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Abstract- This paper presents practical schemes to enhance the reusability of verification components for AMBA 

based SoC design verification. AMBA Unified Verification System (AUVS) can reduce the amount of time to build 
testbench by pre-defining AMBA agents per configuration and it can also improve platform reusability of verification 

components by providing an abstraction layer of AMBA VIPs. Firmware-Like Sequence (FLS) is a scheme to describe test 
sequences using only tasks provided by Hardware Abstraction Layer (HAL) which positions itself between test sequence 
and agent, thereby enhancing vertical and horizontal reusability of test sequences. 

 

I. INTRODUCTION 

One research found out that 22% and 23% of the total verification time are spent on testbench build-up and test 

scenario coding respectively, while 36% on debugging time [1]. In other words, the total amount of time for 

preparing for tests – both testbench and test scenario – is relatively greater than actual verification work-hours: 45% 

vs. 36%. That is a good reason for why many efforts have been attempted to improve the reusability of verification 

components constituting testbench and testcases. Among such efforts are SystemVerilog and Universal Verification 

Methodology (UVM), which have boosted up such reusability [2] [3]. Although SystemVerilog and UVM can 

facilitate a design verification environment by providing basic verification components and methodologies, they do 

not guarantee the reusability of such verification components. Rather, the reusability can be improved by 

verification engineers only if they use or create such verification components with the concept of reusability in mind. 

The reusability can be categorized into three kinds: Vertical, Horizontal, and Platform reusability [1]. 

This paper presents practical schemes to improve all three kinds of reusability of verification components aiming 

at AMBA based SoC design that is general form of SoC. The practical scheme is composed of two major concepts: 

1. AMBA Unified Verification System (AUVS) not only to improve verification components’ platform reusability, 

but also to shorten testbench buildup time, 2. Firmware-Like Sequence (FLS) to improve test sequences’ vertical and 

horizontal reusability by providing Hardware Abstraction Layer (HAL) between test sequence and agent. 

II. REUSE PROBLEMS 

This section summarizes three major reuse issues that verification engineers encounter and find time-consuming 

while at work, before introducing you to our suggested solutions. 

Problem 1. Testbench build. At IP block level verification, we need nearly as many testbenches as the number of 

IP blocks. Each testbench build-up is considered as a series of routine jobs: agents creation and their configuration, 

interfaces creation and their configuration, verification components connection, sequences creation, and so on. If 

there were a simple and systematic way to do so, it would be a good benefit in reducing a great amount of time and 

effort put in building up testbenches. 

Problem 2. Platform reusability of test sequences. We might need to use multiple vendors’ AMBA VIP for many 

reasons, including VIP license issues, co-emulator synthesizability, simulator’s compatibility, and even use of in-

house VIPs. This situation enforces us to figure out how to effectively use different test sequences for each different 

VIP, so called platform reusability issue. 

Problem 3. Vertical and horizontal reusability of test sequences. It is not unusual to see the cases wherein a 

sequence used at IP block level verification cannot be reused at higher level for good reasons, including the different 

surroundings among the levels. As a result, AMBA bus sequences used at IP block cannot be directly reused at the 

higher level, so called vertical reusability issue. Figure 1 shows an example of vertical reusability wherein AHB 

driver used at IP level cannot be reused at subsystem level due to AXI bus. Similarly, we run into the similar issue 



when DUT is reused in another project – e.g., SFR access port is changed from AHB to AXI. That is called 

horizontal reusability issue. 

In the following, section III and IV suggest separate solutions to reuse problem 1, 2 and 3 respectively. Section III 

introduces AUVS scheme, pre-built UVM based verification platform with wrapper agents for each bus protocol, 

which is devised to solve reuse problem 1 and 2 by reducing testbench build-up time and using wrapper agents 

independent of specific VIP. In section IV, FLS scheme, describing test sequence with only tasks of HAL, is 

proposed as a solution to problem 3 in that it makes test sequences free of SFR port protocols. 

 

 

Figure 1. An example of vertical reusability 

III. AMBA UNIFIED VERIFICATION SYSTEM (AUVS) 

A. AUVS Overview 

Figure 2 shows the overall architecture of AMBA Unified Verification System (AUVS), composed of AUVS TPI 

sequence, AUVS environment, and AUVS harness. AUVS can be considered a pre-built UVM based verification 

platform which provides users with a reusable AMBA transaction generation mechanism. Three major components 

are briefly introduced in this section, followed by more detail explanation along with code snippets in the later 

sections. 

AUVS environment creates, configures, and connects AUVS agents. There are AUVS agents for each bus 

protocol – AXI, AHB, and APB – and each of them contains various vendors’ AMBA VIP agents. Users can select a 

specific vendor’s VIP, the number of its instances, and other protocol parameters for the AUVS agents. Once the 

AUVS agents are created and configured, they are connected to AUVS interfaces. AUVS harness generates an array 

of AUVS interfaces per user’s configuration and registers them in UVM resource pool so that AUVS environment 

can fetch them whenever needed. As a result, all the AMBA agents – any kind and any number – can be available 

simply by instantiating this AUVS environment with proper user configuration, thereby reducing the testbench 

buildup time dramatically (Problem 1). 



Besides, you don’t need separate configuration classes to pass bus protocol parameters down to agents, since the 

AUVS interface contains the parameters inside. This approach makes a little more sense in that such parameters are 

relevant to each bus protocol. Although they are assigned default values, they can be overridden by user specific 

values from outside later if needed. 

 
Figure 2. AUVS architecture 

TPI stands for Test Programming Interface. TPI is a class inheriting uvm_sequence intended to provide all test 

sequences with Application Programming Interface (API) to access VIP vendor independent AMBA transactions. 

The goal is to reuse a test sequence inheriting TPI without any modification even when target AMBA VIP changes, 

thereby solving the so called platform reusability issue of test sequences (Problem 2). 

Since AUVS environment is a pre-built platform, all you have to do is to use AUVS interface and AUVS TPI 

sequence properly. The following two sections will explain how they work from a user’s point of view, starting from 

AUVS interface. In this paper’s example codes, it is assumed that Synopsys AMBA SVT, Mentor AMBA QVIP, 

and in-house AMBA VIP are among target AMBA VIP candidates. It is not to waste unnecessary VIP licenses to 

choose which VIP for use at compile time. 

B.  AUVS Interface 

There are a pair of AUVS interfaces per bus protocol: master and slave. Snippet 1 shows AXI master interface 

code as example. Various vendors’ AXI VIP interfaces are pre built-in and connected. One of them will be chosen 

with `define at compile time. Bus protocol specific parameters such as addr_width and data_width are 

defined and assigned default value as mentioned previously. The parameters are referred to by AUVS environment 

in order to configure AUVS agents. 



Snippet 1. auvs_axi_master_interface.sv 

interface auvs_axi_master_interface( 
 input aclk , 
 input areset_n , 
   axi_awid, 
 // ... 
); 
 
// Use Synopsys SVT AXI 
`ifdef AUVS_USE_SVT_AXI 
 svt_axi_master_if inst( 
  .common_aclk( aclk ) , 
  .aresetn( areset_n ) , 
  .awid( axi_awid ) , 
  // ... 
 ); 
// Use Mentor QVIP or VTL AXI 
`elsif AUVS_USE_QVIP_AXI 
 mgc_axi inst( 
  1’bz , 1’bz 
 ); 
 assign axi_awid = inst.awid ; 
 // ... 
// Use in-house AXI 
`else 
 axi_vif inst( 
  .axi_aclk( aclk ) , 
  .axi_areset_n( areset_n ) , 
  .axi_awid( axi_awid ) , 
  // ... 
 ); 
`endif 
 
 // Protocol parameters 
 //  default value : address bit-width = 32, data bit-width = 32 
 bit[7:0] addr_width = 32 ; 
 bit[7:0] data_width = 32 ; 
 
endinterface 

 

C.  AUVS Harness 

Snippet 2 shows AUVS harness, a collection of all available AMBA interfaces. The interfaces are instantiated, 

assigned to virtual interface, and then registered into UVM resource pool so that testbench can fetch them through 

uvm_config_db::get. AUVS harness can be accessed using `include in testbench, because interface is not 

allowed to inherit in SystemVerilog. See Snippet 7 for this. 

Snippet 2. auvs_harness.svi 

interface auvs_harness ; 
 
 // AUVS_AXI_MST_AGT_MAX is defined in compile option by user 
 auvs_axi_master_interface u_auvs_axi_mst_if[0:(`AUVS_AXI_MST_AGT_MAX-1)] ; 
 virtual interface 
 auvs_axi_master_interface u_auvs_axi_mst_vif[0:(`AUVS_AXI_MST_AGT_MAX-1)] ; 
 
 initial begin 
  int i ; 
  u_auvs_axi_mst_vif[0:(`AUVS_AXI_MST_AGT_MAX-1)] =  



   u_auvs_axi_mst_if[0:(`AUVS_AXI_MST_AGT_MAX-1)] ; 
 
  // All VIFs are registered into UVM resource pool by uvm_config_db::set 
  for ( i=0 ; i<`AUVS_AXI_MST_AGT_MAX ; i++ ) begin 
   uvm_config_db#(virtual interface auvs_axi_master_interface)::set( 
    uvm_root::get(), “uvm_test_top”, 
    $sformatf(“u_auvs_axi_mst_vif[%0d]”,i), u_auvs_axi_mst_vif[i] ) ; 
  end 
 end 
 

endinterface 
 

D.  TPI Sequence 

Snippet 3 shows the header part of TPI sequence class. TPI sequence class provides a pair of write/read task of 

each bus protocol with which its inherited test sequences can generate bus traffic. The tasks communicate 

transaction input/output data through arguments. Argument agt_id selects a target agent among many available 

ones. 

Snippet 4 picks up the AXI write task, axi_write() as example to explain how it works. The code shows the 

case in that Synopsys AXI VIP is chosen as target agent. As explained in the comments in Snippet 4, a vendor 

specific sequence item, or transaction, is generated, set with input arguments, configured with port timing values, 

and then issued. Such a vendor specific flow is pre-built in each TPI task. 

Snippet 3. auvs_tpi_sequence.sv (header part) 

class auvs_tpi_sequence extends uvm_sequence ; 
 extern task axi_write( int agt_id, bit[] axi_id, bit[] addr, 
       bit[] burst, bit[] size, bit[] data); 
 extern task axi_read( int agt_id, bit[] axi_id, bit[] addr, 
       bit[] burst, bit[] size, output bit[] data); 
 extern task ahb_write( int agt_id, bit[] addr, 
       bit[] burst, bit[] size, bit[] data); 
 extern task ahb_read( int agt_id, bit[] addr, 
       bit[] burst, bit[] size, output bit[] data); 
 extern task apb_write( int agt_id, bit[] addr, bit[] data); 
 extern task apb_read( int agt_id, bit[] addr, output bit[] data); 
endclass 

 

Snippet 4. auvs_tpi_sequence::axi_write() (body part) 

task auvs_tpi_sequence::axi_write(int agt_id, bit[] axi_id, bit[] addr, bit[] burst, bit[] 
size, bit[] data); 
 
`ifdef AUVS_USE_SVT_AXI 
 // generate & start SVT AXI seq_item 
 svt_axi_master_transaction axi_xaction ; 
 svt_configuration cfg ; 
 
 // a. Create 
 `uvm_create_on( axi_xaction , auvs_seqr.axi_seqr[agt_id].target_seqr ) ; 
 start_item( axi_xaction ); 
 
 // b. Set sequence item 
 axi_xaction.xact_type = svt_axi_transaction::WRITE ; 
 axi_xaction.addr = addr ; 
 axi_xaction.burst_type = svt_axi_transaction::burst_type_enum`(burst) ; 
 axi_xaction.burst_size = svt_axi_transaction::burst_size_enum`(size) ; 
 axi_xaction.data = data ; 



 
 // c. Set delay parameters 
 axi_xaction.awvalid_delay = this.awvalid_delay[port_id] ; 
 axi_xaction.wvalid_delay = this.wvalid_delay[port_id] ; 
 axi_xaction.bready_delay = this.bready_delay[port_id] ; 
 //... 
 
 // d. Issue traffic 
 finish_item( axi_xaction ) ; 
 
`elsif AUVS_USE_QVIP_AXI 
 // generate & start QVIP AXI seq_item 
 // ... 
 
`else 
 // generate & start in-house AXI seq_item 
 // ... 
`endif 
 
endtask 

 

E.  AUVS Environment 

In fact, it is enough to refer to AUVS interface and TPI sequence – explained up to now – for users in order to 

fully utilize AUVS. The following two sections deep-dive into AUVS environment, the underneath engine to make 

all this possible, so that one can understand how AUVS interface and TPI sequence are handled internally. 

As shown in Snippet 5, auvs_env has agents (auvs_axi_master_agent), configs (auvs_axi_config), 

virtual interfaces (auvs_axi_master_interface), and virtual sequencer (auvs_sequencer) as member. 

During build phase, all kinds of AMBA protocols’ master and slave agents are created along with their configs, 

followed by a routine of virtual interface retrieval from UVM resource DB, agents/configs configuration, and 

registration of AUVS virtual sequencer (auvs_sequencer). Snippet 5 only shows AXI master case as example but 

other bus protocols should look similar. The sequencer of each agent is connected to AUVS virtual sequencer 

(auvs_sequencer) during connect phase, so that TPI sequence can use it to put sequence items into specific 

agents later. Next comes AUVS agent which is the most important component in AUVS environment. 

Snippet 5. auvs_env.sv 

class auvs_env extends uvm_env ; 
 
 auvs_axi_master_agent      u_auvs_axi_mst_agt[`AUVS_AXI_MST_AGT_MAX] ; 
 auvs_axi_config            u_auvs_axi_mst_cfg[`AUVS_AXI_MST_AGT_MAX] ; 
 virtual interface 
 auvs_axi_master_interface  u_auvs_axi_mst_vif[`AUVS_AXI_MST_AGT_MAX] ; 
 auvs_sequencer             vseqr ; 
 
 function void build_phase( uvm_phase phase ) ; 
  int i ; 
  super.build_phase( phase ) ; 
 
  for ( i = 0 ; i < `AUVS_AXI_MST_AGT_MAX ; i++ ) begin 
   u_auvs_axi_mst_agt[i] = auvs_axi_master_agent::type_id::create( 
         $sformatf(“u_auvs_axi_mst_agt[%0d]”,i), this); 
   u_auvs_axi_mst_cfg[i] = auvs_axi_config::type_id::create( 
         $sformatf(“u_auvs_axi_mst_cfg[%0d]”,i), this); 
 
   uvm_config_db#(virtual interface auvs_axi_master_interface)::get( 
    uvm_root::get(), 
    ”uvm_test_top”, 



    $sformatf(“u_auvs_axi_mst_vif[%0d]”,i), 
    u_auvs_axi_mst_vif[i]); 
 
   u_auvs_axi_mst_cfg[i].addr_width=u_auvs_axi_mst_vif.addr_width ; 
   u_auvs_axi_mst_cfg[i].data_width=u_auvs_axi_mst_vif.data_width ; 
   u_auvs_axi_mst_agt[i].vif = u_auvs_axi_mst_vif[i] ; 
   u_auvs_axi_mst_agt[i].set_config( u_auvs_axi_mst_cfg[i] ) ; 
  end 
 
  // create & register virtual sequencer 
  vseqr = auvs_sequencer::type_id::create(“vseqr”,this); 
  uvm_config_db#(auvs_sequencer)::set( 
   uvm_root::get(), 
   “uvm_test_top”, 
   “auvs_seqr”, 
   vseqr); 
  // ... 
 
 endfunction 
 
 function void connect_phase( uvm_phase phase ) ; 
  int i ; 
  for ( i=0 ; i < `AUVS_AXI_MST_AGT_MAX ; i++ ) begin 
   vseqr.axi_seqr[i] = u_auvs_axi_mst_agt[i].seqr ; 
  end 
  // … 
 endfunction 
 
endclass 

 

F.  AUVS Agents 

Snippet 6 shows AUVS AXI master agent as example, among other AUVS agents. This AUVS agent plays as a 

placeholder to contain a user selected agent and its sequencer. The target agent is created and then assigned config 

instance passed down by AUVS environment during build phase. During connect phase, the target agent’s 

sequencer is connected to AUVS agent’s sequencer (instance of auvs_axi_sequencer), which, in turn, is 

connected to the virtual sequencer of AUVS environment (instance of auvs_sequencer) as seen in Snippet 5. TPI 

sequence can utilize the target agent’s sequencer in this mechanism which connects target agents, AUVS agents, 

AUVS environment, and TPI all together in terms of sequence/sequencer. 

Snippet 6. auvs_axi_master_agent.sv 

class auvs_axi_master_agent extends uvm_agent ; 
 auvs_axi_sequencer seqr ; 
 auvs_axi_config cfg ; 
 
`ifdef AUVS_USE_SVT_AXI 
 svt_axi_master_agent inst ; 
 svt_axi_config svt_cfg ; 
`elsif AUVS_USE_QVIP_AXI 
 // ... 
`else 
 // ... 
`endif 
 
 function void set_config( auvs_axi_config in_cfg ) ; 
  cfg = in_cfg ; 
 endfunction 
 



 function void build_phase ( uvm_phase phase ) ; 
 `ifdef AUVS_USE_SVT_AXI 
  inst = svt_axi_master_agent::type_id::create(“inst”); 
  svt_cfg = svt_axi_config::type_id::create(“svt_cfg”); 
  svt_cfg.address_width = cfg.addr_width ; 
  svt_cfg.data_width = cfg.data_width ; 
  inst.cfg = svt_cfg ; 
 `elsif AUVS_USE_QVIP_AXI 
  // ... 
 `else 
  // ... 
 `endif 
 endfunction 
 
 function void connect_phase ( uvm_phase phase ) ; 
 `ifdef AUVS_USE_SVT_AXI 
  seqr.target_seqr = inst.sequencer ; 
 `elsif AUVS_USE_QVIP_AXI 
  seqr.target_seqr = inst.seqr ; 
 `else 
  seqr.target_seqr = inst.sequencer ; 
 `endif 
 endfunction 
 
endclass 

 

G. Testbench Implementation 

Up to this point, we’ve seen how AUVS is constructed and how it works, from TPI down to AUVS Interface. 

Now it is time to show how to use them in a practical way. Please recall there are only two areas to focus on from a 

user’s point of view: AUVS interface and TPI sequence.  

Snippet 7 presents the example testbench module – tb_top to deal with AUVS interfaces. The module includes 

“auvs_harness.svi” file for reusing AUVS harness, and connects ports of DUT to AMBA agents’ interfaces of 

AUVS harness. Connection between DUT and AUVS environment is finalized by assigning AMBA agent configs’ 

parameters to corresponding interfaces. 

Snippet 7. tb_top.sv 

module tb_top ; 
 // a. include ‘auvs_harness’ 
 `include “auvs_harness.svi” 
 
 // b. Connect interface signals 
 DUT u_dut( 
  .awvalid( u_auvs_axi_mst_if[0].awvalid ) , 
  .awready( u_auvs_axi_mst_if[0].awready) , 
  .awaddr( u_auvs_axi_mst_if[0].awaddr ) , 
  // ... 
 ) ; 
 
 // c. Overwrite protocol parameters 
 initial begin 
  u_auvs_axi_mst_if[0].addr_width = 32 ; 
  u_auvs_axi_mst_if[0].data_width = 64 ; 
 end 
 
endmodule 

 



Snippet 8 shows the example code of AUVS test sequence handling TPI sequence. This sequence inherits 

auvs_tpi_sequence and describes a test scenario by using TPI sequence provided API tasks. Note that, in 

pre_body(), auvs_sequencer registered in UVM resource pool is assigned to auvs_seqr, a member of 

auvs_tpi_sequence. This mechanism makes it possible to continue to reuse auvs_sample_sequence based on 

API tasks, even though underneath AMBA VIP agents change. 

Snippet 8. auvs_sample_sequence.sv 

class auvs_sample_sequence extends auvs_tpi_sequence ; 
 `uvm_object_utils( auvs_sample_sequence ) ; 
 
 task pre_body(); 
  // Get auvs_seqr from UVM resource pool and set it as virtual sequencer 
  //  to put transactions 
  if ( !uvm_config_db(auvs_sequencer)::get(uvm_root::get(),“uvm_test_top”, 
   ”auvs_seqr”,auvs_seqr) ) begin 
   `uvm_fatal(“auvs_sample_sequence”,”Get auvs_seqr fail”); 
  end 
 endtask 
 
 task body(); 
  int agt_id , axi_id , len ; 
  axi_write( agt_id=0, axi_id=0, ‘h4000_0000, AUVS_AXI_BYTE_8, len=15, wdata,wstrb ) ; 
  axi_read(  agt_id=0, axi_id=1 , ‘h4000_0000 , AUVS_AXI_BYTE_8 , len=15 , rdata ) ; 
  ahb_write( agt_id=0, ‘h5000_0000 , AUVS_AHB_INCR16 , AUVS_AHB_BYTE_4 , wdata ) ; 
  ahb_read(  agt_id=0, ‘h5000_0000 , AUVS_AHB_INCR16 , AUVS_AHB_BYTE_4 , rdata ) ; 
 endtask 
endclass 

 

IV. FIRMWARE-LIKE SEQUENCES(FLS) WITH HARDWARE ABSTRACTION LAYER(HAL) SCHEME 

A.  FLS Overview 

Firmware-Like Sequences (FLS) is a scheme which enables to create test sequences through Hardware 

Abstraction Layer (HAL). HAL is a verification component which provides API tasks abstracting DUT’s features. 

Such API tasks are written solely with driver tasks – write_driver() and read_driver() – to access DUT’s 

SFR. The driver tasks use only address and data just like memory mapped block access typically used in firmware 

programming. In turn, write_driver() and read_driver() call virtual tasks, bus_write() and bus_read(), 

respectively, which allow specific – or VIP dependent – implementation later. Since bus operations of HAL are 

decided through callback, HAL based test sequences can be reused even if SFR port protocols change, achieving 

vertical and horizontal reuse (Problem 3). Figure 3 shows the overall architecture of FLS. You can notice that the 

upper section w.r.t. HAL is protocol independent, while the lower is protocol dependent. Let us explain how FLS 

major components behave in the following sections.  



 
Figure 3. FLS architecture 

B. HAL Base Class and HAL Callback Base Class 

Snippet 9 shows hal_base, HAL base class, which is super class to all HAL classes. Base HAL callback class, 

hal_callback_base, is registered as callback class for hal_base. hal_base contains two driver tasks: 

write_driver() and read_driver(). Each of them calls a virtual task of hal_callback_base: 
bus_write() or bus_read(). 

Snippet 10 shows the code of hal_callback_base class. A task declared virtual is expected to be 

implemented with a specific AMBA protocol operation. 

Snippet 9. hal_base.sv 

class hal_base extends uvm_object ; 
 `uvm_object_utils( hal_base ) ; 
 
 // Register hal_callback_base as callback class 
 `uvm_register_cb( hal_base , hal_callback_base ) ; 
 
 // Driver task : write_driver 
 task write_driver( bit[(HAL_ADDR_WIDTH-1):0] addr , bit[(HAL_DATA_WIDTH-1):0] data ) ; 
  // Use `uvm_do_callback to invoke callback task 
  `uvm_do_callback( hal_base , hal_callback_base , bus_write(addr,data) ); 
 endtask 
 
 // Driver task : read_driver 
 task read_driver( bit[(HAL_ADDR_WIDTH-1):0] addr, 
      output bit[(HAL_DATA_WIDTH-1):0] data ) ; 
  // Use `uvm_do_callback to invoke callback task 
  `uvm_do_callback( hal_base , hal_callback_base , bus_read(addr,data) ); 
 endtask 
 
endclass 

 

Snippet 10. hal_callback_base.sv 

class hal_callback_base extends uvm_callback ; 
 // virtual task. Real operation isn’t implemented here. 



 virtual task bus_write(bit[] addr, bit[] data); 
 endtask 
 
 virtual task bus_read(bit[] addr, output bit[] data); 
 endtask 
endclass 

 

C. Testbench Implementation 

In this section, let us show how to use HAL base classes in creating VIP independent sequences. DDR SDRAM 

host controller (a.k.a. DDR controller) is picked up for this purpose. Snippet 11 shows a DDR controller’s HAL 

class, ddrc_hal, by inheriting the HAL base class, or hal_base. ddrc_hal provides API tasks which abstract the 

DDR controller’s basic features. Note that those API tasks should be written only with hal_base’s tasks: 

write_driver() and read_driver() in this example so that ddrc_hal can be independent of any specific bus 

protocols. 

Specific protocol for use can be defined in DDR controller’s HAL callback class as seen in Snippet 12. In this 

example, AHB protocol is used to write to or read from SFR. You can notice that virtual tasks declared in 

hal_callback_base (Snippet 10) are finally implemented in ddrc_hal_callback class. Of course, you can 

change the tasks – e.g., from AHB to AXI – later in a different level testbench (vertical reuse) or in a different 

project (horizontal reuse). 

Snippet 13 is the code that replaces ddrc_hal_callback’s bus tasks if testbench becomes to use AXI bus 

protocol for SFR access. The same thing applies to the case of using RAL (Register Abstraction Layer). It is good 

enough for you to use RAL operations in those bus tasks in that case.  

Once DDR controller’s HAL and HAL callback classes are ready, its sequences can be written by using HAL API 

tasks as seen in Snippet 14. 

Snippet 11. ddrc_hal.sv 

class ddrc_hal extends hal_base ; 
 // DDR controller API tasks 
 //  API tasks do not use sequence items or sequences to access SFR of DUT. 
 task mr_write() ; 
  write_driver( addr , data ) ; 
 endtask 
  
 task mr_read() ; 
  write_driver( addr , data ) ; 
 endtask 
 
 task set_address() ; 
  write_driver( addr , data ) ; 
 endtask 
 
 task set_phy_delay(); 
  write_driver( addr , data ) ; 
 endtask 
 
 task set_ddrc_start(); 
  // Read-Modify-Write DDRC_CTRL[0] to Start DDRC 
  read_driver( `DDRC_CTRL, rdata ) ; 
  rdata[0] = 1 ; 
  write_driver( `DDRC_CTRL, rdata ) ; 
 endtask 
 
 task init() ; 
  mr_write(0x2,`MR2_DATA); 
  mr_write(0x3,`MR3_DATA); 



  mr_write(0xD,`MR13_DATA); 
  mr_write(0x1,`MR1_DATA); 
  set_address(CS=1,BANK=3,ROW=15,COL=10); 
  set_phy_delay(`PHY_DELAY_VALUE); 
  set_ddrc_start(); 
 endtask 
 
endclass 

 

Snippet 12. ddrc_hal_callback.sv 

class ddrc_hal_callback#(type T = auvs_tpi_sequence) extends hal_callback_base ; 
 T seq ; 
 
 function void set_seq( T in_seq ) ; 
  seq = in_seq ; 
 endfunction 
 
 // Override bus_write & bus_read 
 // Bus operations are implemented with AUVS. 
 task bus_write(bit[] addr, bit[] data); 
  int agt_id ; 
  seq.ahb_write( agt_id = 0, addr, AUVS_AHB_BURST_SINGLE, AUVS_AHB_SIZE_BYTE_4,data) ; 
 endtask 
 
 task bus_read(bit[] addr, output bit[] data); 
  int agt_id ; 
  seq.ahb_read( agt_id = 0, addr, AUVS_AHB_BURST_SINGLE, AUVS_AHB_SIZE_BYTE_4, data) ; 
 endtask 
 
endclass 

 

Snippet 13. AXI bus operation tasks 

// Override bus_write & bus_read 
task bus_write(bit[] addr, bit[] data); 
 int agt_id , axi_id , len ; 
 seq.axi_write( agt_id = 0, axi_id, addr, AUVS_AXI_BYTE_4, len=0, data ) ; 
endtask 
 
task bus_read(bit[] addr, output bit[] data); 
 int agt_id , axi_id , len ; 
 seq.axi_read( agt_id = 0, axi_id, addr, AUVS_AXI_BYTE_4, len=0, data ) ; 
endtask 

 

Snippet 14. ddrc_sample_sequence.sv 

class ddrc_sample_sequence extends auvs_tpi_sequence ; 
 
 ddrc_hal#(auvs_tpi_sequence) ddrc ; 
 ddrc_hal_callback ddrc_cb ; 
 
 task set_hal(); 
  // Create HAL and HAL callback instances and add callback instance to HAL. 
  // HAL callback tasks(bus_write & bus_read) are overridden by ddrc_cb bus tasks. 
  ddrc = new(“ddrc”); 
  ddrc_cb=new(“ddrc_cb”); 



  ddrc_cb.set_seq( this ); 
  uvm_callbacks#(hal_base,hal_callback_base)::add(ddrc,ddrc_cb); 
 endtask 
 
 task pre_body(); 
  set_hal(); 
 endtask 
 
 task body(); 
  // Start DDRC initialization using a DDRC HAL API task 
  ddrc.init(); 
 endtask 
 
endclass 

 

In summary, FLS scheme allows us to create test sequences independent of specific SFR port protocols by using 

HAL API tasks. Since bus operation tasks underneath API are implemented in a form of callback, HAL’s reusability 

is guaranteed simply by changing such bus operation tasks even if SFR port protocols change. 

V. CONCLUSIONS 

This paper classifies reuse problems which SoC verification engineers can easily encounter on the job into three 

groups: Testbench build, Platform reusability of test sequences, and Vertical and horizontal reusability of test 

sequences. In the following, a couple of separate practical schemes as solutions to those problems are presented to 

improve the reusability of verification components in order to reduce the total amount of AMBA based SoC 

verification time. 

First, AMBA Unified Verification System (AUVS) provides a pre-configured AMBA verification platform and 

VIP independent AMBA transaction generation mechanism. The adoption of AUVS helps users to reduce testbench 

build-up time (Problem 1) and remove test sequences’ dependency on VIPs (Problem 2). Second, Firmware-Like 

Sequences (FLS) is a HAL based scheme in order to reuse test sequences even if SFR port protocols change by 

describing test sequences through HAL (Problem 3). 

Applying both AUVS and FLS together, it is expected to achieve the reusability of verification components in all 

aspects: vertical, horizontal and platform, which means verification engineers can be more likely to concentrate on 

actual verification works itself rather than preparing for tests by dramatically saving time and efforts put in testbench 

build previously. 

REFERENCES 

[1] Hans van der Schoot, “UVM & Emulation,” Mentor, 2014 

[2] IEEE Standard for System Verilog. 2012. 

[3] Accellera System Initiative. “Standard Universal Verification Methodology (UVM).” 


