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ABSTRACT 

A SystemC-constructed virtual platform simulation usually 

encounters an issue in trading off simulation efficiency and 

accuracy. This paper first introduces a thought to both accelerate 

simulation and offer accurate outcome by integrating our 

proposed ultra synchronization checking method and a trace-

driven simulation technique. However, realizing the thought in 

SystemC-constructed virtual platform simulation must change the 

original simulation scheme that the primitive SystemC kernel 

preforms. To ensure the correctness of simulation outcome 

without worrying about the change of the different simulation 

schemes, we then propose QuteVP+, a simulation framework, to 

achieve the thought for the use of SystemC designs. When a 

SystemC virtual platform of MPSoC designs on QuteVP+, the 

experimental results shows that our QuteVP+ speeds up the 

simulation as high as 121X. Moreover, simulation result is still 

maintained with cycle accuracy. 

Keywords—SystemC; Virtual platform simulation; Transaction-

Level Modeling (TLM); Asynchronous discrete event simulation; 

Trace-driven simulation; Multi-Processor System on Chip 

(MPSoC). 

I. INTRODUCTION 

SystemC [1] is a well-known language to conduct virtual 

platform simulation. To simulate hardware components, a 

SystemC-constructed virtual prototype creates independent 

threads to represent different hardware simulation processes 

(HSPs). Then a primitive SystemC simulator manipulates 

these HSPs with synchronous discrete event simulation 

(sync-DES) [2] scheme to mimic concurrent behavior of 

hardware components. Based on sync-DES, HSPs are 

synchronized with simulation kernel at every simulation 

timestamp as shown in Fig. 1(a). This means that a 

SystemC simulator regularly updates simulation time and 

state of HSPs; therefore, SystemC-constructed virtual 

platform simulation can ensure accurate simulation outcome. 

However, the cost of synchronization (thread context 

switches between HSPs and a SystemC kernel) is expensive. 

Moreover, the number of synchronization is significant 

because the simulator following sync-DES evokes 

synchronization(s) frequently, especially the simulation 

with a short timestamp period. Consequently, the significant 

number of synchronization causes heavy simulation 

overhead, leadings to a serious degradation in simulation 

efficiency. 

To accelerate virtual platform simulation, previous works 

(i.e. [3] [4]) suggest asynchronous discrete event simulation 

(async-DES) scheme [5]. As shown in Fig. 1(b), async-DES 

allows each HSP to asynchronously (out-of-orderly) 

advance simulation time. Virtual platform simulation with 

async-DES can then reduce synchronization. Owing to the 

benefit of synchronization reduction, async-DES can 

improve simulation efficiency. 

 

Nevertheless, scheduling HSPs without synchronization 

ruins functional accuracy and temporal accuracy. This is 

because lacking necessary synchronization evokes data-

dependency violation while HSPs are accessing the same 
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memory block. (Notably, data-dependency violation leads 

to incorrect simulation outcome and then ruins functional 

accuracy.) Additionally, if an HSP individually executes its 

hardware simulation without synchronizing other HSPs, 

communication delay among HSPs are ignored. Due to the 

disregard of communication delay, simulation outcome 

loses temporal accuracy. 

In order to both improve simulation efficiency and ensure 

simulation accuracy, we introduce a thought which 

integrates the ultra synchronization checking method 

(USCM) [4] and trace-driven simulation [6] to conduct fast 

and accurate virtual platform simulation. However, there 

are concerns while realizing the thought in SystemC-

constructed virtual platform simulation. To overcome the 

concerns we propose QuteVP+, a simulation work with the 

related utilities, for achievement of our thought. Finally, the 

experimental result shows that a Multi-Processor System on 

Chip (MPSoC) virtual platform simulation with QuteVP+ 

can achieve simulation acceleration as high as 121X. 

Moreover, cycle accurate simulation outcome is still be 

maintained. 

The remains of this paper are as follows. Section II 

introduces a thought for virtual platform simulation with 

async-DES. Section III introduces how USCM reduces 

unnecessary synchronization. Then we propose a simulation 

framework (QuteVP+) in Section IV, as the infrastructure 

for SystemC-constructed virtual platform. Section V 

demonstrates the experimental result. Finally, Section VI 

concludes this paper. 

 

II. PRELIMINARIES 

In this section, we first introduce a thought to illustrate 

how virtual platform simulation schedule hardware 

simulation processes with async-DES scheme. Then 

synchronization reduction and time reconstruction 

techniques are proposed to collocate with async-DES for 

fast yet accurate virtual platform simulation. 

A. Virtual platform simulation with an asynchrnous 

discrete event simulation (async-DES) flow 

In previous works (i.e. [3-4]), virtual platform simulation 

with async-DES flow contains the kernel phase and 

hardware simulation phase (Fig.2) to manipulate HSPs as 

shown in Fig.1 (b). First, simulation flow starts in the kernel 

phase. After simulation initialization, the simulator triggers 

an HSP and turns simulation flow from kernel phase to 

hardware simulation phase. Then the triggered HSP begins 

to execute its simulation. Fig. 2 shows that the HSP can 

execute its simulation continuously until the HSP 

encounters a true synchronization condition. However, once 

the true synchronization is met, the simulation flow turns 

back to the kernel phase and synchronization is evoked to 

halt the executing HSP. Since the execution of each HSP 

with async-DES executes hardware simulation 

independently, HSPs are possibly halted at different 

simulation time. Therefore, communication delay is ignored 

among HSPs during the continuous hardware simulation. 

To maintain temporal accuracy, the simulator needs to 

reconstruct simulation time before triggering the next HSP. 

Otherwise, accurate outcome cannot be guaranteed. By 

repeating the introduced simulation flows, async-DES can 

schedule HSPs to accomplish virtual platform simulation 

without evoking synchronization at each simulation 

timestamp. 

 

Nevertheless, async-DES needs to collocate with related 

techniques, which helps determine the necessity of 

synchronization and reconstruct accurate simulation time. 

The related techniques are introduced in next subsections. 

 

B. Data-Dependency Checking Method 

Virtual platform simulation is generally used for system-

level verification and/or design space exploration in early 

design stage [7]. Research strongly recommends 

Transaction-Level Modeling (TLM) [8] technique, which 

can help take trivial signals away and compact complex 

communication in a transaction, for improvement of 

simulation efficiency. With the simplification by TLM, the 

necessity of synchronization can be determined by checking 

data dependency as in [3-4] [9]. We give an example to 

explain the principle of data dependency checking below. 

Assume that an SoC design contains two hardware 

modules (an ARM processor and Direct Memory Access 

Controller (DMAC)). Through memory access analysis, the 

memory access regions where ARM and DMAC potentially 

access, can be constructed in a memory access map as Fig. 

3 shows. It is obvious that data dependency only occurs 

while ARM and DMAC access the overlapped memory 

region (from 0x48000000 to 0x48190000). On the other 

hand, if intending to access data within the non-overlapped 

memory regions, an HSP can access data directly without 

worrying about violating data dependency. Therefore, the 

simulator can skip synchronization since no data 

dependency occurs in the non-overlapped memory region. 

Fig.2 Virtual platform simulation with an async-DES flow 
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More details of data-dependency checking are presented in 

Section III. 

 

C. Trace-driven simulation 

Because HSPs execute hardware simulation individually 

when the simulator follows async-DES, communication 

details among HSPs are ignored. However, disregard of 

communication details (such as bus contentions), temporal 

accuracy of simulation outcome is incapable to be 

guaranteed. 

 

To restore the accurate simulation time 1 , timing 

annotation [10] and trace-driven simulation [6] are two 

commonly used techniques. Achieving time reconstruction, 

time annotation technique applies statistic data and inspects 

immediate state of the simulated HSP to compute 

communication delay. Basically, applying statistic data and 

inspecting state of an HSP are not necessary to actually 

perform interactions among HSPs. Then a time annotation 

technique can perform time reconstruction efficiently. 

However, the delay time computation hardly guarantees the 

exact result if lacking information from the actual 

interactions. With respect to timing annotation technique, 

trace-driven simulation records simulation traces and use 

the traces to re-produce actual interactions for time 

reconstruction. Thus, trace-driven simulation ensures 

temporal accuracy. 

                                                                 

1 Simulation time is referred to the logic time of the simulated 

target on virtual platform; and simulation runtime is referred to 

the physical time on host machine. 

As Fig. 4 shows, the exact timing information (such as 

local HSP cycle) can be extracted from the recorded 

simulation traces. Trace-driven simulation can utilize these 

information and follows communication rules (i.e: bus 

protocol) to insert delay and then aligns the simulation time 

for each HSP. After time alignment is done, the HSP with 

the minimal global time can be figured out. The simulator 

can schedule the HSP as the next runnable HSP to maintain 

data dependency. 

 

III. ULTRA SYNCHRONIZATION CHECKING 

METHOD 

Many data-dependency checking methods, such as [3-4] 

[9], have been proposed. We suggested adopting Ultra 

Synchronization Checking Method (USCM) [4] in MPSoC 

virtual platform simulation. USCM in [4] explains that a 

hardware module has the authority to access some exclusive 

memory regions, whereas no other hardware modules can 

access. This implies a memory exclusive property for data-

dependency checking: no data dependency occurs when an 

HSP accesses data within its exclusive memory regions. 

With the memory exclusive property, an HSP can just 

watch its exclusive memory regions to complete data-

dependency checking. 

For the most precise judgment about data dependency, 

USCM acquires exclusive memory information from both 

the hardware and also the program/data storage of the 

embedded software. Moreover, the memory information is 

analyzed statically (i.e. at compile time) and dynamically 

(i.e. during simulation). Hence, a Memory-Exclusivity 

Table (MET) mechanism is developed to facilitate our 

analysis of various types of exclusive memory information. 

Two MET types are presented (i.e.  hardware-based and 

software-based METs), along with a description of how 

they can be further categorized into hardware 

static/dynamic METs and software static/dynamic METs, 

respectively. 

 

A. Hardware-based Memory-Exclusivity Tables: 

The first exclusive memory information type involves the 

regulation of memory regions to be read-only or private for 

HSPs. Such memory information generally exists in the 

specification of MPSoC. To handle these cases, a format is 

defined in the hardware specification of the virtual platform, 

which can be embedded into the header files of the virtual 

platform implementation. Moreover, the simulator is 

allowed to parses this information before the simulation 

starts and stores it into hardware static-MET (HW S.MET). 

Although an executing HSP can access its exclusive 

memory regions without synchronization, some exclusive 

memory regions dynamically change during simulation. To 

Fig. 4 Time reconstruction with trace-driven simulation 
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avoid incorrect data-dependency checking, exclusive 

memory information must be dynamically updated. For 

example, DMAC can exclusively access data while 

transferring mass data within source memory regions and 

destination memory regions. Notably, the source and 

destination memory regions are changeable for different 

data movements. To handle the dynamic exclusive memory 

information in simulation, this work offers the 

ADD_H_D_ExclusiveMem functions for dynamic memory 

information update (Fig. 5). A designer can then embed 

these functions into the hardware behavioral function of an 

HSP as the normal utilization of “pragma”. Upon entering a 

working state, the HSP calls the memory acquiring function 

to add the exclusive memory regions to hardware dynamic-

MET (HW d.MET). When leaving the working state, the 

HSP calls the memory acquiring function again to remove 

the memory regions from HW d.MET. Hence, the HSP can 

utilize the updated exclusive memory information for 

correct data-dependency checking. 

 

 

B. Software-based Memory-Exclusivity Tables: 

When the MPSoC virtual platform simulation is 

performed, in addition to hardware modules, multiple 

embedded software programs running on multiple processor 

models must be considered as well. Failing to consider the 

effects of software programs in data dependency checking 

leads to a conservative synchronization checking 

mechanism. For example, most processor models can 

access all of the shared memory regions. Therefore, when 

only referring to HW-Based METs, synchronizations are 

performed in almost all cycles. 

As well known in software analysis, only when the 

software program possesses data-exchanging behavior (e.g., 

mutex and semaphore) in shared memory should one 

consider its data-dependency related issues. In other words, 

if a function of a software program contains only 

computations within the processor model, the 

corresponding hardware simulations do not result in data 

dependencies with other processor models. Therefore, to 

characterize how software programs impact the 

synchronization mechanism, the software functions that 

perform data exchanges with other modules (i.e. the 

communication functions) should be distinguished from 

those computation functions. The proposed memory-

exclusivity checking mechanism stores the program 

memory information of the communication functions in the 

software static-MET. During simulation, if the current 

program counter address does not match the memory 

information recorded in the software static-MET, we can 

infer that the current simulating function is a computation 

function.  Thus no data dependency issue is presented. 

During the simulation in which a simulating processor 

executes communication functions, this work attempts to 

acquire another type of exclusive memory information to 

check data- dependency more detail and achieves the better 

effectiveness of synchronization reduction. Thoroughly 

analyzing the software program reveals that a simulating 

processor can exclusively access some dedicated variables 

such as local variables and constant variables. Our results 

further indicate that these memory blocks for the dedicated 

variables do not involve data dependency, even when a 

simulating processor executes communication functions. 

This finding suggests that unnecessary synchronization can 

be further reduced if the above-mentioned exclusive 

memory information can be obtained. 

In our work, local variable are noted by manually 

inserting “progma” in software program. With compiling 

commands, a compiler can output the information, such as 

symbol, text and register tables, to denote local variables. 

Therefore, addresses of local variables/arguments can be 

dynamically and exactly captured when a simulating CPU 

executes the entry of a software function with a 

disassembling or debugging tool [14]. Notably, the 

exclusive memory information of the variable is changeable 

when a simulating processor executes a communication 

function at different times. Therefore, the simulator must 

update the exclusive memory information while an HSP of 

the processor model executes the communication function 

again. With the mentioned procedures, our work acquires 

the exclusive memory information as another MET type, 

called software dynamic-MET (SW d.MET). By checking 

SW d.MET, synchronization reduction can be more 

aggressive. 

 

C. Memory Exclusivity Checking Flow: 

To utilize METs for memory exclusivity checking, the 

proposed memory exclusivity checking method looks up 

four types of METs. The exclusive memory regions of 

Fig.5 An example of exclusive memory information 

update functions in our DMAC controller model 

void DC::ADD_H_D_ExclusiveMem (unsigned int MemBegin, unsigned int MemEnd) {

HW_DDDT.push_back(new pair(MemBegin, MemEnd)); 

}

void DC::DEL_H_D_ExclusvieMem (unsigned int MemBegin, unsigned int MemEnd) {

itrHWDDDT = HW_DDDT.find(uPair(MemBegin, MemEnd))

HW_DDDT.erase(itrModDDDT); 

}

void DMA::MassDataMove() {

// Set the memory regions where only “DMAC” can access

// Embed function to acquire HW dynamic exclusive memory information

DDC->ADD_H_D_ExclusiveMem(SourceAddr, SourceAddr+M_Size); 

DDC->ADD_H_D_ExclusiveMem(DistAddr, DistAddr+M_Size); 

cout << "DMAC begins to move mass data .... “ << endl;

for(unsigned int i = 0; i < M_Size; i++){

ReadMemory(SourceAddr, 4);

WriteMemory(DistAddr, 4, m_resp_data);

SourceAddr += 4; DistAddr += 4;

}

cout << "DMAC Finishes move data ....“ << endl;

// Embed function to remove HW dynamic exclusive memory information

pSync->DEL_H_D_ExclusiveMem(SouceAddr-M_Size, SourceAddr);          

pSync->DEL_H_D_ExclusiveMem(DistAddr-M_Size, DistAddr);

}



individual METs are stored in tables with a start and an end 

memory address. When data dependency is checked, the 

simulator can search the tables and determine whether the 

memory address of communication transaction falls within 

any of the exclusive memory regions. As Fig. 6 shows, a 

“true” synchronization condition is the one which the 

details are confirmed by checking all of four METs to 

determine the memory access with data dependency. On the 

other hand, a situation in which any one of the data 

dependency checks determines that the memory address is 

in exclusive memory regions implies that the transaction of 

memory access does not evoke data dependency. The 

simulator can stop checking other METs and skips 

synchronization. Finally, since synchronization can be 

reduced without checking all METs, we recommend 

checking static METs before dynamic METs. This is owing 

to that checking static METs in log time complexity is more 

efficient than checking dynamic METs in linear time 

complexity. 

 

IV. OUR SIMULATION FRAMEWORK TO 

CONDUCT FAST AND ACCURATE MPSOC VIRTUAL 

PLATFORM SIMULATION 

The preceding section presents the thought of async-DES 

flow with USCM and trace-driven simulation to conduct 

fast and accurate virtual platform simulation. To realize the 

thought, compatibility and modification efforts are two 

critical concerns while modifying the simulation scheme in 

the primitive SystemC kernel. Then we propose a 

simulation framework (QuteVP+) and QuteVP+ utilities to 

overcome the concerns. 

A. The concerns from implementation and utilization 

persepectives 

Section II presents a thought to conduct fast and accurate 

virtual platform simulation by adopting async-DES with 

USCM and trace-driven simulation. Nevertheless, to realize 

the thought on a SystemC-constructed virtual platform 

simulation, it is necessary to modify SystemC kenrel 

because a primitive SystemC follows sync-DES. However, 

the implementation to modify SystemC kernel is not trivial. 

Here, we discuss two critical concerns as follows. 

Firstly, there are function libraries set to connect with 

SystemC kernel for synchronization (such as wait() and 

notify() in SystemC library). If the SystemC kernel is 

modified with async-DES, it is doubtful that SystemC 

library can perform the same function for the use of the 

original SystemC designs. Moreover, SystemC kernel is 

possibly updated in a new version. The modification in the 

current SystemC kernel may be incompatible to the updated 

SystemC kernel. 

Furthermore, a modification effort is inevitable to the 

original SystemC designs to adapt an async-DES scheme. 

However, the modification efforts should be reduced as less 

as possible because designers are end-users. It is NOT 

necessary for designers to know details about how the 

modified SystemC kernel works. Therefore, the approaches 

for easy-to-modify are required to specify. 

Next, we propose QuteVP+ and related utilities to 

overcome the mentioned concerns. 

 

B. The implementation of QuteVP+ 

As mentioned, it is hard to ensure the functional 

consistence in SystemC library after modifying the 

primitive SystemC kernel. Moreover, the modification in 

SystemC kernel potentially evokes incompatibility if 

SystemC is updated with new version. To overcome the 

concerns, we implement a simulation framework, called 

QuteVP+. QuteVP+ contains a simulation engine (QuteVP+ 

engine) to schedule HSPs with async-DES scheme. As Fig. 

7 shows, QuteVP+ engine and the SystemC kernel are 

independent so that the arrangement can both prevent the 

issues of function inconsistence and avoid incompatibility 

with new SystemC version. 

Each HSP can asynchronously execute it hardware 

simulation in QuteVP+ because QuteVP+ engine adopts 

USCM to help determine the necessity of synchronization. 

For the implementation, we devise QuteVP+ interface so 

that a SystemC prototype can inherit the interface to 

communicate with QuteVP engine. Then an HSP can enable 

QuteVP+ to determine the necessity of synchronization if 

the HSP request a memory access. With the benefit of data-

dependency checking by USCM, HSPs can continue its 

simulation for many cycles until certain necessary 

Simulate an HSP & Check data 
dependency 

Fig.6 The memory exclusivity checking flow 
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synchronization condition are met. As a result, a significant 

synchronization reduction contributes a great promotion in 

simulation efficiency. 

 

 

Since our simulation framework replaces the simulation 

scheme by out-of-order execution approach, each HSP is 

allowed to advance with different simulation timestamps, 

instead of referring to global time as the primitive SystemC 

configures. To maintain temporal accuracy, the simulation 

engine lets each HSP maintain its local time. Then our 

simulation engine builds a simulation trace recorder to store 

acting events based on local time of each HSP. Once the 

engine needs to maintain temporal accuracy, the timing 

restorer can utilize the recorded simulation traces to 

reconstruct accurate simulation time by trace-driven 

simulation. 

In SystemC-constructed virtual platform simulation, 

enabling synchronization must use the waiting functions. 

However, some waiting functions with timing 

configurations involve with the scheduling. Avoiding these 

waiting functions affecting scheduling, our simulation 

framework rules that each HSP for synchronization needs 

use the time-irrelevant wait() function (i.e: wait(event_1)) 

or wait(SC_ZERO_TIME) function to keep global time 

always stopping at zero. Therefore, the simulation engine 

can schedule HSPs with out-of-order execution in “Delta 

Cycle2”. 

                                                                 

2 SystemC defines Delta Cycle, which is typically used for those 

tasks without the ability to instantaneously change. 

In sum, the implemented QuteVP+ engine is independent 

to the primitive SystemC kernel. Thus, QuteVP+ supports 

the use for the original SystemC design and avoids the 

incompatible issue. 

 

C. The utililites of QuteVP+ 

Basically, functions of an HSP can be categorized to 

computation and communication functions with transaction-

level modeling (TLM). Following the categorization, only 

the communication function of an HSP influences the 

behavior of memory access request. This implies that data 

dependency is only evoked in the communication function. 

If intending to exploit the ability of QuteVP+ engine for 

data-dependency checking, an end-user just needs to 

modify the communication function. Most implementations 

of the original SystemC virtual platform simulation can be 

kept and reused. 

1. Modify simulation scheme with async-DES in 
communication function 

 

For the consideration to easily use QuteVP+, we 
proposed the QuteVP+ utility, reducing the 
modification effort as less as possible. Here we give 
an example to show how a processor model applies 
QuteVP+ utilities to modify an MPSoC design, as 
shown in Fig.8. Firstly, by including the QuteVP 
utility library, QuteVP+ utilities can be applied for 
the target processor model. In this case, the 
processor model requests memory access through a 
send_request function call. Then user just needs to 
modify the send_request function by using the 
DataDependencyChecker utility. The function of 
DataDependency Checker utility is to pass the 
reference of the requesting memory access and 
check if the memory request involve with data 
dependency. If the return value of 
DataDependencyChecker is false, this phenomenon 
means that the processor model can complete the 

#include <QuteVP_Utility.h> 
…. // communication class inheritance 
void ARM_ISS::send_request() { 
   bool SyncFlag = true; 
   SyncFlag = QuteVP_Engine-> 
DataDependencyChecker (mReq, mResp); 
   if (SyncFlag) { 
wait(sync_ok_event); 
QuteVP_Engine->RequestTransmitter (mReq, mResp); 
   } 
   if (mReq.get_command()==memory_read) 
        M_resp_data = mResp.get_data(); 
} 

Fig. 8 An example of sending memory request function 

with QuteVP+ utility libraries 
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transaction of memory request without evoking 
synchronization. Otherwise, the processor model 
needs to evoke the untimed synchronization. With 
the easy modification, the processor model is able to 
out-of-orderly execute its hardware simulation. 

 

2. Pass Memory Request by Direct Data Access 

As is well known for the use of SystemC and OSCI 
TLM, synchronization will be evoked after a TLM 
channel requires passing a memory transaction from 
an initiator port to a target port among HSPs. That is, 
the OSCI TLM library automatically evokes 
synchronization to handle a memory request. If a 
SystemC design adopts the communication approach 
of TLM in an MPSoC virtual platform simulation, 
the complex communications often produces a 
significant number of synchronizations degrading 
simulation efficiency. 

To handle memory transaction more efficiently, we 
devise a manner, called direct data access to skip 
unnecessary synchronization. The idea of “direct 
data access” is to pass a memory request with a 
function call to directly read/write data from/to the 
target memory block. Nevertheless, adopting direct 
data access must overcome a difficulty in letting all 
HSPs use the same interface to access the data in 
different hardware models. Then we implement a 
QuteVP+ interface, which is similar to the interface 
of transaction level model. Moreover, we implement 
a function called RequestTransmitter() as Fig.9 
shows. With QuteVP+ interface and the 
RequestTransmitter function, the mentioned 
difficulty of direct data access can be overcome. In 
sequel, an example is given to explain how we 
accomplish the implementation to achieve direct 
data access in an MPSoC virtual prototype. 

Firstly, HSPs in an MPSoC virtual prototype can be 
categorized as master HSP or slave HSP, with the 
rule defined in TLM. Our example is that an ARM 
processor model (as a master HSP) requests a 
memory access to read data from an RAM model (as 
a slave HSP). To unify the memory access 
procedure in the RequestTransmitter function 
through QuteVP+ engine, our idea is to let the ARM 
processor model and the RAM model inherit the 
defined QuteVP+ master interface and QuteVP+ 
slave interface, which are implemented in QuteVP+ 
utility libaray. Because all of slave HSPs are ruled to 
inherit our QuteVP+ interface with an virtual 
function (get_request()), the ARM processor can 
access data stored in slave HSP with the unified 
RequestTransimitter function. Due to the 
contribution of unification to use the 
RequestTransimitter function, the modification 
effort is greatly reduced. Moreover, by inheriting the 

QuteVP+ interface, QuteVP+ automatically records 
the ID of master and slave HSP in elaboration phase 
of the SystemC initialization stage. Then the 
communication function pointers of HSPs are stored 
in our defined pointer array. When an HSP requests 
a memory access through the RequestTranmitter 
function call, RequestTransmitter function can use 
the stored function pointer to directly indicate the 
corresponding get_request() to complete the 
memory transaction. Due to the bypass, our 
implemented direct data access mechanism further 
reduces unnecessary data copy and synchronization; 
thus, achieving the better simulation efficiency for 
memory access requests. 

 

 

3. Maintain temporal accuracy by modifying the 
defined TimeAlign function of QuteVP+ 

To maintain temporal accuracy, QuteVP+ engine 
automatically records simulation traces in back-end 
for time reconstruction. Furthermore, TimeAlign() 
function in QuteVP+ utility library is a virtual 
function, in which simulation traces are then 
available for implementation of trace-driven 
simulation. Because of the variant in different 
architecture, users can modify the TimeAlign() 
function with corresponding communication rule to 
calculate delay cycle. Time reconstruction for 
different SystemC design can be achieved. 

#include <QuteVP_Utility.h> 
// Calculate the request address to seek the target ID 
unsigned int pSysc::findIDfromMemMap(unsigned int& 
Addr) { 
   vector< mMap>::interator itrVec = memMap.begin(); 
   targetID = 0; 
   while (itrVec!=memMap.end()) { 
      if (((*itrVec)->first>=Addr) && ((*itrVec)-
>second==Addr)) { 
         return targetID; 
      } 
      ++itrVec; ++targetID; 
   } 
} 
// Using targetID mapping to the corresponding 
get_request function 
qvp_response 
Qutevp_Engine::RequestTransmitter(qvp_request& 
mReq) { 
   targetAddr = mReq.get_address(); 
   targetID = findIDfromMemMap(targetAddr); 
   return pHSP[targetID].HSPptr()->get_request(mReq); 
} 

Fig. 9 The implementation for direct data access 



 

Fig. 10 is an example to show how our test case 
modifies TimeAlign() to complete trace-driven 
simulation for an MPSoC with a “round-robin” bus 
architecture. Firstly, the memory access request time 
is extracted by the popped-out simulation traces of 
each HSP. The following process compares the 
request time of HSPs to examine if a bus contention 
occurs. Notably, the test case modifies TimeAlign() 
function by implementing a bus arbitration protocol 
to determine the HSP which can be serviced. 
Therefore, communication delay can be exactly 
inserted for those HSPs with bus contention. By 
repeating the above steps, TimeAlign() completes 
time reconstruction. Finally, TimeAlign() returns a 
HSP_ID to indicate the next runnable HSP. 

 

V. EXPERIMENTAL RESULTS 

To validate the robustness of our purposed async-DES 

scheme, called USCM on QuteVP+, we conduct 

experiments to compare the simulation efficiency with the 

sync-DES scheme in the primitive SystemC kernel, called 

Clock-Step Simulation Method (CSSM). We compare the 

synchronization counts and the simulation speed while 

applying different simulation methods in an MPSoC virtual 

platform simulation. Moreover, we further compare the 

simulation efficiency improved by USCM. 

The experimental settings are in followings. First, we 

build a virtual MPSoC prototype by SystemC v2.2 and 

TLM v1.0, and modify public programs, JPEG Encode [10] 

and Sparse Matrix Multiplication [11]), as the parallel 

programs for the target MPSoC. We then modify the target 

MPSoC on QuteVP+, so that the simulation scheme 

becomes replaceable while keeping the original 

functionalities of hardware modules intact. Furthermore, the 

target MPSoC contains two memory systems commonly 

utilized in MPSoC: the distributed shared memory system 

and the uniform shared memory system. Then we can 

examine various types of synchronization conditions in the 

target MPSoC. Finally, we model ARM v5Te processor as 

Instruction Set Simulator and other hardware peripherals in 

the target MPSoC with cycle accuracy. Such arrangements 

ensure the virtual platform simulation in high simulation 

accuracy. 

These experiments were conducted on a Linux 

workstation with Intel Xeon 2.2 GHz and 16 GB RAM. 

 

A. The improvement of simulation speed 

Table 1 demonstrates the experimental results on the 

comparison of synchronization count (Sync-Count). We 

compare CSSM and USCM on two parallel software 

programs (JPEG encoding and Sparse Matrix 

Multiplication) with numbers of simulation processor 

models (CPUs) from 1 to 32. The number of the total 

simulated instructions and the simulation cycle (i.e. the time 

unit in the target MPSoC) are presented in the 2, 3, 6 and 7 

columns. Please note that we implement USCM with cycle 

accuracy. Therefore, their instruction counts and target time 

are the same as CCSM’s. 

Columns 4, 5, 8, and 9 are the counts of synchronization 

(Sync-Count) for CSSM and USCM, respectively. We can 

see that the number of synchronizations increases with the 

increasing numbers of CPUs, no matter which simulation 

#include <QuteVP_Utility.h> 
unsigned int QuteVPplus_engine::TimeAlign () { 
   while () { 
   // Pop out the simulation traces of each HSP 
      …. 
   // Compare the memory access request time 
      …. 
   // Use round-robin protocol to choose the serviced HSP 
         ……… 
   // Insert delay cycle 
      …… 
   // Check if minimal global time is found 
      If (time reconstruction is done==true) break; 
   } // time reconstruction ends 
   return HSP_ID; // HSP_ID is determined by the result 
of minimal global time computation 
} 

Fig. 10 An example of maintaining temporal accuracy in 

QuteVP+ TimeAlign() 

Table 1 The counts of synchronizations versus different numbers of processors for SMM and JPEG-Enc simulations 

#CPU

SMM

#Inst
Simulation

Cycles (10ns)

CSSM

Sync-Count

USCM

Sync-Count

1 169,314,561 254,261,472 722,859,678 28,423,967

2 121,085,896 156,417,989 460,436,669 12,508,290

4 107,747,016 124,834,536 365,547,740 7,564,476

8 105,501,921 114,852,199 335,037,092 3,891,842

16 112,941,976 119,699,619 349,944,254 2,075,848

32 135,121,633 145,001,298 419,101,187 1,220,659

JPEG-Encode

#Inst
Simulation

Cycles (10ns)

CSSM

Sync-Count

USCM

Sync-Count

512,513,774 771,969,678 2,212,558,094 87,409,800

386,970,594 507,338,577 1,520,454,360 45,790,479

314,622,268 376,936,991 1,093,803,850 21,489,726

287,006,102 327,838,743 926,966,612 10,945,309

272,113,534 308,490,886 860,594,492 5,436,347

264,576,313 295,742,881 831,027,316 2,918,037



scheme performs. However, the Sync-Count in our USCM 

algorithm is usually 1 to 2 orders less than those of CSSM. 

This indicates that our framework can greatly reduce the 

numbers of synchronizations. 

 

B. The improvement of simulation speed 

Table 2 shows the simulation runtime and speed-up ratio 

(with the following formula) among CSSM and USCM in 

the columns 2, 3, 4, and 5, 6, 7, for SMM and JPEG-

Encode simulations, respectively. 

 

Table 2. The comparisons of speed-up ratio for SMM and 

JPEG-Enc simulations 

# 

CPU 

SMM JPEG-Enc 

CSSM USCM 
Speed-up 

Ratio 
CSSM USCM 

Speed-up 

Ratio 

1 14,917 123 121.0 37,282 385 96.8 
2 7,420 108 68.6 22,196 313 70.9 
4 4,972 107 46.3 15,195 287 53.0 
8 3,255 113 28.8 9,660 275 35.1 
16 4,641 137 33.9 11,691 302 38.7 
32 6,421 198 32.6 11,740 354 33.2 
 

It is clear that USCM greatly outperforms the CSSM. This 

is due to the effects in the synchronization reductions. The 

results show that USCM can simulate a single-processor 

SoC design with about 121X and 96X speed-up for SMM 

and JPEG Encode. For the 8~32 processor MPSoC virtual 

platform simulation, the improvements in simulation speed 

by USCM can be as high as average 30X. This means that 

USCM robustly offers the benefit of the simulation speed-

up for the SystemC-constructed MPSoC designs. 

 

VI. CONCLUSIONS 

In this paper, a simulation framework, QuteVP+, is 

proposed to overcome a trade-off issue of simulation 

efficiency and accuracy, for SystemC-based virtual platform 

simulations. The contributions of QuteVP+ are the 

integrations of USCM and trace-driven simulation 

techniques to both accelerate simulation and offer accurate 

outcome. Moreover, the utility libraries of QuteVP+ are 

proposed to minimize the efforts in modifying a primitive 

SystemC-based virtual platform with our proposed 

QuteVP+. The experimental result demonstrates that 

QuteVP+ improves simulation speed-up as high as 121X 

for a SystemC-based virtual platform simulation of MPSoC 

designs. Moreover, QuteVP+ guarantees simulation results 

with cycle accuracy. 

As mentioned, QuteVP+ needs to recognize more types of 

dependency conditions for better applicability. Moreover, 

we plan to propose a parallel scheme on QuteVP+, 

achieving the further improvement of simulation efficiency. 
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