application.  

One additional advantage of re-using the block-level 
verification environments in the top-level is that we close the 
loop on functional expectations for the block – often a block 
that is comprehensively validated in a stand-alone system finds 
itself under different and unexpected conditions in the top-level 
environment (for example starved of resources) – so sometimes 
the block level environment and requirements are themselves 
improved by the application of reuse.  

V. DEBUG REQUIREMENTS 
It is not enough to provide a top-level verification 

environment that proves functional operation of a perfect chip. 
The path to perfection will no doubt include failures that need 
to be debugged effectively and efficiently during top-level 
simulations. The time taken to debug failures, especially in the 
top-level environment, is probably the biggest drain on 
engineering resources at later stages of the project and can put 
the simulation effort firmly on the critical path. Additional 
internal checks and messages can go a long way to helping 
debug requirements become a reality. Localized checking at 
block and sub-system boundaries improves the observability of 
failures and can quickly isolate problems. Additional 
informative messages for operational paths and internal 
interfaces are also invaluable for identifying which aspects of 
the chip are behaving as expected even though the overall test 
indicates a fail. The best way to achieve this level of bug 
isolation within a complex top-level environment is by making 
extensive reuse of block-level artifacts operating in passive 
mode as detailed in the next section.  

VI. ACTIVE & PASSIVE OPERATION 
All modern verification methodologies make a clear 

distinction between active and passive operation of verification 
components and environments. This can be summed up as 
follows: 

• Active components provide and affect stimulus driven 
to the DUT  

• Passive components do not provide or affect the 
stimulus in any way 

In this context stimulus is more than just generating inputs 
to the DUT from a proactive master, but also includes 
providing responses from reactive slaves, clock generation and 
side effects like delays. All of these are affected by active 
components and none are affected in any way by components 
operating in passive mode.  

Both the functional capability and the run-time architecture 
of the corresponding verification environment are affected by 
the active or passive mode setting. Consider for example the 
active block-level verification environment shown in Figure 1. 

 



 
Figure 1.  Active Block-Level Environment 

In the active environment shown in Figure 1: 

• Stimulus is provided by sequencers and drivers  

o proactive master generates request stimulus  

o reactive slave generates response stimulus  

• Checks are performed by interfaces, monitors & 
scoreboards 

• Coverage is collected by monitors 

• Messages are generated by all components 

 

The corresponding passive version of this block-level 
verification environment is shown in Figure 2: 

 

 
Figure 2.  Passive Block-Level Environment 

In the passive environment shown in Figure 2: 

• No stimulus is performed by the passive components in 
the environment 

o sequencers and drivers are not present  

• Checks are still performed by interfaces, monitors and 
scoreboards 

• Coverage is still collected by the monitors 

• Messages are generated by the remaining components 

 

Typically passive mode is used in situations where the 
relevant DUT block is instantiated in a higher-level sub-system 
or top-level chip. In this case verification stimulus is provided 
by active components of the verification environment outside 
the scope of the re-used block-level environment. This is 
illustrated in Figure 3, which shows the passive block-level 
verification environment being used in the context of a top-
level testbench.  

 

 
Figure 3.  Passive Block-Level in Top Environment 

In this case all of the checks, coverage and available debug 
messages are reused to ensure a more effective validation of 
the block in context of the top-level DUT as well as supporting 
more comprehensive top-level testbench operation.  

A. Active/Passive Mode 
In order to select between active and passive mode of 

operation, all relevant sub-components must include an 
active/passive configuration flag. Note that the complete block-
level environment must take into account active and passive 
settings and not just the lower-level interface verification 
components. Often engineers make a reasonable job of the low-
level verification components but fail to implement correctly 
structured active/passive mode settings for the enclosing 
environment  . The intent is to provide the top-level 
integrator with a complete and properly encapsulated passive 
environment that contains all of the necessary lower-level 
verification components configured in an appropriate manner.  

ð Complete environment must consider active/passive 
configuration, not just verification components 

The active/passive mode setting should be used during the 
creation (build or generate phases) of the environment and 
affects the actual constructed instances of sub-components 
within the agent and environment classes. Active components 
like sequencers and drivers are not constructed in passive 
mode. 



ð Do not create active components during passive 
construction 

Since the active components are not present in a passive 
agent or environment, it follows that we cannot connect to their 
Transaction Level Modelling (TLM) ports or assign internal 
pointer references to other components.  

ð Do not attempt to connect to active components 
during passive mode 

B. Scoreboards 
Scoreboards are a special kind of checker that performs 

comparisons between transactions published by different 
monitors in the system. These checks may comprise 
transformation checks, where one transaction type is modified 
to generate a different transaction type, or they may be 
validating propagation and distribution for transactions of the 
same kind.  

Scoreboards are critical to validating functional paths 
throughout the design and therefore reuse of block-level 
scoreboards adds extremely important checker capability to the 
top-level environment. Since these scoreboards live in passive 
environments, the transactions destined for scoreboard 
comparisons must come from passive components and not 
active components (which are not present in the passive 
architecture). However, even though this is a fundamental rule 
in each of the standard verification methodologies, it also 
appears to be the biggest single violation in block-level 
architectures  . It is also the hardest architectural defect to 
recover from when attempting to retrofit verification reuse 
capability as discussed later. 

ð Do not connect scoreboards to active components 

The main cause of bad scoreboard connectivity appears to 
be that some verification engineers recognize a shortcut is 
possible which saves effort for the monitor development, but 
overlook the fact that vertical reuse is totally compromised. 
Specifically, for an active environment the transaction field 
information typically exists in the form of a sequence item that 
is provided to the driver. It is easier to send this sequence item 
(which represents a request to drive a transaction) to a 
scoreboard than to correctly implement the monitor to fully 
decode the interface signals (the observed traffic), construct a 
transaction object from this, and then post it to the scoreboard. 
However, for robust functional verification, the monitor must 
independently decode the actual traffic on the resolved signals 
for the interface and publish this information via analysis ports; 
this ensures reliable checker operation and supports passive 
reuse. 

C. Functional Checks 
In addition to the transaction comparisons done in the 

scoreboard, all functional checks for transaction content and 
protocol behavior should also be done in passive components, 
typically monitors. Everyone knows that. Why then do people 
choose to implement timeout checks and error messages inside 
drivers?   In principle drivers may need to check some 
aspects of protocol behavior in order to correctly react to DUT 

responses and recover correctly from anticipated failures, but 
actual protocol checks and error messages need to be 
implemented independently inside the corresponding monitor 
as well.  

ð Perform functional checks in passive components 

Protocol operation and timing checks are often 
implemented using SystemVerilog Assertions (SVA), which 
notionally belong to the monitor but must be implemented 
outside of the class-based environment, usually in the 
corresponding interface construct [3]. Since the interface is also 
instantiated in passive environments these SVA protocol 
checks are still operational in passive mode. 

D. Functional Coverage 
The vast majority of the functional coverage should be 

implemented in passive components to allow for reuse at the 
top-level. This approach also tends to strengthen the quality of 
the functional coverage since, for example, we do not cover 
that we requested a particular transaction to be sent to the 
DUT, but rather we cover what was actually sent when the 
monitor has decoded the observed traffic.  

Occasionally some stimulus coverage is deemed 
appropriate and cannot be measured by a monitor, for example 
some error injection modes that would result in traffic that 
cannot be reliably decoded by a monitor [4]. In such cases 
separate isolated coverage in the driver is appropriate, but 
cannot of course be reused in the top-level environment and 
therefore does not contribute to the verification goals for top-
level  .  

ð Collect functional coverage in passive components 

E. Configuration Updates 
It is often the case that there are pseudo-static configuration 

fields related to protocol operation that must be kept up-to-date 
to ensure correct functional operation of the verification 
environment. These settings can change during the running of a 
test, typically in response to some traffic on one or more 
interfaces to the DUT. Since the value of these configuration 
fields is affected by stimulus in the block-level environment, it 
is tempting to update the configuration directly from the 
sequences or driver  . However, since these active 
components are not present in a top-level reuse scenario and it 
is still crucial to maintain the configuration accuracy, then 
these fields need to be updated by passive components, 
typically monitors.  

ð Update configuration only from passive components 

F. Information Messages 
Something that is often overlooked is the importance of 

preserving relevant informative messages in a passive reuse 
scenario in order to help debug failures and isolate working 
aspects of the top-level chip  . All sub-components and 
methods in the verification environment are allowed to 
generate informative messages; however, only the messages 
from passive components will be available when the 
environment is used in passive mode.  



ð Generate important messages in passive components 

G. Warning Messages 
Many block-level verification environments include the 

capability to inject errors from the active components as part of 
the stress test features for comprehensive block-level 
verification requirements. Typically transactions sent to the 
DUT with illegal content are not reported as an error under 
these circumstances (since that would cause the test to fail), but 
rather a warning  . The verification environment will expect 
specific error detection and recovery operation from the DUT 
as a result of the error injection and if that does not occur then 
a real failure message is generated. In a top-level environment 
we may want to reclassify illegal transactions arriving at an 
embedded block as an error since this could help isolate real 
problems in the situation where the upstream RTL block 
generates illegal input signals. 

Under these circumstances the monitor, which is always a 
passive sub-component even though it is present in both active 
and passive environments, would use the active/passive flag 
setting only to determine the message severity. 

ð Consider promoting warning messages to errors in 
passive mode 

H. End-of-Test Control 
Normally the components of a block-level environment 

make a combined decision of when would be appropriate to 
end the test. This can be a mixture of active stimulus decisions 
and passive observations such as waiting for an ongoing 
transaction to end. The usual mechanism for controlling test 
flow is called objections – basically any component can object 
to the test ending until it sees fit.  

However, when the passive block-level components are 
reused in a top-level context it may no longer be appropriate 
for the monitor on an internal interface to object to test 
completion  . For example we must be able to tolerate 
termination of the test during a partial transaction on any one of 
many internal or even external interfaces, likewise a direct 
memory access (DMA) transfer need not necessarily complete 
if the top-level scenario does not require this. This is another 
case where the passive component (like a monitor or 
scoreboard) needs to be aware of the active/passive flag in 
order to behave appropriately.  

ð Do not control end-of-test from components in passive 
mode 

I. Stimulus Reuse 
When a block-level verification component is reused in 

active mode as part of the stimulus hierarchy in a top-level 
environment additional care is required with the sequence API. 
Top-level stimulus is typically more constrained than the 
equivalent stimulus at the block-level and normally the 
stimulus is encapsulated inside a higher-level protocol or 
running in parallel with multiple verification components to 
create interesting scenarios. It is not appropriate to put too 
many constraints into sequence items   (e.g. distribution 

constraints) since the user will typically not be generating items 
directly, but rather most of the user constraints should reside in 
sequences and the sequence item should only contain legality 
constraints.  

ð Put user constraints in sequences not sequence items 

Likewise the sequence API should not be at too low a level 
for the top-level scenario generator (i.e. with all sequence item 
fields exposed as control knobs), but rather powerful high-level 
functional sequences should be provided as well as more 
generic low level sequences. It is unlikely that the block-level 
supplier can predict all use-cases in the top-level environment 
 , but they can provide a comprehensive sequence library that 
supports full functionality of the verification component 
protocol. If the verification component has more than one 
active agent, then the user component supplier should 
encapsulate all sequences into a single sequence library 
registered with the highest-level virtual sequencer in the 
verification component environment.  

ð Provide a comprehensive sequence library that 
encapsulates low-level and high-level functionality 

VII. PROBLEMS OF SCALE 
The sheer scale of integrating many block-level 

components into a single top-level environment introduces 
additional demands on the block-level suppliers related to build 
encapsulation, configuration, namespace isolation and interface 
operation that may not be at all apparent when working in a 
block-level only domain. Consider for example the potential 
headaches involved with badly encapsulated block-level reuse 
as shown in Figure 4. 

 
Figure 4.  Un-encapsulated Reuse 

Typically the top-level verification environment is already 
complex with many external interfaces and internal paths all 
operating in parallel and of course the full scope of DUT 
behavior needs to be catered for including modeling analog 
blocks, clock domains and power islands. In order to support 
the top-level team in validating the verification requirements 



necessary for tape-out, the block-level suppliers have a duty to 
make things as easy to integrate and reuse as possible.  

A. Environment Encapsulation 
Typically it is the entire cluster of components from the 

verification environment that is required for reuse, excluding 
the lower-level tests. It is not appropriate to expect the top-
level to reconfigure and connect the various lower-level 
verification components into an appropriate topology  , but 
rather this must be provided by the block-level environment 
encapsulation itself.  

The chances are that this encapsulation is already done to 
some degree in the block-level environment, but the real 
question is if it can be reused as-is without having to copy 
additional code into the top-level environment. For example, if 
the block-level environment topology is pulled-together in a 
base-test component, then it is by definition not reusable since 
the tests are not ported to the top-level  . Likewise if the 
uppermost environment in the block-level does not consider 
active/passive settings then the environment needs additional 
work before it can be reused. The best solution here is to 
encapsulate all components and settings into a single 
environment component and use it in both the block-level base-
test and the top-level environment. 

ð Encapsulate all sub-components in a single reusable 
environment 

B. Configuration Encapsulation 
It is assumed that most block-level verification 

environments make use of multiple interface and module 
verification components, each of which must be configured to 
match the requirements of the block. It is not appropriate to 
pass the responsibility for configuring all these sub-
components up to the top-level  . Rather, the block-level 
environment should configure all the lower-level settings that 
are invariant for the block in this project setting and 
encapsulate what few flexible configuration settings remain 
into an object made visible to the top-level. Hence the top-level 
environment only has to care about one configuration object 
for each complete block-level environment and the 
configuration object only provides relevant fields that can be 
changed in the environment. 

ð Encapsulate configuration objects correctly and 
manage content 

C. Interface Encapsulation 
Normally each agent in the verification components within 

an environment has its own dedicated interface construct 
handling a single functional group of signals. With several 
verification components grouped together in the environment 
we end up with several individual interfaces to instantiate, 
connect and associate with virtual interfaces inside the class 
world. This is not usually a problem until we consider the scale 
of the top-level environment encompassing many passive 
block-level components. 

Under these circumstances it is not appropriate to present 
the top-level integrator with a set of fragmented signal 
interfaces (or signal maps for e) in order to reuse a single 
block-level environment  . Specifically, there is a real danger 
of missing a vital connection, making incorrect connections or 
failing to associate the virtual interface references 
appropriately. The risk is compounded because the reused 
block-level environment is connecting to internal signals in the 
DUT, using white-box probing, and not external ports. So we 
need to communicate more precisely exactly what needs to be 
connected for the block-level environment to continue to 
operate, and the best way to do this is through encapsulation.  

The block-level supplier should provide a single 
hierarchical interface which instantiates all the required lower 
level interfaces. This interface encapsulation enables more 
effective white-box probing of the embedded block in the DUT 
since only one HDL path to the embedded block is required 
and the top-level integrator only has one virtual interface 
assignment to make. 

ð Combine multiple signal interfaces into a hierarchical 
interface 

D. SVA Encapsulation 
Functional protocol checks are often implemented using 

SVA and therefore cannot be in located in the SystemVerilog 
classes for the verification component to which they belong  .  
These assertions should therefore be located inside the 
corresponding signal interface construct for the verification 
component so that they are automatically included when the 
interface is instantiated in the testbench module [3]. There is no 
need to independently bind a collection of block-level  
assertions that belong to the verification components to the 
internal signals in the DUT, since this connectivity is required 
for the interface signal connections anyway. Design assertions 
that are not embedded in RTL will have to be handled 
separately, but this can also be achieved by encapsulation 
inside an interface construct. 

ð Encapsulate SVA protocol checks inside the interface 

E. Namespace Collisions 
Importing multiple packages into the same scope can cause 

namespace collisions if the artifacts in each package are not 
correctly named. This is not just restricted to global constructs 
like macro definitions, but also class, constant and type 
definitions within each package, including enumeration literals 
 . The increased scale of top-level is much more likely to 
uncover namespace collisions than individual block-level 
environments since many packages are imported into the same 
scope.  

In general, things like constant definitions and class names 
do not suffer from defects here, but the smaller items get 
overlooked. For instance it is not appropriate to have a 
BUS_WIDTH macro definition since at the top-level there will 
be many busses each with different widths. Likewise it is 
tempting to use short names for the enumeration literals inside 
an enumerated type definition, (e.g. IDLE), but when multiple 
packages are imported into the same scope using the wildcard 



operator (*), any enumeration literals with the same name 
collide even though the enumeration type name itself may be 
unique. The recommended approach is to prefix all named 
items visible in the package scope (e.g. class, constant, macro 
and types, but not class members) with a unique string derived 
from the verification component’s name. 

ð Avoid namespace collisions by using unique prefix 
throughout package scope 

F. Benefits of Encapsulation 
Following the guidelines for correct encapsulation and 

naming of the block-level verification components and 
environments results in much easier and less error-prone 
integration into the top-level testbench. The resulting 
environment is more modular and easier to maintain as well. 
Figure 5 illustrates an improved encapsulation compared with 
that shown previously in Figure 4. 

 
Figure 5.  Encapsulated Reuse 

VIII. ADDITIONAL CONCERNS 
Not all vertical reuse concerns are directly related to the 

change of role associated with block-level verification 
environments being reused in the top-level hierarchy, although 
that is the focus for this paper. This section outlines some 
additional concerns that need to be taken into account in many 
projects and is included in order to give the reader a more 
comprehensive view of the overall problem space; 
unfortunately a detailed analysis of each of these topics is 
outside the scope if this paper.  

A. Formal Verification 
Formal verification is normally applied at the block-level 

due to tool limitations and the need to contain the scope of the 
mathematical proofs. Vertical reuse of formal verification 
artifacts is however not only desirable, but also a requirement, 
in order to ensure correct integration and dynamic operation of 
the associated block  . In particular it is essential to validate 
that the assumptions used in the formal analysis hold true in the 
top-level environment by reusing the assume statements as 

assertions in the simulation environment. The functional 
properties may, in general, also be reused in the top-level 
environment to validate correct dynamic behavior of the block 
and provide confidence on the accuracy and completeness of 
the formal analysis.  

ð Validate assume statements from formal verification 

B. Power-Aware Simulations 
Most block-level verification environments do not execute 

power-aware simulations and yet this might well be a critical 
verification requirement for the top-level environment. 
Specifically most signal-based transactors (e.g. drivers and 
monitors) in the verification components and associated SVA 
checks may not behave correctly, or recover in an appropriate 
manner, if the signals (including clock and reset) transition to 
undefined values in the top-level simulation due to power-
domain manipulation  . All verification components in 
applications where power-aware simulations will be required 
need to take power-intent attributes into account [5]. As a 
minimum the drivers, monitors and SVA checks need 
additional power state indicators which can be used to prevent 
false failures, ensure correct recovery from power-off states 
and of course validate the actual power state sequencing. If the 
block-level verification requirements include power-intent 
simulations, then the corresponding meta-data must be 
correctly encapsulated for reuse in a higher-level environment. 

ð Verification components must be power-aware for 
low-power applications 

C. Assertion-Based Verification 
Many RTL blocks are instrumented with embedded, or 

separately bound, assertions intended to validate important 
design requirements. These assertions can be invaluable in 
detecting and isolating functional failures and abuse of the 
RTL block in the top-level system. However, caution is 
required. Typically RTL assertions are focused at a very low-
level and could therefore quite significantly affect the 
performance of the top-level verification environment if all the 
assertions for all blocks are active and evaluating some 
property on every clock cycle  . Having many thousands of 
relatively uninteresting design assertions can also contribute to 
a false sense of security   – these assertions are only valid if 
they really protect the block from misuse or they contribute 
directly to top-level verification requirements. For some reason 
the quality of design assertions varies significantly, perhaps 
due to the different mind-sets of the originators – while this 
situation might be tolerable at block-level it can be a killer in 
the top-level situation. 

Block-level RTL assertions should be well documented and 
encapsulated such that individual checks can be selectively 
enabled or disabled in the top-level environment. This can be 
achieved using labeled assert statements in SVA or by 
providing control knobs for continuous assertions embedded in 
supplementary checker code.  

ð Enable only appropriate RTL assertions for top-level  



D. Clock-Domain Crossing 
Verification of Clock Domain Crossing (CDC) signals is 

almost always part of the requirements for modern top-level 
environments. Even if the CDC behavior is partially visible at 
the block level, this might not be enough to validate interaction 
of all the clock domains at the top-level  . This is especially 
true when low-power features like Dynamic Voltage and 
Frequency Scaling (DVFS) are controlled by application-
specific software for example. If CDC assertions are available 
for the block-level environment, then these should be reused at 
the top-level as discussed in the previous section. 

ð Reuse CDC assertions in top-level 

For a bottom-up CDC flow it is also possible to attach 
waivers to block-level artifacts and import these into the top-
level analysis in order to minimize the information overload 
often associated with full-chip CDC analysis. Note however 
that extreme caution is required here since the clock 
relationships and operational modes may not be fully 
understood at block-level and can change for new derivatives 
using the same legacy blocks  .  

ð Exercise caution with bottom-up CDC waiver reuse 

E. Transaction-Level Operation 
An additional application of vertical reuse concerns 

targeting verification components to operate with a different 
abstraction level for the DUT, for example RTL and 
transaction-level SystemC models. Typically the same 
environment can be used to validate cycle-accurate SystemC 
models and RTL implementations (in fact the SystemC model 
does not normally have to be cycle-accurate but does require a 
signal interface for this to work). However, if the verification 
requirement needs to support transaction-level modeling 
without a signal interface, including stimulus and monitoring, 
then the drivers and monitors need to be designed with that in 
mind  . This would typically involve separating protocol 
layers from the physical signal interface layer in the agent 
architecture – when done correctly most of the remaining 
architecture is unchanged and reusable between the two 
abstraction levels including sequence libraries, checker 
operation (especially scoreboards), and functional coverage.  

ð Supporting multiple abstraction levels requires 
architectural partitioning 

F. Analog-Mixed-Signal 
Analog Mixed Signal (AMS) simulation is used to validate 

correct interoperation of analog and digital sub-components. 
These simulations are usually done at a block-level due to tool 
performance issues involved with evaluating continuous analog 
behavior (as opposed to discrete event-based digital 
simulation). The AMS simulation environment is also used to 
validate behavioral models of the analog blocks, which are then 
used in the higher-level digital simulations. Typically the 
behavioral model would be instrumented with a comprehensive 
set of assertions (either actual Analog-SVA, or ad-hoc 
continuous assertions). Often these assertion-style checks are 
extremely inefficient and can severely affect performance in 

the top-level environment if the DUT has a significant analog 
content  . For that reason the analog assertions also need to 
be well documented and individually controllable in order to 
get the most effective usage checks and support top-level 
verification requirements without compromising overall top-
level regression effectiveness.  

ð Enable only appropriate AMS assertions for top-level  

G. Emulation and Acceleration 
Many top-level verification strategies make use of 

hardware-assisted emulation or acceleration to enable much 
faster “simulation” of scenarios closer to real application speed. 
These environments synthesize the DUT and part of the 
testbench (typically the bus-functional signal interfaces as well 
as both RTL and testbench assertions) into actual hardware 
(FPGAs in the emulator system). The remainder of the 
testbench runs in the simulator, which communicates with the 
emulator box interactively during test execution. Architecture 
guidelines for vertical reuse in an emulation system are outside 
the scope of this paper, but some limited information is 
available in [6].  

H. Multi-Language Operation 
Another aspect of verification reuse that should be 

mentioned for completeness is that of multi-language inter-
operation. Most simulators support the ability to operate with 
different functional languages such as e, SystemVerilog and 
SystemC, however the actual verification components from 
each language do not communicate in a standard manner and 
the current situation is far from the desired plug-and-play 
scenario. Relevant topics include: coordination of phases, 
scheduling, configuration, stimulus generation, constraint 
solving, data communication, message maintenance and 
functional coverage unification. Full analysis of this topic is 
also outside the scope of this paper, but more information is 
available in [7].  

IX. TUNING REUSE  
Taking into account the change of role associated with 

vertical reuse and the different focus for higher-level 
verification requirements, many block-level components need 
to have their behavior modified in order to add value in the top-
level environment.  

A. Tuning Coverage 
Since the top-level environment has different verification 

requirements, it is unlikely that the block-level functional 
coverage groups can be reused effectively without modification 
 . The top-level environment makes use of the block-level 
decoding capability and coverage collection mechanisms, but 
may require to modify the actual coverage groups and bins for 
each cover-point. In addition the top-level environment needs 
to create additional coverage to measure relationships between 
different blocks and sub-systems, which can be layered on top 
of existing block-level mechanisms.  

Verification environments using the e language can tune 
coverage directly using the Aspect Oriented Programming 



(AOP) mechanisms to redefine the original classes. 
SystemVerilog environments need to overload the coverage 
group definitions typically by using a factory pattern to do 
class substitution (e.g. as provided by UVM). In either case, 
functional coverage code is quite different to the normal 
functional code in the corresponding monitor component and 
benefits from correct encapsulation in a separate coverage-only 
class definition. For SystemVerilog it is essential that only the 
coverage is isolated in this class to enable safer factory class 
substitution without affecting normal monitor behaviour and 
minimizing maintenance problems when bugs are fixed in 
monitor functional code, whereas for e this just represents good 
coding practice. 

ð Encapsulate functional coverage constructs in 
dedicated class 

There are several models for doing coverage encapsulation; 
the most appropriate for a particular application depends on the 
coverage requirements. Valid options include: 

• Instantiate a coverage class in the monitor 

• Extend the monitor to add (only) coverage code  

• Provide subscriber class coverage component 

Instantiating a coverage class inside the monitor is the most 
flexible solution and can provide transaction coverage as well 
as cross coverage of other monitor utility fields. Subscriber 
coverage is limited to transaction content, since it relies on the 
transaction being published to trigger the coverage collection. 
Extending the monitor to add coverage can lead to 
complications if the factory is used to replace the original 
monitor with a modified class.  

B. Filtering Messages 
It is absolutely essential that reused block-level 

environments do not pollute the top-level logfiles with 
excessive information about block behavior except when 
configured to do so by the controlling environment  . This is 
also somehow related to scale; at block-level we probably do 
not care if we have too much information about this particular 
block, since that is the focus for the tests, and as a result 
inappropriate messages with incorrect verbosity settings may 
be present in the final environment. Examples of such defects 
include printing messages without verbosity controls (e.g. 
using the SystemVerilog $display function, or an unguarded 
item.print) or printing too much information at too low a 
verbosity setting (e.g. printing a complete transaction at LOW 
verbosity)  .  

Typically the top-level will disable all messages from 
block-level components during regression runs and only 
selectively enable message generation for the block-level 
environments in order to debug errors. Errors and warnings are 
not affected by verbosity levels and are always printed. The 
block-level should stick to a simple verbosity scheme such as 
that shown below and the supplier should check this as part of 
the release procedures by actually running the block level 
regressions under different verbosity settings. 

• LOW: messages that happen once per run or reset 

• MEDIUM: single-line summary of each transaction 

• HIGH: print each transaction or sequence once 

• FULL: anything, including method parameter settings 

ð Ensure message verbosity is appropriate and 
controllable 

C. Controlling Checks 
In general we expect to reuse all available checks from the 

block-level environment in order to validate continued correct 
operation of blocks embedded in the top-level DUT. However, 
there are some checks that might cause problems due to the 
different use case. One good example of this is an end of test 
check for a scoreboard, which generates a failure if the 
scoreboard is not empty  . At block-level this is appropriate 
behavior since the environment is in control of when the test 
ends, however at top-level different criteria are applied for 
managing end of test conditions as previously discussed.  

In this case the user should provide a separate control flag 
for the end of test scoreboard check so that the user can disable 
this check if required. Typically disabled checks should 
generate a warning instead of an error under these 
circumstances.  

ð Allow checks to be disabled where appropriate 

 

X. RETROFITTING REUSE 
It is not absolutely necessary to validate internal top-level 

verification requirements by applying a reuse strategy, since we 
could chose to develop additional monitors, coverage and 
checks independent of the available block-level components. 
Reuse does not come for free, but the implementation effort is 
not huge and is generally much less than the cost of reinventing 
the code especially in terms of engineering time. In reality the 
trade-off is generally not a choice between opting to reuse or 
reinvent, but rather whether or not to validate some of the 
internal top-level verification requirements at all  , which 
carries an extremely high price tag in terms of quality and risk.  

It would not be far off the mark to assume that if a 
verification component has not yet been reused in a different 
context, then it is not yet reusable  . The good news is that 
retrofitting reuse to an existing environment is a feasible 
proposition and the effort can be justified by the consumer’s 
project as a cost comparison between modifying the code for 
reuse or reinventing from scratch. It is very unlikely that the 
cost of fixing even seriously broken block-level environments 
will be more than coding a passive equivalent from scratch. In 
addition, changes to support vertical reuse are generally related 
to encapsulation and composition, and therefore are relatively 
low risk in terms of introducing bugs but just show up as 
compile or elaboration types of errors. The following flow can 
be used: 

• Determine the scope of effort 

• Review against reuse guidelines 



• Implement all repairs in the supplier code-base 

• Validate changes using block-level regression 

Experience suggests that determining the scope of effort is 
usually hampered by out-of-date and inaccurate documentation 
for the verification environment, or indeed no documentation at 
all; however, using the factory.print mechanism from OVM 
and UVM or the eDocs facility from Specman is usually a 
good place to start to explore the actual topology of supplied 
verification environments. It is absolutely essential to have a 
working block-level regression to facilitate code improvements 
and prevent accidental damage.  

Once the reuse enhancements have been retrofitted to the 
block-level environment it is time to test it out. Instantiating an 
extra instance of the block-level environment in the block-level 
base-test, and configuring it for passive operation as shown in 
Figure 6, is a great way for suppliers and integrators to weed 
out most of the reuse defects described in this paper. This extra 
passive environment shadows the normal active testbench 
behavior; its only purpose is to validate passive operation of 
the full block-level environment.  

• Instantiate a shadow instance of the environment in 
block-level base-test 

• Configure this shadow instance to passive mode 

• Run block-level regressions 

 

Figure 6.  Shadow Passive Environment 

ð Validate passive operation in block-level environment 

Once passive mode has been validated in the block-level 
environment an instance of the passive environment can then 
be integrated into the top-level environment and attempt to tune 
the coverage, control the messages and validate if any checks 
need additional control flags to disable them.  

• Instantiate passive instance in top-level environment 

• Validate coverage tuning, check control and message 
verbosity 

Any defects or improvements should be fed back to the 
supplier’s code-base which will ensure much more effective 
reuse for other consumers at a later date and effectively 

improve the quality of the block-level verification 
environment.  

XI. CONCLUSION  
Many of the guidelines presented in this paper are standard 

engineering practice and are repeated here for completeness 
together with additional guidelines based on real-life 
experiences. The techniques discussed in this paper have been 
successfully used and adapted at a number of different 
verification groups in various clients. It is hoped that 
combining pragmatic observations with comprehensive reuse 
guidelines and practical suggestions for retrofitting reuse into 
real world projects will empower the reader to achieve 
improved vertical reuse in their own project scenarios.  
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