
Practical Experience in Automatic Functional Coverage
Convergence and Reusable Collection Infrastructure in UVM

Roman Wang
roman.wang@amd.com

Suresh Babu & Mike Bartley
sureshbabu.p@testandverification.com

mike@testandverification.com

© Accellera Systems Initiative 1

© Accellera Systems Initiative 2

Is the 100% FCOV perfect?

FCOV Convergence

FCOV Collection Infrastructure

The way to meet 100% functional coverage(FCOV)

© Accellera Systems Initiative 3

Why is it so hard to meet 100% FCOV...

• to qualify all kinds of requirements for FCOV in
different levels?

• to meet 100% FCOV in big regression faster?

• to architect FCOV collection infrastructure?

• to write tests well to contribute FCOV data?

• to make both FCOV and code coverage high?

© Accellera Systems Initiative 4

Think about the FCOV requirements

• Verification environment
Test bench fault detect – functional qualification tools could do that well.

• IP Stand alone level
The features listed in IP design specification

Assertion coverage on the bus interfaces

Protocol Checker and VIP coverage

IP use cases in high layer

Power aware coverage if IP residents in different power domains

• SoC Level
The Scenarios listed in SoC design specification

Basic features of each IP

Memory allocation coverage

Performance Coverage (Ex. Fabric NoC, DDR and GPU, etc.)

How do you know FCOV is reaching 100%?

1. Verification engineers usually have to run regression
with 10000 constraint random tests with different
seeds in complex IP or SoC.

2. Merger the coverage database and find out the
coverage holes.

3. Override the constrain or write direct cases to cover
the holes in next regression.

4. Loop 2 & 3 to reach the 100% FCOV.

© Accellera Systems Initiative 5

Cost of the legacy

1. More tests to run

More waste in time

More waste in LSF slots

More waste in disk

All of above are about $$$.

2. It’s difficult to point out how

many times to run one test with

different seeds to get closure.

© Accellera Systems Initiative 6

Solution
• The idea is to exclude the items(considered to be covered) in next

random iteration and set the closure flags if everything is walked.

• An automatic functional coverage convergence method.

Two classes: fcov_smart_gen and fcov_smart_knobs

© Accellera Systems Initiative 7

What’s fcov_smart_knobs?-1
• The fcov_smart_knobs is a unique control class and derived from

uvm_object.

• fcov_smart_knobs class has two groups of knobs

1. Knobs to enable/disable the specific functional covergroup

2. Detailed possible knobs and closure knobs for specific functional
covergroup

• fcov_smart_knobs class has the associative arrays to record the
covered coverage item. 1—cover; 0 -- uncover

• fcov_smart_knobs class has total covering possibility of knobs for
every coverpoint and cross coverage.

© Accellera Systems Initiative 8

What’s fcov_smart_knobs?-2

© Accellera Systems Initiative 9

Simple covergroup example:

Covergroup cg_example (string name);
option.per_instance = 1;
option.name = name;
cp_point1 : coverpoint item1.value[0];
cp_point2 : coverpoint item2.value[2:1];
cp_point3 : coverpoint item2.value[4:3];
cross1_point2_X_point3 : cross cp_point2, cp_point3;

endgroup

To meet 100% FCOV:

cp_point1 has 2 possibilities;
cross1_point2_X_point3 has 16 possibilities;

What’s fcov_smart_knobs?-3

© Accellera Systems Initiative 10

--Simple Example--

Class fcov_smart_knobs extend uvm_object;

// closure knobs

bit cov_point1_closure , re_rand_cov_point1;

bit cov_cross1_closure, re_rand_cov_cross1;

// The total number of possibility

Int total_numofcov_point1;

Int total_numofcov_cross1;

// Associative array to record the covered coverage item

bit cov_point1[bit] ; // the coverpoint which is NOT involved in the cross

bit cov_corss1 [bit [3:0]];

endclass

What’s fcov_smart_gen?-1
• The fcov_smart_knobs is a unique stimulus generator class and

derived from uvm_object.

• It defines all random items which contributes to FCOV

• It has pre/post_randomize hooks.

1. In the pre_randomize function

Disable the random item if its coverage is already closure.

2. In the post_randomize function

Check if the randomized data already exists in covered array.

Set the re_rand knobs if it’s covered in the past iterations.

Check if the related coverpoint or cross coverage closure

© Accellera Systems Initiative 11

What’s fcov_smart_gen?-2

© Accellera Systems Initiative 12

class fcov_smart_gen extend uvm_object;

fcov_smart_knobs smart_knobs;

// the covergroup

Rand bit clk_mode; // separated cover point

Rand bit [1:0] dma_mode; // involve in cross

Rand bit [1:0] ds_mode; // ds_mode need to be crossed with dma_mode

function void pre_randomize();

if(smart_knobs.cov_point1_closure)

clk_mode.rand_mode(0);

if(smart_knobs.cov_cross1_closure) begin

dma_mode.rand_mode(0);

ds_mode.rand_mode(0);

end

…….

endfunction

What’s fcov_smart_gen?-3

© Accellera Systems Initiative 13

function void post_randomize();

// check if it need to re-randomize again

if(smart_knobs.cov_point1.exist(clk_mode))

re_rand_cov_point1 = 1;

else begin

re_rand_cov_point1 = 0;

// record the covered items

smart_knobs.cov_corss1[{dma_mode , ds_mode }] = 1;

end

if(smart_knobs.cov_cross1.exist({dma_mode , ds_mode }))

re_rand_cov_cross1= 1;

else begin

re_rand_cov_cross1= 0;

smart_knobs.cov_point [{dma_mode , ds_mode }] = 1;

end

// check if the specific group reaches the closure.

if(smart_knobs.cov_point1.num() == smart_knobs.total_numofcov_point1)

smart_knobs.cov_point1_closure = 1;

What will happen if the coverage is close to 99%?

© Accellera Systems Initiative 14

• It’s very difficult to hit the corner

• It will become very inefficient.

• The proposed solution. (Ex. Random items for one covergroup)
1. Define the configurable threshold in the fcov_smart_knobs.

2. Calculate the current gain (= hit numbers/total_numofcov_cross1) every
iteration and check if it hits the thresholds (Ex. 98%)

3. If yes, abstract the uncovered items(Ex. 2%) to shuffle_array by walking
associative arrays with all possibilities.

4. Disable related rand items and take item from shuffle_array every next
iterations.

5. It will become faster to cover the remained uncovered items (Ex. 2%)

© Accellera Systems Initiative 15

Reusable?
Scalable?

Controlable?

Functional Coverage Collection Infrastructure

© Accellera Systems Initiative 16

What we should do?
• Use UVM RAL model to write the functional covergroups and

do collection in module monitor
Implement a self-maintain RAL model (MRM)

• Use the transaction callback collection methodology with
MRM reference

• Use the MRM built-in functional covergroups
• Write the assertions in the interface and bind to DUT
• Write and collect the environment configuration coverage in

fcov_smart_gen
• Collect the VIP built-in functional coverage
• Predict the RO RAL registers in module predictor
• Why not use the back-door mechanism?

– There are too many registers and paths to change at different levels
– It would by-pass too much logic

© Accellera Systems Initiative 17

FCOV Collection Infrastructure in IP Level UVM

Trick of the RAL coverage sample

© Accellera Systems Initiative 18

// ------IP Standalone ::module UVC layer------

uvm_reg_predictor#(uvm_sequence_item) bus2reg_mod_pdr;

// build_phase

bus2reg_mod_pdr =

uvm_reg_predictor#(uvm_sequence_item)::type_id::create(“reg_pdr”,this);

// connect_phase

// connect the predictor to the bus agent monitor analysis port

iuvc_inst.agt.bus_mtr.dataph_ap.connect (bus2reg_mod_pdr.bus_in);

// connect the module monitor functional coverage collection to reg_ap

bus2reg_mod_pdr.reg_ap.connect(module_monitor.uvmreg_fcov_imp);

• Define a uvm_analysis_imp port and connect it to
bus2reg_mod_pdr (uvm_reg_predictor)’s reg_ap port.

The transaction callback collection method

© Accellera Systems Initiative 19

Three classes:

• Fcov_callback_knobs

It’s a uvm_object, a collection knobs to provide granular control the
callback objection creation, sample, weight, etc.

• Fcov_callback_library

It’s derived from uvm_callback, a collection of transaction based
callbacks extends the fcov_callback_base

• Fcov_callback_collector

It’s a uvm_component, provides an analysis_imp port to subscribe
the transactions from broadcaster(such as monitor)

fcov_callback_knobs/collector

© Accellera Systems Initiative 20

class fcov_callback_knobs extends uvm_object;

// enable bit for coverage callback objection creation and sample

bit enable_cg_cov_dma = ENABLE;

// weight bit for each coverage point and cross within coverage callback obj

bit wt_cp_dma_mode = ENABLE;

bit wt_cp_sts = ENABLE;

bit wt_cp_dma_msg = ENABLE;

bit wt_ dma_mode_X_sts_X_dma_msg= ENABLE;

class fcov_callback_collector extends uvm_component;

uvm_analysis_imp#(uvm_transaction, fcov_callback_collector) fcov_cb_imp;

`uvm_register_cb(fcov_callback_collector, fcov_callback_base)

function new(string name, uvm_component pt);

virtual function void write(uvm_transaction p);

`uvm_do_callbacks(fcov_callback_collector, fcov_callback_base,

fcov_sample(p))

endfunction : write

fcov_callback_library

© Accellera Systems Initiative 21

class fcov_callback_base extends uvm_callback;

IP_UVM_RM MRM_ref;

function new (string name = “”) …

pure virtual function void fcov_sample(ref uvm_transaction _ref);

function void set_rm(IP_UVM_RM rm);

class dma_cov_cb extends fcov_callback_base;

strap_pkt #(`IN_WIDTH,`OUT_WIDTH) dma_strap_pkt;

covergroup cg_cov_dma (string name);

cp_dma_mode : coverpoint mrm_ref.IP_BLK.reg1.dma_mode.value[0:1];

cp_dma_msg : coverpoint tr.dut_outs.value[2]; // Transaction item

dma_mode_X_dma_msg: cross cp_dma_mode, cp_dma_msg

{ ignore_bins ……;}

endgroup : cg_cov_dma

function void set_weight(bit dma_mod_wt, bit sts_wt,…..);

cg_cov_dma.cp_dma_mode.option.weight = dma_mod_wt;

virtual function void fcov_sampe(ref uvm_transaction _ref);

Transaction callback use model in module monitor

© Accellera Systems Initiative 22

type_def uvm_callbacks #(fcov_callback_collector, fcov_callback_base)

cbtype;

uvm_analysis_port #(uvm_transaction) ip_fcov_cb_analysis_port;

fcov_callback_collector fcov_cb_clt;

fcov_callback_knobs fcov_cb_knobs;

dma_cov_cb dma_cov_cb_inst;

fcov_cb_clt = fcov_callback_collector::typy_id::create(“fcov_cb_clt”,this);

fcov_cb_knobs = fcov_callback_knobs::typy_id::create(“fcov_cb_knobs”,this);

// build_phase

if(fcov_cb_knobs.enable_cg_cov_dma == ENABLE) begin

dma_cov_cb_inst =new(“dma_cov_cb_inst”);

dma_cov_cb_inst.set_rm(mrm_ref);

dma_cov_cb_inst.set_weight(fcov_cb_knobs. wt_cp_dma_mode, …);

cbtype::add_by_name(“fcov_cb_clt*”, dma_cov_cb_inst,this)

// connect_phase

ip_fcov_cb_analysis_port.connect(fcov_cb_clt. fcov_cb_imp);

// in specific write function

ip_fcov_cb_analysis_port.write(tr_pkt);

© Accellera Systems Initiative 23

Vertical reuse from IP to SoC

Horizontal reuse

© Accellera Systems Initiative 24

// ------ fcov_feature class ------

bit cov_app_en;

string project_name =””;

function void init_knobs();

if(project_name == “future”) cov_app_en = ENABLE;

if(project_name == “past”) cov_app_en = DISABLE;

// ------Test layer ------

fcov_feature fcov_fea;

fcov_fea = fcov_feature::type_id::create(“fcov_fea”);

uvm_cmdline_proc.get_arg_value(“+PROJ_NAME=”,

fcov_fea.project_name);

fcov_fea.init_knobs(); // initialize the knobs by project specific

// ------ additional option on the command line ------

+PROJ_NAME=future

Define a fcov_feature class to control the knobs (fcov_smart_knobs
and fcov_callback_knobs) by different projects.

© Accellera Systems Initiative 25

Summary

• Practical automatic functional coverage
convergence method could dramatically
reduce time and verification resource.

• Functional coverage collection infrastructure
could be easily reusable and scalable from IP
to SoC. The effort to maintain could be
dramatically minimized.

© Accellera Systems Initiative 26

Thank you !

Questions?

Roman Wang

roman.wang@amd.com

