
Practical Issues in Implementing Fast and Accurate

SystemC-Constructed Virtual Platform Simulation

ABSTRACT

A SystemC-constructed virtual platform simulation usually

encounters an issue in trading off simulation efficiency and

accuracy. This paper first introduces a thought to both accelerate

simulation and offer accurate outcome by integrating our

proposed ultra synchronization checking method and a trace-

driven simulation technique. However, realizing the thought in

SystemC-constructed virtual platform simulation must change the

original simulation scheme that the primitive SystemC kernel

preforms. To ensure the correctness of simulation outcome

without worrying about the change of the different simulation

schemes, we then propose QuteVP+, a simulation framework, to

achieve the thought for the use of SystemC designs. When a

SystemC virtual platform of MPSoC designs on QuteVP+, the

experimental results shows that our QuteVP+ speeds up the

simulation as high as 121X. Moreover, simulation result is still

maintained with cycle accuracy.

Keywords—SystemC; Virtual platform simulation; Transaction-

Level Modeling (TLM); Asynchronous discrete event simulation;

Trace-driven simulation; Multi-Processor System on Chip

(MPSoC).

I. INTRODUCTION

SystemC [1] is a well-known language to conduct virtual

platform simulation. To simulate hardware components, a

SystemC-constructed virtual prototype creates independent

threads to represent different hardware simulation processes

(HSPs). Then a primitive SystemC simulator manipulates

these HSPs with synchronous discrete event simulation

(sync-DES) [2] scheme to mimic concurrent behavior of

hardware components. Based on sync-DES, HSPs are

synchronized with simulation kernel at every simulation

timestamp as shown in Fig. 1(a). This means that a

SystemC simulator regularly updates simulation time and

state of HSPs; therefore, SystemC-constructed virtual

platform simulation can ensure accurate simulation outcome.

However, the cost of synchronization (thread context

switches between HSPs and a SystemC kernel) is expensive.

Moreover, the number of synchronization is significant

because the simulator following sync-DES evokes

synchronization(s) frequently, especially the simulation

with a short timestamp period. Consequently, the significant

number of synchronization causes heavy simulation

overhead, leadings to a serious degradation in simulation

efficiency.

To accelerate virtual platform simulation, previous works

(i.e. [3] [4]) suggest asynchronous discrete event simulation

(async-DES) scheme [5]. As shown in Fig. 1(b), async-DES

allows each HSP to asynchronously (out-of-orderly)

advance simulation time. Virtual platform simulation with

async-DES can then reduce synchronization. Owing to the

benefit of synchronization reduction, async-DES can

improve simulation efficiency.

Nevertheless, scheduling HSPs without synchronization

ruins functional accuracy and temporal accuracy. This is

because lacking necessary synchronization evokes data-

dependency violation while HSPs are accessing the same

Yu-Fu Yeh
 

d94943035@ntu.edu.tw

Chung-Yang (Ric) Huang


ric@cc.ee.ntu.edu.tw


Graduate Institute of Electronics Engineering, National Taiwan University

 Information and Communications Research Laboratories, Industrial Technology Research Institute

Fig.1 Synchronous discrete event simulation scheme

versus asynchronous discrete event simulation scheme

mailto:d94943035@ntu.edu.tw
mailto:ric@cc.ee.ntu.edu.tw

memory block. (Notably, data-dependency violation leads

to incorrect simulation outcome and then ruins functional

accuracy.) Additionally, if an HSP individually executes its

hardware simulation without synchronizing other HSPs,

communication delay among HSPs are ignored. Due to the

disregard of communication delay, simulation outcome

loses temporal accuracy.

In order to both improve simulation efficiency and ensure

simulation accuracy, we introduce a thought which

integrates the ultra synchronization checking method

(USCM) [4] and trace-driven simulation [6] to conduct fast

and accurate virtual platform simulation. However, there

are concerns while realizing the thought in SystemC-

constructed virtual platform simulation. To overcome the

concerns we propose QuteVP+, a simulation work with the

related utilities, for achievement of our thought. Finally, the

experimental result shows that a Multi-Processor System on

Chip (MPSoC) virtual platform simulation with QuteVP+

can achieve simulation acceleration as high as 121X.

Moreover, cycle accurate simulation outcome is still be

maintained.

The remains of this paper are as follows. Section II

introduces a thought for virtual platform simulation with

async-DES. Section III introduces how USCM reduces

unnecessary synchronization. Then we propose a simulation

framework (QuteVP+) in Section IV, as the infrastructure

for SystemC-constructed virtual platform. Section V

demonstrates the experimental result. Finally, Section VI

concludes this paper.

II. PRELIMINARIES

In this section, we first introduce a thought to illustrate

how virtual platform simulation schedule hardware

simulation processes with async-DES scheme. Then

synchronization reduction and time reconstruction

techniques are proposed to collocate with async-DES for

fast yet accurate virtual platform simulation.

A. Virtual platform simulation with an asynchrnous

discrete event simulation (async-DES) flow

In previous works (i.e. [3-4]), virtual platform simulation

with async-DES flow contains the kernel phase and

hardware simulation phase (Fig.2) to manipulate HSPs as

shown in Fig.1 (b). First, simulation flow starts in the kernel

phase. After simulation initialization, the simulator triggers

an HSP and turns simulation flow from kernel phase to

hardware simulation phase. Then the triggered HSP begins

to execute its simulation. Fig. 2 shows that the HSP can

execute its simulation continuously until the HSP

encounters a true synchronization condition. However, once

the true synchronization is met, the simulation flow turns

back to the kernel phase and synchronization is evoked to

halt the executing HSP. Since the execution of each HSP

with async-DES executes hardware simulation

independently, HSPs are possibly halted at different

simulation time. Therefore, communication delay is ignored

among HSPs during the continuous hardware simulation.

To maintain temporal accuracy, the simulator needs to

reconstruct simulation time before triggering the next HSP.

Otherwise, accurate outcome cannot be guaranteed. By

repeating the introduced simulation flows, async-DES can

schedule HSPs to accomplish virtual platform simulation

without evoking synchronization at each simulation

timestamp.

Nevertheless, async-DES needs to collocate with related

techniques, which helps determine the necessity of

synchronization and reconstruct accurate simulation time.

The related techniques are introduced in next subsections.

B. Data-Dependency Checking Method

Virtual platform simulation is generally used for system-

level verification and/or design space exploration in early

design stage [7]. Research strongly recommends

Transaction-Level Modeling (TLM) [8] technique, which

can help take trivial signals away and compact complex

communication in a transaction, for improvement of

simulation efficiency. With the simplification by TLM, the

necessity of synchronization can be determined by checking

data dependency as in [3-4] [9]. We give an example to

explain the principle of data dependency checking below.

Assume that an SoC design contains two hardware

modules (an ARM processor and Direct Memory Access

Controller (DMAC)). Through memory access analysis, the

memory access regions where ARM and DMAC potentially

access, can be constructed in a memory access map as Fig.

3 shows. It is obvious that data dependency only occurs

while ARM and DMAC access the overlapped memory

region (from 0x48000000 to 0x48190000). On the other

hand, if intending to access data within the non-overlapped

memory regions, an HSP can access data directly without

worrying about violating data dependency. Therefore, the

simulator can skip synchronization since no data

dependency occurs in the non-overlapped memory region.

Fig.2 Virtual platform simulation with an async-DES flow

Execute HSP

 Data dependency?

(Check by USCM)

No

Yes

Initialization

Synchronize HSPs

Execute trace-driven

simulation

Trigger the next HSP

More details of data-dependency checking are presented in

Section III.

C. Trace-driven simulation

Because HSPs execute hardware simulation individually

when the simulator follows async-DES, communication

details among HSPs are ignored. However, disregard of

communication details (such as bus contentions), temporal

accuracy of simulation outcome is incapable to be

guaranteed.

To restore the accurate simulation time 1 , timing

annotation [10] and trace-driven simulation [6] are two

commonly used techniques. Achieving time reconstruction,

time annotation technique applies statistic data and inspects

immediate state of the simulated HSP to compute

communication delay. Basically, applying statistic data and

inspecting state of an HSP are not necessary to actually

perform interactions among HSPs. Then a time annotation

technique can perform time reconstruction efficiently.

However, the delay time computation hardly guarantees the

exact result if lacking information from the actual

interactions. With respect to timing annotation technique,

trace-driven simulation records simulation traces and use

the traces to re-produce actual interactions for time

reconstruction. Thus, trace-driven simulation ensures

temporal accuracy.

1 Simulation time is referred to the logic time of the simulated

target on virtual platform; and simulation runtime is referred to

the physical time on host machine.

As Fig. 4 shows, the exact timing information (such as

local HSP cycle) can be extracted from the recorded

simulation traces. Trace-driven simulation can utilize these

information and follows communication rules (i.e: bus

protocol) to insert delay and then aligns the simulation time

for each HSP. After time alignment is done, the HSP with

the minimal global time can be figured out. The simulator

can schedule the HSP as the next runnable HSP to maintain

data dependency.

III. ULTRA SYNCHRONIZATION CHECKING

METHOD

Many data-dependency checking methods, such as [3-4]

[9], have been proposed. We suggested adopting Ultra

Synchronization Checking Method (USCM) [4] in MPSoC

virtual platform simulation. USCM in [4] explains that a

hardware module has the authority to access some exclusive

memory regions, whereas no other hardware modules can

access. This implies a memory exclusive property for data-

dependency checking: no data dependency occurs when an

HSP accesses data within its exclusive memory regions.

With the memory exclusive property, an HSP can just

watch its exclusive memory regions to complete data-

dependency checking.

For the most precise judgment about data dependency,

USCM acquires exclusive memory information from both

the hardware and also the program/data storage of the

embedded software. Moreover, the memory information is

analyzed statically (i.e. at compile time) and dynamically

(i.e. during simulation). Hence, a Memory-Exclusivity

Table (MET) mechanism is developed to facilitate our

analysis of various types of exclusive memory information.

Two MET types are presented (i.e. hardware-based and

software-based METs), along with a description of how

they can be further categorized into hardware

static/dynamic METs and software static/dynamic METs,

respectively.

A. Hardware-based Memory-Exclusivity Tables:

The first exclusive memory information type involves the

regulation of memory regions to be read-only or private for

HSPs. Such memory information generally exists in the

specification of MPSoC. To handle these cases, a format is

defined in the hardware specification of the virtual platform,

which can be embedded into the header files of the virtual

platform implementation. Moreover, the simulator is

allowed to parses this information before the simulation

starts and stores it into hardware static-MET (HW S.MET).

Although an executing HSP can access its exclusive

memory regions without synchronization, some exclusive

memory regions dynamically change during simulation. To

Fig. 4 Time reconstruction with trace-driven simulation

DMAC

ARM

0x48000000 0x40000000

0x90000000 0x47000000 0x48190000

0x0 0x90190000

Fig.3 An example of memory access map

The overlapped memory access region

avoid incorrect data-dependency checking, exclusive

memory information must be dynamically updated. For

example, DMAC can exclusively access data while

transferring mass data within source memory regions and

destination memory regions. Notably, the source and

destination memory regions are changeable for different

data movements. To handle the dynamic exclusive memory

information in simulation, this work offers the

ADD_H_D_ExclusiveMem functions for dynamic memory

information update (Fig. 5). A designer can then embed

these functions into the hardware behavioral function of an

HSP as the normal utilization of “pragma”. Upon entering a

working state, the HSP calls the memory acquiring function

to add the exclusive memory regions to hardware dynamic-

MET (HW d.MET). When leaving the working state, the

HSP calls the memory acquiring function again to remove

the memory regions from HW d.MET. Hence, the HSP can

utilize the updated exclusive memory information for

correct data-dependency checking.

B. Software-based Memory-Exclusivity Tables:

When the MPSoC virtual platform simulation is

performed, in addition to hardware modules, multiple

embedded software programs running on multiple processor

models must be considered as well. Failing to consider the

effects of software programs in data dependency checking

leads to a conservative synchronization checking

mechanism. For example, most processor models can

access all of the shared memory regions. Therefore, when

only referring to HW-Based METs, synchronizations are

performed in almost all cycles.

As well known in software analysis, only when the

software program possesses data-exchanging behavior (e.g.,

mutex and semaphore) in shared memory should one

consider its data-dependency related issues. In other words,

if a function of a software program contains only

computations within the processor model, the

corresponding hardware simulations do not result in data

dependencies with other processor models. Therefore, to

characterize how software programs impact the

synchronization mechanism, the software functions that

perform data exchanges with other modules (i.e. the

communication functions) should be distinguished from

those computation functions. The proposed memory-

exclusivity checking mechanism stores the program

memory information of the communication functions in the

software static-MET. During simulation, if the current

program counter address does not match the memory

information recorded in the software static-MET, we can

infer that the current simulating function is a computation

function. Thus no data dependency issue is presented.

During the simulation in which a simulating processor

executes communication functions, this work attempts to

acquire another type of exclusive memory information to

check data- dependency more detail and achieves the better

effectiveness of synchronization reduction. Thoroughly

analyzing the software program reveals that a simulating

processor can exclusively access some dedicated variables

such as local variables and constant variables. Our results

further indicate that these memory blocks for the dedicated

variables do not involve data dependency, even when a

simulating processor executes communication functions.

This finding suggests that unnecessary synchronization can

be further reduced if the above-mentioned exclusive

memory information can be obtained.

In our work, local variable are noted by manually

inserting “progma” in software program. With compiling

commands, a compiler can output the information, such as

symbol, text and register tables, to denote local variables.

Therefore, addresses of local variables/arguments can be

dynamically and exactly captured when a simulating CPU

executes the entry of a software function with a

disassembling or debugging tool [14]. Notably, the

exclusive memory information of the variable is changeable

when a simulating processor executes a communication

function at different times. Therefore, the simulator must

update the exclusive memory information while an HSP of

the processor model executes the communication function

again. With the mentioned procedures, our work acquires

the exclusive memory information as another MET type,

called software dynamic-MET (SW d.MET). By checking

SW d.MET, synchronization reduction can be more

aggressive.

C. Memory Exclusivity Checking Flow:

To utilize METs for memory exclusivity checking, the

proposed memory exclusivity checking method looks up

four types of METs. The exclusive memory regions of

Fig.5 An example of exclusive memory information

update functions in our DMAC controller model

void DC::ADD_H_D_ExclusiveMem (unsigned int MemBegin, unsigned int MemEnd) {

HW_DDDT.push_back(new pair(MemBegin, MemEnd));

}

void DC::DEL_H_D_ExclusvieMem (unsigned int MemBegin, unsigned int MemEnd) {

itrHWDDDT = HW_DDDT.find(uPair(MemBegin, MemEnd))

HW_DDDT.erase(itrModDDDT);

}

void DMA::MassDataMove() {

// Set the memory regions where only “DMAC” can access

// Embed function to acquire HW dynamic exclusive memory information

DDC->ADD_H_D_ExclusiveMem(SourceAddr, SourceAddr+M_Size);

DDC->ADD_H_D_ExclusiveMem(DistAddr, DistAddr+M_Size);

cout << "DMAC begins to move mass data “ << endl;

for(unsigned int i = 0; i < M_Size; i++){

ReadMemory(SourceAddr, 4);

WriteMemory(DistAddr, 4, m_resp_data);

SourceAddr += 4; DistAddr += 4;

}

cout << "DMAC Finishes move data“ << endl;

// Embed function to remove HW dynamic exclusive memory information

pSync->DEL_H_D_ExclusiveMem(SouceAddr-M_Size, SourceAddr);

pSync->DEL_H_D_ExclusiveMem(DistAddr-M_Size, DistAddr);

}

individual METs are stored in tables with a start and an end

memory address. When data dependency is checked, the

simulator can search the tables and determine whether the

memory address of communication transaction falls within

any of the exclusive memory regions. As Fig. 6 shows, a

“true” synchronization condition is the one which the

details are confirmed by checking all of four METs to

determine the memory access with data dependency. On the

other hand, a situation in which any one of the data

dependency checks determines that the memory address is

in exclusive memory regions implies that the transaction of

memory access does not evoke data dependency. The

simulator can stop checking other METs and skips

synchronization. Finally, since synchronization can be

reduced without checking all METs, we recommend

checking static METs before dynamic METs. This is owing

to that checking static METs in log time complexity is more

efficient than checking dynamic METs in linear time

complexity.

IV. OUR SIMULATION FRAMEWORK TO

CONDUCT FAST AND ACCURATE MPSOC VIRTUAL

PLATFORM SIMULATION

The preceding section presents the thought of async-DES

flow with USCM and trace-driven simulation to conduct

fast and accurate virtual platform simulation. To realize the

thought, compatibility and modification efforts are two

critical concerns while modifying the simulation scheme in

the primitive SystemC kernel. Then we propose a

simulation framework (QuteVP+) and QuteVP+ utilities to

overcome the concerns.

A. The concerns from implementation and utilization

persepectives

Section II presents a thought to conduct fast and accurate

virtual platform simulation by adopting async-DES with

USCM and trace-driven simulation. Nevertheless, to realize

the thought on a SystemC-constructed virtual platform

simulation, it is necessary to modify SystemC kenrel

because a primitive SystemC follows sync-DES. However,

the implementation to modify SystemC kernel is not trivial.

Here, we discuss two critical concerns as follows.

Firstly, there are function libraries set to connect with

SystemC kernel for synchronization (such as wait() and

notify() in SystemC library). If the SystemC kernel is

modified with async-DES, it is doubtful that SystemC

library can perform the same function for the use of the

original SystemC designs. Moreover, SystemC kernel is

possibly updated in a new version. The modification in the

current SystemC kernel may be incompatible to the updated

SystemC kernel.

Furthermore, a modification effort is inevitable to the

original SystemC designs to adapt an async-DES scheme.

However, the modification efforts should be reduced as less

as possible because designers are end-users. It is NOT

necessary for designers to know details about how the

modified SystemC kernel works. Therefore, the approaches

for easy-to-modify are required to specify.

Next, we propose QuteVP+ and related utilities to

overcome the mentioned concerns.

B. The implementation of QuteVP+

As mentioned, it is hard to ensure the functional

consistence in SystemC library after modifying the

primitive SystemC kernel. Moreover, the modification in

SystemC kernel potentially evokes incompatibility if

SystemC is updated with new version. To overcome the

concerns, we implement a simulation framework, called

QuteVP+. QuteVP+ contains a simulation engine (QuteVP+

engine) to schedule HSPs with async-DES scheme. As Fig.

7 shows, QuteVP+ engine and the SystemC kernel are

independent so that the arrangement can both prevent the

issues of function inconsistence and avoid incompatibility

with new SystemC version.

Each HSP can asynchronously execute it hardware

simulation in QuteVP+ because QuteVP+ engine adopts

USCM to help determine the necessity of synchronization.

For the implementation, we devise QuteVP+ interface so

that a SystemC prototype can inherit the interface to

communicate with QuteVP engine. Then an HSP can enable

QuteVP+ to determine the necessity of synchronization if

the HSP request a memory access. With the benefit of data-

dependency checking by USCM, HSPs can continue its

simulation for many cycles until certain necessary

Simulate an HSP & Check data
dependency

Fig.6 The memory exclusivity checking flow

Evoke synchronization

Look up SW s.MET

Involve data dependency?

Look up SW d.MET

Involve data dependency?

Look up HW d.MET

Involve data dependency?

Look up HW s.MET

Involve data dependency?

Yes No

Yes

Yes

No

No No

Yes

synchronization condition are met. As a result, a significant

synchronization reduction contributes a great promotion in

simulation efficiency.

Since our simulation framework replaces the simulation

scheme by out-of-order execution approach, each HSP is

allowed to advance with different simulation timestamps,

instead of referring to global time as the primitive SystemC

configures. To maintain temporal accuracy, the simulation

engine lets each HSP maintain its local time. Then our

simulation engine builds a simulation trace recorder to store

acting events based on local time of each HSP. Once the

engine needs to maintain temporal accuracy, the timing

restorer can utilize the recorded simulation traces to

reconstruct accurate simulation time by trace-driven

simulation.

In SystemC-constructed virtual platform simulation,

enabling synchronization must use the waiting functions.

However, some waiting functions with timing

configurations involve with the scheduling. Avoiding these

waiting functions affecting scheduling, our simulation

framework rules that each HSP for synchronization needs

use the time-irrelevant wait() function (i.e: wait(event_1))

or wait(SC_ZERO_TIME) function to keep global time

always stopping at zero. Therefore, the simulation engine

can schedule HSPs with out-of-order execution in “Delta

Cycle2”.

2 SystemC defines Delta Cycle, which is typically used for those

tasks without the ability to instantaneously change.

In sum, the implemented QuteVP+ engine is independent

to the primitive SystemC kernel. Thus, QuteVP+ supports

the use for the original SystemC design and avoids the

incompatible issue.

C. The utililites of QuteVP+

Basically, functions of an HSP can be categorized to

computation and communication functions with transaction-

level modeling (TLM). Following the categorization, only

the communication function of an HSP influences the

behavior of memory access request. This implies that data

dependency is only evoked in the communication function.

If intending to exploit the ability of QuteVP+ engine for

data-dependency checking, an end-user just needs to

modify the communication function. Most implementations

of the original SystemC virtual platform simulation can be

kept and reused.

1. Modify simulation scheme with async-DES in
communication function

For the consideration to easily use QuteVP+, we
proposed the QuteVP+ utility, reducing the
modification effort as less as possible. Here we give
an example to show how a processor model applies
QuteVP+ utilities to modify an MPSoC design, as
shown in Fig.8. Firstly, by including the QuteVP
utility library, QuteVP+ utilities can be applied for
the target processor model. In this case, the
processor model requests memory access through a
send_request function call. Then user just needs to
modify the send_request function by using the
DataDependencyChecker utility. The function of
DataDependency Checker utility is to pass the
reference of the requesting memory access and
check if the memory request involve with data
dependency. If the return value of
DataDependencyChecker is false, this phenomenon
means that the processor model can complete the

#include <QuteVP_Utility.h>
…. // communication class inheritance
void ARM_ISS::send_request() {
 bool SyncFlag = true;
 SyncFlag = QuteVP_Engine->
DataDependencyChecker (mReq, mResp);
 if (SyncFlag) {
wait(sync_ok_event);
QuteVP_Engine->RequestTransmitter (mReq, mResp);
 }
 if (mReq.get_command()==memory_read)
 M_resp_data = mResp.get_data();
}

Fig. 8 An example of sending memory request function

with QuteVP+ utility libraries

SystemC Kernel

Simulation

trace

Recorder

Timing

Restorer

Data-Dependency Tables (DDTs)

USCM

HSP Trigger

QuteVP+ Engine

Processor

Model
Processor

Model
Processor

Model 1
IP 1 IP N

DMA ROM RAM

……

SystemC Virtual Prototypes

QuteVP+ utility libraries

Data-Dependency checking flow

Fig. 7 The block diagrams of QuteVP+

transaction of memory request without evoking
synchronization. Otherwise, the processor model
needs to evoke the untimed synchronization. With
the easy modification, the processor model is able to
out-of-orderly execute its hardware simulation.

2. Pass Memory Request by Direct Data Access

As is well known for the use of SystemC and OSCI
TLM, synchronization will be evoked after a TLM
channel requires passing a memory transaction from
an initiator port to a target port among HSPs. That is,
the OSCI TLM library automatically evokes
synchronization to handle a memory request. If a
SystemC design adopts the communication approach
of TLM in an MPSoC virtual platform simulation,
the complex communications often produces a
significant number of synchronizations degrading
simulation efficiency.

To handle memory transaction more efficiently, we
devise a manner, called direct data access to skip
unnecessary synchronization. The idea of “direct
data access” is to pass a memory request with a
function call to directly read/write data from/to the
target memory block. Nevertheless, adopting direct
data access must overcome a difficulty in letting all
HSPs use the same interface to access the data in
different hardware models. Then we implement a
QuteVP+ interface, which is similar to the interface
of transaction level model. Moreover, we implement
a function called RequestTransmitter() as Fig.9
shows. With QuteVP+ interface and the
RequestTransmitter function, the mentioned
difficulty of direct data access can be overcome. In
sequel, an example is given to explain how we
accomplish the implementation to achieve direct
data access in an MPSoC virtual prototype.

Firstly, HSPs in an MPSoC virtual prototype can be
categorized as master HSP or slave HSP, with the
rule defined in TLM. Our example is that an ARM
processor model (as a master HSP) requests a
memory access to read data from an RAM model (as
a slave HSP). To unify the memory access
procedure in the RequestTransmitter function
through QuteVP+ engine, our idea is to let the ARM
processor model and the RAM model inherit the
defined QuteVP+ master interface and QuteVP+
slave interface, which are implemented in QuteVP+
utility libaray. Because all of slave HSPs are ruled to
inherit our QuteVP+ interface with an virtual
function (get_request()), the ARM processor can
access data stored in slave HSP with the unified
RequestTransimitter function. Due to the
contribution of unification to use the
RequestTransimitter function, the modification
effort is greatly reduced. Moreover, by inheriting the

QuteVP+ interface, QuteVP+ automatically records
the ID of master and slave HSP in elaboration phase
of the SystemC initialization stage. Then the
communication function pointers of HSPs are stored
in our defined pointer array. When an HSP requests
a memory access through the RequestTranmitter
function call, RequestTransmitter function can use
the stored function pointer to directly indicate the
corresponding get_request() to complete the
memory transaction. Due to the bypass, our
implemented direct data access mechanism further
reduces unnecessary data copy and synchronization;
thus, achieving the better simulation efficiency for
memory access requests.

3. Maintain temporal accuracy by modifying the
defined TimeAlign function of QuteVP+

To maintain temporal accuracy, QuteVP+ engine
automatically records simulation traces in back-end
for time reconstruction. Furthermore, TimeAlign()
function in QuteVP+ utility library is a virtual
function, in which simulation traces are then
available for implementation of trace-driven
simulation. Because of the variant in different
architecture, users can modify the TimeAlign()
function with corresponding communication rule to
calculate delay cycle. Time reconstruction for
different SystemC design can be achieved.

#include <QuteVP_Utility.h>
// Calculate the request address to seek the target ID
unsigned int pSysc::findIDfromMemMap(unsigned int&
Addr) {
 vector< mMap>::interator itrVec = memMap.begin();
 targetID = 0;
 while (itrVec!=memMap.end()) {
 if (((*itrVec)->first>=Addr) && ((*itrVec)-
>second==Addr)) {
 return targetID;
 }
 ++itrVec; ++targetID;
 }
}
// Using targetID mapping to the corresponding
get_request function
qvp_response
Qutevp_Engine::RequestTransmitter(qvp_request&
mReq) {
 targetAddr = mReq.get_address();
 targetID = findIDfromMemMap(targetAddr);
 return pHSP[targetID].HSPptr()->get_request(mReq);
}

Fig. 9 The implementation for direct data access

Fig. 10 is an example to show how our test case
modifies TimeAlign() to complete trace-driven
simulation for an MPSoC with a “round-robin” bus
architecture. Firstly, the memory access request time
is extracted by the popped-out simulation traces of
each HSP. The following process compares the
request time of HSPs to examine if a bus contention
occurs. Notably, the test case modifies TimeAlign()
function by implementing a bus arbitration protocol
to determine the HSP which can be serviced.
Therefore, communication delay can be exactly
inserted for those HSPs with bus contention. By
repeating the above steps, TimeAlign() completes
time reconstruction. Finally, TimeAlign() returns a
HSP_ID to indicate the next runnable HSP.

V. EXPERIMENTAL RESULTS

To validate the robustness of our purposed async-DES

scheme, called USCM on QuteVP+, we conduct

experiments to compare the simulation efficiency with the

sync-DES scheme in the primitive SystemC kernel, called

Clock-Step Simulation Method (CSSM). We compare the

synchronization counts and the simulation speed while

applying different simulation methods in an MPSoC virtual

platform simulation. Moreover, we further compare the

simulation efficiency improved by USCM.

The experimental settings are in followings. First, we

build a virtual MPSoC prototype by SystemC v2.2 and

TLM v1.0, and modify public programs, JPEG Encode [10]

and Sparse Matrix Multiplication [11]), as the parallel

programs for the target MPSoC. We then modify the target

MPSoC on QuteVP+, so that the simulation scheme

becomes replaceable while keeping the original

functionalities of hardware modules intact. Furthermore, the

target MPSoC contains two memory systems commonly

utilized in MPSoC: the distributed shared memory system

and the uniform shared memory system. Then we can

examine various types of synchronization conditions in the

target MPSoC. Finally, we model ARM v5Te processor as

Instruction Set Simulator and other hardware peripherals in

the target MPSoC with cycle accuracy. Such arrangements

ensure the virtual platform simulation in high simulation

accuracy.

These experiments were conducted on a Linux

workstation with Intel Xeon 2.2 GHz and 16 GB RAM.

A. The improvement of simulation speed

Table 1 demonstrates the experimental results on the

comparison of synchronization count (Sync-Count). We

compare CSSM and USCM on two parallel software

programs (JPEG encoding and Sparse Matrix

Multiplication) with numbers of simulation processor

models (CPUs) from 1 to 32. The number of the total

simulated instructions and the simulation cycle (i.e. the time

unit in the target MPSoC) are presented in the 2, 3, 6 and 7

columns. Please note that we implement USCM with cycle

accuracy. Therefore, their instruction counts and target time

are the same as CCSM’s.

Columns 4, 5, 8, and 9 are the counts of synchronization

(Sync-Count) for CSSM and USCM, respectively. We can

see that the number of synchronizations increases with the

increasing numbers of CPUs, no matter which simulation

#include <QuteVP_Utility.h>
unsigned int QuteVPplus_engine::TimeAlign () {
 while () {
 // Pop out the simulation traces of each HSP
 ….
 // Compare the memory access request time
 ….
 // Use round-robin protocol to choose the serviced HSP
 ………
 // Insert delay cycle
 ……
 // Check if minimal global time is found
 If (time reconstruction is done==true) break;
 } // time reconstruction ends
 return HSP_ID; // HSP_ID is determined by the result
of minimal global time computation
}

Fig. 10 An example of maintaining temporal accuracy in

QuteVP+ TimeAlign()

Table 1 The counts of synchronizations versus different numbers of processors for SMM and JPEG-Enc simulations

#CPU

SMM

#Inst
Simulation

Cycles (10ns)

CSSM

Sync-Count

USCM

Sync-Count

1 169,314,561 254,261,472 722,859,678 28,423,967

2 121,085,896 156,417,989 460,436,669 12,508,290

4 107,747,016 124,834,536 365,547,740 7,564,476

8 105,501,921 114,852,199 335,037,092 3,891,842

16 112,941,976 119,699,619 349,944,254 2,075,848

32 135,121,633 145,001,298 419,101,187 1,220,659

JPEG-Encode

#Inst
Simulation

Cycles (10ns)

CSSM

Sync-Count

USCM

Sync-Count

512,513,774 771,969,678 2,212,558,094 87,409,800

386,970,594 507,338,577 1,520,454,360 45,790,479

314,622,268 376,936,991 1,093,803,850 21,489,726

287,006,102 327,838,743 926,966,612 10,945,309

272,113,534 308,490,886 860,594,492 5,436,347

264,576,313 295,742,881 831,027,316 2,918,037

scheme performs. However, the Sync-Count in our USCM

algorithm is usually 1 to 2 orders less than those of CSSM.

This indicates that our framework can greatly reduce the

numbers of synchronizations.

B. The improvement of simulation speed

Table 2 shows the simulation runtime and speed-up ratio

(with the following formula) among CSSM and USCM in

the columns 2, 3, 4, and 5, 6, 7, for SMM and JPEG-

Encode simulations, respectively.

Table 2. The comparisons of speed-up ratio for SMM and

JPEG-Enc simulations

CPU

SMM JPEG-Enc

CSSM USCM
Speed-up

Ratio
CSSM USCM

Speed-up

Ratio

1 14,917 123 121.0 37,282 385 96.8
2 7,420 108 68.6 22,196 313 70.9
4 4,972 107 46.3 15,195 287 53.0
8 3,255 113 28.8 9,660 275 35.1
16 4,641 137 33.9 11,691 302 38.7
32 6,421 198 32.6 11,740 354 33.2

It is clear that USCM greatly outperforms the CSSM. This

is due to the effects in the synchronization reductions. The

results show that USCM can simulate a single-processor

SoC design with about 121X and 96X speed-up for SMM

and JPEG Encode. For the 8~32 processor MPSoC virtual

platform simulation, the improvements in simulation speed

by USCM can be as high as average 30X. This means that

USCM robustly offers the benefit of the simulation speed-

up for the SystemC-constructed MPSoC designs.

VI. CONCLUSIONS

In this paper, a simulation framework, QuteVP+, is

proposed to overcome a trade-off issue of simulation

efficiency and accuracy, for SystemC-based virtual platform

simulations. The contributions of QuteVP+ are the

integrations of USCM and trace-driven simulation

techniques to both accelerate simulation and offer accurate

outcome. Moreover, the utility libraries of QuteVP+ are

proposed to minimize the efforts in modifying a primitive

SystemC-based virtual platform with our proposed

QuteVP+. The experimental result demonstrates that

QuteVP+ improves simulation speed-up as high as 121X

for a SystemC-based virtual platform simulation of MPSoC

designs. Moreover, QuteVP+ guarantees simulation results

with cycle accuracy.

As mentioned, QuteVP+ needs to recognize more types of

dependency conditions for better applicability. Moreover,

we plan to propose a parallel scheme on QuteVP+,

achieving the further improvement of simulation efficiency.

ACKNOWLEDGMENT

This work is supported by Information and

Communications Research Laboratories (ICL), Industrial

Technology Research Institute (ITRI), Taiwan, under Grant

101-EC-17-A-05-01-1111.

REFERENCES

[1] <http://www.systemc.org/downloads/standards/>

[2] Banks. J, J. S. Carson II, and B.L. Nelson, “Discrete Event
System Simulation, 2nd Ed., Prentice-Hall, Englewood Cliffs,
1996.

[3] K.H Lin, S.J. Cai and Ric. Huang, “Speeding Up SoC
Virtual Platform Simulation by Data-dependency Aware
Virtual Synchronization”, in Proc. IEEE Asia and South
Pacific Design Automation Conference, Jan. 2010, pp. 143-
148.

[4] Y.-F. Yeh, C.-Y (Ric) Huang, C.-A. Wu and H.-C. Lin,
“Speeding up MPSoC Virtual Platform Simulation by Ultra
Synchronization Checking Method”, in Proc. DATE, Mar.
2011, pp. 353-358.

[5] S. Ghosh, E. Debenedictis, “An Asynchronous Distributed
Discrete Event Simulation Algorithm for Cyclic Circuits
using a Data-Flow”, isn Proc. IEEE System, Man, and
Cybermetics, 1991, pp. 265-268.

[6] Y. Yi, “Fast and Accurate Cosimulation of MPSoC Using
Trace-Driven Virtual Synchronization”, in Proc. IEEE
Transaction on Computer-Aided Design of Integrated Circuit
and Systems, Dec. 2007, pp. 2186-2200.

[7] D. Densmore, R. Passerone, and A. Sangiovanni-Vincentelli, “A
platform-based taxonomy for ESL design”, IEEE Design Test, 2006,
vol. 23, no. 5, pp. 359-374.

[8] Cai et al, “Transaction Level Modeling: An Overview”, in
Proc. 1st IEEE Intl. Conf. on Hardware/Software Co-design
& System Synthesis, Oct. 2003, pp. 19-24.

[9] M.H Wu, “An effective synchronization approach for fast
and accurate multi-core instruction-set simulation”, in Proc.
5th EmSoft, Nov. 2009, pp. 197-204.

[10] Y. Hwang, S. Abdi, and D. Gajski, “Cycle-approximate re-
targetable performance estimation at the transaction level,” in
Proc. IEEE Design, Automation, and Test in Europe
Conference (DATE), Mar. 2008, pp. 3-8.

[11] Lossless JPEG Encode: <http://www.ijg.org/>, 1998.

[12] G. Goumas, K. Kourtis, N. Anastopoulos, V. Karakasis, and
N. Koziris. Understanding the performance of sparse matrix-
vector multiplication. In PDP ’08: Proceedings of the 16th
Euromicro International Conference on Parallel, Distributed
and Network-based Processing, 2008.

[13] "ARM Developer Suite Developer Guide",
http://infocenter.arm.com/help/topic/com.arm.doc.dui0056d/
DUI0056.pdf, 2001.

http://www.systemc.org/downloads/standards/
http://www.ijg.org/

