
Practical Approach Using a Formal App to Detect

X-Optimism-Related RTL Bugs

Shuqing Zhao, Shan Yan, Yafang Feng

Mobile and Wireless Group

Broadcom

Irvine, California, USA

{shuqing.zhao, syan, yafang}@broadcom.com

Abstract— “X-optimism” behaviors in standard RTL

simulation remains a serious threat to ASIC tape-outs. It is not

practical to rely on gate-level simulations to detect all related

bugs. We propose a holistic approach centered on a formal X-

propagation application to detect X-optimism issues early in the

RTL verification cycle. The formal app reads in the RTL,

analyzes the design, and then automatically implements

assertions to check for all X occurrences on targets such as

clocks, resets, control signals and output ports. If the formally

proved X occurrences are determined by user to be unexpected,

it usually implies they were masked in RTL simulation due to X

optimism. We use an X-sources-driven approach to help improve

productivity by identifying X sources and then using this

information to determine the appropriate scope to apply the

formal tool. This also helps improve the possibility of the formal

tool achieving full proofs instead of bounded proofs. For

example, we use formal reset analysis to identify uninitialized

registers from the RTL design. This analysis helps us to apply the

formal application on the key design blocks with the best ROI.

When bounded proof is unavoidable, we use a simulator with an

X-propagation feature to complement the formal method. We

discuss results of our approach using two case studies, a power

management controller module and an audio processing module,

both of which have design bugs masked due to X-optimism.

Keywords—X propagation; X-optimism; X sources; RTL;

Verilog simulator; formal verification; bounded proof

I. INTRODUCTION

Verilog HDL [1] and SystemVerilog [2] use a 4-value logic to
model digital circuit behavior. The four values are the 0 and 1
boolean values, x for “unknown,” and z for a high-impedance
or open circuit. The standard definition of how x is interpreted
in expressions and statements causes any simulator following
the standard to exhibit two phenomena: X-optimism and X-
pessimism. To our knowledge, these two terms first appeared
in [3]. Some publications, as in [4], may define the two terms
differently, but in this paper we adopt the widely accepted
definitions in [3][5]. The rationale for the standard to have
these two limitations can be mainly attributed to simulation
performance versus modeling accuracy tradeoff. Nonetheless,
the lack of complete understanding of these issues and the
dearth of a widely accepted comprehensive solution have
resulted in many post-silicon functional bugs that cost IC
design companies precious debugging time and resources, and
possibly expensive chip respins. With the new verification

technologies and multiple lessons learned, we believe we have
found a holistic methodology that works reasonably well for us
as a SoC team.

In Section II, we define what the X-optimism problem is
and the known solutions proposed by others. In Section III, we
list all the X sources potentially causing RTL bugs. Section IV
outlines our X-source-driven formal verification methodology.
We discuss two case studies in Section V before we conclude
the paper in Section VI.

Disclaimer: We mention names of EDA tools used in our
flow in this paper with no intention of any endorsement. The
methodology is generic enough for other tools with similar
capabilities to produce comparable results.

II. X-PROPAGATION ISSUES AND EXISTING SOLUTIONS

This paper focuses primarily on X-optimism, but for purposes
of completeness, we first briefly describe X-pessimism.

A. X-pessimism

X-pessimism is a simulator behavior in which an x value,
instead of a deterministic 0 or 1 value as in silicon, propagates
to the next HDL program execution step. X-pessimism
occurrences can be categorized into two groups: single-bit
operation and multiple-bits operation. In single-bit operation,
X-pessimism occurs due to operator semantics defined by the
Verilog standard. For example, assuming a is a single-bit
variable, the results of (a & ~a) and (a | ~a) are always x if a
equals x in the simulation. However, in real silicon, the value
of (a & ~a) is 0 and the value of (a | ~a) is always 1. The
second source of X-pessimism comes from multiple bits
operation involving X. The Verilog standard specifies that for
the arithmetic operators, if any operand bit value is the
unknown value x or the high-impedance value z, then the entire
result value shall be x. For example, in the simulation you see
this:

3’b000 + 3’b01x = 3’bxxx

while the following result is more accurate:

 3’b000 + 3’b01x = 3’b01x

X-pessimism is an undesirable simulation behavior, because it
propagates excessive x’s that are time-consuming to debug. It
usually does not, however, mask RTL design bugs.

B. X-optimism

X-optimism, on the other hand, is a simulation behavior that
can mask RTL design bugs. It allows a deterministic value of 0
or 1 instead of an unknown value x as in the real silicon, to
propagate to the next step of HDL program execution. The
simulator is doing nothing “wrong” by just following what the
Verilog standard defines as the semantics of language
constructs, such as if, case, negedge, or posedge. For an if
statement, only when the if condition is true (defined as a
nonzero known value) will the true branch be executed. The
false branch, if it exists, will be executed when the condition
expression is false (defined as 0, x, or z).

Note: When the if condition is a value z instead of x, the
result is the same. In this sense, the “X-optimism” term is not
accurate, in our opinion. Nonetheless we will continue using
this term in this paper due to its wide acceptance.

Figure 1 shows an X-optimism example of an if statement
being used in the following code snippet. When count
increments to 7, en goes x for one clock cycle, causing count to
remain 7 in the simulation. In real silicon, when en equals 1,
count can roll over to a value of 0. The desired simulation
behavior should be count getting a value of 3’bxxx.

Figure 1. X-optimism prevents the real X from propagating

Not all X-optimism behaviors are undesirable. For the same
code above, the reset simulation would not work without the
help of X-optimism, as shown in Figure 2. The transition of
rstn from x to 0 causes “negedge rstn” to evaluate to true,
triggering the reset assignment to be executed in simulation.

Figure 2. X-optimism makes an asynchronous reset work

C. Existing X-optimism solutions

In the following subsections, we discuss (to the best of our
knowledge) the methods previously used to address X-
optimism issues in RTL simulation.

1) Gate-level simulation
Usually X-optimism behaviors do not show up in gate-level

simulation. The culprit language constructs (if, case, posedge,
negedge) get synthesized into the gate-level net list, which
comprises combinatorial gates and flip-flop/latch primitives or
UDP. These gate-level models do not exhibit X-optimism
behavior. Unfortunately, for any reasonably sized SoC design,
the cost of running gate-level simulation for the full RTL
simulation regression suite (including tests developed at the
block, IP, subsystem, and SoC levels) is prohibitive in terms of
labor or schedule. One reason is that X-pessimism becomes
more prevalent for gate-level simulation. It is very time-
consuming to go through iterations of debugging and fixing
(depositing or forcing known values) until the sea of red X’s is
receding in waveform. This, plus the much slower simulation
performance, makes the productivity very poor when compared
to running the RTL simulation. Practically, only the minority
of the RTL simulation test suite is regressed at the gate-level
simulation, which almost guarantees that some X-optimism
issues could be missed. Even if RTL bugs can be found at this
stage, it usually would be costly to do ECO or resynthesis,
jeopardizing the project schedule.

2) Coding style change to prevent X-optimism
It is possible to change the RTL design coding style to

detect and avoid X-optimism. One coding style change is
recommended in [5] to use the ternary conditional operator ? to
replace if statements. For complex nested if statements, this
change would suffer from very poor readability. Another
coding style recommended by some people is to do explicit X
interception and propagation. For example, the previously
mentioned counter-example can be recoded as it is below, so
that when en is x, the result of count turns x also.

This coding style is also impractical for designers to cover
all x intercepting conditions, particularly when signals with
multiple bits are tested in a case statement. Other negative
reasons include poor readability, simulator performance
penalty, etc., as listed in [3].

3) 2-state logic simulation
Some people [3] have resorted to the use of a 2-state logic

simulation instead of the standard Verilog 4-state logic
simulation. The key idea is that instead of using X, a random
known value is used in any particular seed of the simulation
run. The fundamental flaw of this approach is that it is not

always @(posedge clk or negedge rstn)

begin

 if (~rstn)

 count <= 0;

 else if (en)

 count <= count + 1;

else if (en === 1’bx)

 count <= 3’bxxx;

end

reg [2:0] count;

always @(posedge clk or negedge rstn)

begin

 if (~rstn)

 count <= 0;

 else if (en)

 count <= count + 1;

end

possible to cover all combinations for multiple bits of X
signals. For instance, if there are 32 register bits that are not
initialized, 4 billion test runs need to be done. Of course, not all
combinations make sense, but the question is how to determine
the meaningful set of combinations that must be covered.

4) Traditional model checking with 4-state logic
Many formal model checking tools support 4-state logic

natively. This means that when proving an assertion, the tool
takes into account both 0 and 1 cases when a signal can be an
x. For example, if value 1 for a noninitialized register can make
an assertion fail, the tool will pick this value to generate a
counter-example for users to debug. The issue with this
approach is that usually there is no guarantee that the assertions
proven cover the full functionality of the design.

5) Model checking with automatic X checkers insertion
There are a few commercial formal tools, such as [9], that

can do automatic X checker generation and use special formal
engines to do the proof. The main issue with using this type of
tool without following a good methodology is that design
complexity and tool capacity often lead to the classic formal
proof convergence problem. In fact, the contribution of this
paper is to make this tool usage more effective and productive.

III. COMMON X SOURCES CAUSING RTL DESIGN BUGS

Our methodology is an X-source-driven approach. The Verilog
standard defines many cases in which an X value can occur. In
this section, we list four X sources known to us as potential
causes for RTL design bugs. Some other X sources such as
floating input ports or implied latches are less interesting,
because they can be easily detected by the lint tool prior to
RTL sign-off.

A. Uninitialized Registers

First, the most common X source in RTL coding is
uninitialized registers, either latches or flip-flops. Although the
best known practice is to reset all registers, designers often
choose not to reset some registers for reasons like performance,
area saving, ease of routing, timing closure, etc. In this case,
those registers have neither asynchronous nor synchronous
reset signals hooked up. These registers are also known as
“nonresettable” registers. Another case we have experienced is
that sometimes the registers use a synchronous reset signal, but
the clock is not active when the reset is asserted.

B. Out-of-Bound Array Element or Bit-Slice Access

In many other programming languages, when an out-of-bound
array access occurs, a run-time error will happen and the
program will either crash or be terminated. The Verilog
standard treats this scenario differently — the program
continues to run and x will be returned as a result. In the
following example,

reg [3:0] addr;

reg [7:0] data;

If the value of bit-select index addr is out of bounds, e.g.,

addr == 8, then data[addr] returns x. Similarly, the
following example declares an array to model a 1 KB memory,

reg [7:0] mem[0:1023];

If the index is out of the address bounds, or if any bit in the

address is x or z, then the value of the mem[addr] shall be x.

C. X assignments

There are primarily four reasons that designers use explicit X
assignments in RTL code:

 Using X assignments to truly model unknown values
in the silicon. This is a common usage in the analog IP
model, memory model, and gate cell model.

 Assigning x values to a signal is interpreted by a
synthesis tool like Design Compiler as “don’t care,”
meaning that any known value could be assigned
during synthesis for logic minimization purpose.

 Assigning x values to a signal is used when an error
condition occurs. The intention is to propagate X to
some observable objects checked by the test bench. We
believe this should be discouraged. Assertions should
be used instead to report the error condition.

 Assigning x values in an else branch or case default is
used to intercept and explicitly propagate X with the
intention of fixing the X-optimism issue.

D. Power-aware semantics in UPF or CPF

For low-power SoC design, UPF [6] or CPF format power-
intent specification files have become must-haves as companions
to RTL HDL code. The UPF standard defines simulator
behavior for power-related chip operation, such as power-
on/off, isolation and retention, etc. When a power domain is
powered down, all the logic nodes within that domain will be
corrupted as X and will remain X until the domain is powered
back on again. If the powered-down domain has isolation on its
output ports, the isolation cells would prevent X from going
out to other powered-on cells—the isolation cell output drives
a known value specified in the UPF file. To the retention
registers, the X corruption still occurs, just as the power down
case does, upon entering retention mode. The difference is that
the retention register contents prior to going into retention mode
are saved and can be restored upon exiting the retention mode.

IV. X-SOURCE-DRIVEN FORMAL X PROPAGATION METHOD

Ideally, we would like to apply a formal tool [9] to
exhaustively prove the SoC is free of X-optimism issues.
However, this approach suffers the usual formal-tool-capacity
issue. It is not practical to apply this method blindly to the full
SoC, or even to subsystems. We believe the best way to reduce
X optimism bugs is to avoid X in the first place. In cases where
this is not possible, knowing where all the X sources are in the
design can greatly help detect X optimism issues. This X-
source-driven approach we recommend consists of the
following steps.

A. Adopt a Coding Style that Reduces X-Optimism

Many, such as [5], have suggested coding styles that can help
reduce X-optimism problems. We agree with some and

disagree with others. Here is a list of the coding style or design
choice recommendations that are appropriate and not too
aggressive for us as a SoC chip team that must deal with many
third-party IPs.

 Use asynchronous reset signal to reset as many registers
as possible. There are two parts to this suggestion. One
is whether to use synchronous or asynchronous reset
style. The other is whether all registers should be reset.
On the first issue, asynchronous reset is better than
synchronous reset in the sense that it does not depend
on whether the clock is running during reset assertion.
Of course, the deassertion of the reset should still be
synchronized to the clock. On the second question, our
belief is that all registers, especially the control-, clock-,
and reset-related registers should be reset. The savings
on area or the optimization gained on routing or timing
closure typically do not compensate for the risks of
hiding RTL design-bug primarily caused by X-
optimism. For example, a common mistake in many
publications is that a clock divider flip-flop like the one
in Figure 3 does not need a reset. The claim is that there
is no difference whether the output clock starts as 0 or
1. Actually, it depends on what kind of registers this
clock output is connected to down the pipe. If it is used
as clock for falling-edge triggered flip-flops or latches,
whether it starts as 0 or 1 does make a difference. A bug
could be hidden because of this.

DFF

CK

D Q

clkin

clkout

Figure 3. Clock divider

Another similar example can be seen in Figure 4. This
is a clock gating cell using a latch. When phi powers up
as 1, the clock output could start as 0 or 1. When
starting as 1, it sends one extra falling edge to its fan
out. This behavior could hide an RTL bug, especially
when negedge is used in RTL code.

DLAT

CK

D Q

phi

en

O

Figure 4. Clock gating cell

 Avoid using a negedge flip-flop or latch when possible.
With the above two examples mentioned, it should be
clear why this has something to do with X-optimism.

 Avoid using X assignments whenever possible. As
discussed in Section III.C, X assignments sometimes
are used as “don’t cares” by designers to assist logic
minimization. The area-saving benefit of such a
technique is really questionable [5] in today’s billion-
transistor SoC chips that we are working on, unless it is
a timing-critical path and there is empirical evidence
demonstrating the obvious improvement. If the purpose
of using X assignment is to help catch an unexpected
state entry, assertion should be used instead. With our
methodology, there is also no need to do X-explicit
intercepting and propagating.

 Avoid having floating input or wires. This is a well-
known good practice, yet some designers misuse the
synthesis tools’ capability of optimizing out unused
logic because of floating input. In our experience, there
should be very few exceptions where floating input can
be used, e.g., some analog IP ports are required to be
left unconnected.

 Avoid intentionally using an out-of-bound bit select or
array element reference as an X source, either for an
error -indication or logic-optimization purpose.

 Avoid using casex and casez. The subtlety of these two
statements is just too much for average designers to
comprehend (Sorry, no offense!). For details, see [5].

B. Use lint to Identify X Sources

A Verilog lint tool such as Spyglass [7] can be used to
eliminate some X sources easily. Here is a list of problematic
areas the tool can check:

 Floating input ports, dangling wires, or reg type
variables with no driver

 Signals having multiple possible drivers

In addition, a lint tool should be used as first level of
defense to enforce the coding style mentioned above and, in
addition, to detect other X-optimism-related issues before any
simulation is run. Of course, the usage of a lint tool does not
diminish the importance of designer self and peer code review.

C. Perform “formal” Reset Analysis

A lint tool can detect reset issues, such as no reset signal present
on any registers. But this is done by a structural analysis of the
RTL code without actual simulation. This could miss issues
such as a reset polarity mistake, the clock being stale during
synchronous reset assertion, and so on. Some formal tools can
use a user-provided reset vector to generate an analysis report of
what registers remain as x after the reset period ends. This
report is very useful for us to identify the most common X
source: uninitialized flip-flops or latches. You will see in
Section V.A how this helped in identifying some suspicious X
sources caused by no-reset flip-flops.

D. Run Formal Structural Property Analysis and Proof

Some formal tools have the structural property generation or
synthesis [10] feature that can analyze RTL code and
automatically extract properties (assertions and coverage) for
dead code check, arithmetic overflow check, FSM reachability
check, and the checks we want to emphasize in this paper,
namely array out-of-bound indexing and X assignment
reachability. These two types of checks can help detect and
analyze X sources (as mentioned in Section III.B and III.C)
very early in verification cycle—as soon as RTL code is
compile-ready, and before any test-bench development starts.
Ideally, this should be part of the RTL signoff process executed
by designers who know the RTL code best. You will see in
Section V.B how the array out-of-bound indexing check helped
detecting the unintended X source. Our experiments also
showed these types of formal proofs are less expensive in
terms of machine run-time and memory footprint than other
formal proofs like the X propagation check that we shall
discuss next.

E. Run the Formal X-Propagation App

Once we identify and confirm all the X sources found in the
three steps mentioned above, we must determine the target
Verilog modules that we need to do further X-optimism analysis.
The basic principle is that we select the Verilog module that is
the immediate container, within which X source(s) are produced
and consumed, as the target for further X-optimism analysis.
Our experience has shown that these types of formal checks are
subject to the classic formal tool capacity issue. The smaller the
scope is, the more likely the proofs can achieve convergence.

We use a formal x-propagation app [9] to do X-propagation
properties extraction and proof. The properties (assertions or
coverage) essentially checks whether X can reach any of the
target signals of interest to the user. The target signals can be
either user specified or automatically extracted common
critical signals such as clocks, resets, test conditions (e.g. the
en signal in Figure 1) for if/case statements, and primary output
ports. These signals usually should be free of X and when X is
detected on any of them it implies X optimism could have
occurred in the passing simulation tests. See [11] for more
details about the formal tool generated properties.

To run the tool, the following steps are needed:

 Set up the design under verification (DUV) environment,
similar to constructing a test bench in simulation world. At
a minimum, the primary input clocks and reset definitions,
as well as the X sources (either static or dynamic) have to
be described.

 Prepare the Verilog RTL code for formal tool compilation.
All the code has to be synthesizable. If there are
nonsynthesizable blocks within, they have to be indicated to
the tool as black boxes. For example, a common case of this
is the memory models instantiated in the RTL design. For
any black box, by default, we constrain it as not an X source
to its containing module. The exceptions need to be modeled
as constraints to the formal tool. For example, a constraint
should be added if a memory model outputs X when a chip
select signal is not asserted.

 Compile the RTL code using a specific command option to
enable X processing.

 Run the formal tool X properties generation to instrument
assertions for the following three targets:

o Clocks and resets signals

o Primary output ports

o Test conditions used in if and case statements

 Run X-properties proofs using engines known to be more
effective for X propagation.

 When the proof job finishes before the specified time limit,
three results can occur:

o Properties proved.

o Properties failed.

o Properties proved within a cycle bound.

F. Solutions for Properties with Bounded Proof

There are a few ways to deal with properties getting
bounded proof.

1) Experiment with tool timeout limit and engine selection
If you are not lucky enough to get all your assertion proofs
converged with the first attempt, the low-hanging-fruit
methods are to play with tool setup or host machine
selections. Often simply choosing a faster and bigger
memory machine to run the proofs will solve the problem,
or you can try to increase time-out limit. Sometimes
picking different formal engines (i.e., algorithms) can also
work.

2) Use manual abstraction techniques
Abstraction is a very common method to reduce DUV
complexity in order to help formal tools to achieve proof
convergence. The tools can already do a lot of automatic
safe abstraction processing behind the scenes. However,
sometimes they need human help to apply some abstraction
techniques manually. Black-boxing is one of the simplest
and yet most effective abstraction techniques, based on our
experience. It is intuitive to understand the safety of black-
boxing blocks that are not in the cone of influence (COI) for
an assertion. It is somewhat counter-intuitive that black-
boxing blocks in the COI is also safe in most situations, with
a few exceptions like the involvement of clock domain
crossing. Figure 6 illustrates how the black-boxing
technique can be applied in the context of proving an X-
propagation assertion. The X-propagation assertion references
an X source originated in module A and terminated in
module B. For this specific assertion, we can black-box
module C, which is in the cone of influence. Assuming B
and C are in the same clock domain, this is safe (no false
positives) if the assertion is proved, because the formal tool
considers all possibilities of input ports coming from C.

D

A

B

C

en = ‘X’

if en … else ...

Figure 6. Black-boxing blocks in the COI

3) Use Simulator X propagation Feature
Recently there have been advances in HDL simulators that
address this critical weakness in the X-optimism area [8].
The simulator essentially merges the results of both 0 and 1
in the place of an X when executing if, case, posedge/
negedge language constructs. We recommend that this
feature be enabled in RTL simulations, especially for the
Verilog modules/instances that do not have all X properties
fully proved by the formal tool. This simulator feature is, in
theory, also useful for nonsynthesizable modules, for

example, analog models or memory models modeling an
unknown using X.

V. CASE STUDIES OF FINDING X-OPTIMISM BUGS

In this section, we describe two case studies that highlight how
we came up with the methodology described above. The first
one showcases how important the reset coding style and the
formal reset analysis is. The second one demonstrates that the
best way to deal with X-optimism is to identify X sources and
confirm their validity as early as possible in the verification
cycle.

A. Case Study One

This is a success story of catching a critical RTL bug using a
formal approach before tape-out. The DUV in this case is a
power-management controller Verilog module for a quad-core
application processor in one of our chips. It controls the
dormant entry and exit of each processor core. Needless to say,
this block is very critical. We ran very extensive UVM-
constrained random simulation at the block level as well as
many more directed test cases at the SoC level to test the
integration. Spyglass lint analysis had been done and
errors/warnings had been waived by the designer.

 Knowing the danger of X-optimism, we decided to run a
reset analysis using a formal tool and found there were four
flip-flops remaining as X only in the first clock cycle after reset
deassertion. After the first clock cycle, they were all assigned
to known values. We did some very rough RTL code tracing
and found one particular flip-flop looking suspicious. That
prompted us to spend a few minutes setting up the environment

Figure 5. Case Study 1 Xprop Assertion Violations

to run the formal x-propagation app. The tool was able to
report multiple assertion violations very quickly, as shown in
Figure 5. Upon further debugging, it turned out that all the
assertion failures were caused by the X-optimism on that one
flip-flop we suspected earlier.

Figure shows a counter example to one of the failing
assertions. At the first cycle after power-on reset, the
strong_switch_timeout signal has the value of X, due to no
reset on this flip-flop. At the second clock cycle, it gets
assigned a value of 0 but it is too late. Because of X-optimism,
the X value of the signal causes the state machine to always
stay in `POR state at the first cycle after reset. However, in the
real silicon the state could have jumped to the `RESFDM or
`RESFD_WAIT state, which was not intended.

B. Case Study Two

The second case study is a post-silicon bug hunting story. The
DUV is an in-house developed audio processing IP. In the new
chip this “silicon-proven” (be alert whenever you hear this
word!) IP supposedly had only minor modifications, one of
which is adding a debug channel to the legacy 16 audio data
channels. A “delta” verification strategy was deemed
appropriate, specifically to run an existing test suite regression
and add additional test cases covering the design change.
(Note: Under increasingly tight schedule and resource
constraints for consumer SoC projects, the “delta” verification
strategy is usually what can get approved by management, but
it does not always work as expected.) The legacy 16-channel

test cases at IP level had been extended to support 17 channels,
and all RTL simulation regression was passing prior to tape-
out. After the silicon arrived and months into testing, a failing
symptom was found in which the system would hang whenever
channel 16 was used. After many other unsuccessful attempts,
we tried to duplicate the failing symptom by running a gate-

wire [16:0] Arb_reqs;

// Selected Q requesters

assign channel_req = Arb_reqs[channel];

always @(*)

 case (SM_state)

SM_idle:

if (Q_request)

next_SM_state <= SM_select;

else

next_SM_state <= SM_idle;

SM_select:

next_SM_state <= SM_grant;

SM_grant:

if (channel_req)

next_SM_state <= SM_grant;

else

next_SM_state <= SM_idle;

 default:

next_SM_state <= SM_idle;

 endcase

Figure 8. Code Snippet of Channel 16 X-Optimism Bug

Figure 7. Counter Example to a Xprop Assertion

level simulation of the channel 16 test case at the SoC level.
This successfully replicated the failure seen in the silicon and
brought to our attention the fact that the root cause of the bug
was an out-of-bound array indexing issue. As shown in Figure ,
when channel mistakenly gets a value of 17 during run-time,
the channel_req signal, referencing Arb_reqs[17], goes X and
causes next_SM_state to always jump to SM_idle state due to X-
optimism in simulation. This behavior does not match what
happens in real silicon—next_SM_state can jump to SM_grant
state.

Once realizing this is a design bug masked by X-optimism
in simulation, we pondered how we could have caught this in
pre-silicon verification flow. To make sure in the future we can
prevent similar bugs from being masked, we tried a few
methodology improvement experiments.

First, we evaluated VCS Xprop feature [8]. We enabled X
propagation on the synthesizable portion of the design and
rerun the channel 16 test cases at the IP level. The test cases
now failed because X, generated from Arb_reqs[17] reference,
can propagate to next_SM_state and eventually become
observable to the test bench checkers.

To be sure we do not have any other related X-optimism
issues, the second experiment we tried was to setup the formal
x-propagation app for the exact Verilog module where we
know the X was produced and consumed. The tool was able to
quickly generate X checker assertions and run formal engines
to produce definitive results. Many X checkers failed due to
this one out of bound array indexing bug. The tool provided
counter examples in waveform showing how the assertions can
fail.

This formal approach was also used to guarantee the safety
of the fix – a software workaround instead of a hardware ECO
in this case. Based on the severity of the bug and the cost of re-
spinning a chip, the decision was made to work around the bug
by simply disabling channel 16 in software. In VCS Xprop
simulation the full regression (with disabled channel 16)
passed. However the simulation approach is always as good as
your stimulus and checkers. To be absolutely certain we added
a few constraints to model what software would do to disable
channel 16 and reran the formal x-propagation app. All X
propagation assertions, including previously failing ones, were
proved passing this time. This provided a much higher level of
confidence for the software workaround decision.

The formal approach is not without limitations. We realized
that it is all in 20/20 hind-sight that we picked this particular
Verilog module deep within the IP to run the formal X
propagation tool. Had we not known of this bug, it would have
been more likely that we would set the verification scope to the
IP level. This time, we ran the formal x-propagation app on the
whole IP to see if the tool could catch the bug. The results
were not as good using the same two-hour run-time limit due to
a much bigger DUV size. No violations of X propagation
assertions were reported. Only bounded proofs were achieved
for all X propagation assertions. In this case this information is
not very helpful because we know an X-optimism bug can
occur. This is a typical formal proof convergence issue that can
be addressed in many ways. In this case we know we may have
a better way, which is to first find and validate the X sources to

be legitimate or intended before even tackling the X-optimism
issue.

The tool we used this time is a formal structural property
synthesis (SPS) app as mentioned in Section IV.D, which can
detect whether there are array out of bound indexing issues in
the design. The tool needed little setup effort other than
compiling the synthesizable RTL design of the whole IP. In
contrast to the proof convergence difficulty when running the
x-propagation app, the SPS app was able to very quickly
generate out of bound indices assertions and run formal
engines to produce results. Many assertions failed and counter
examples were produced to show violation sequences.

Through this experience, we learned that using the
structural property analysis tool is a much less expensive way
to detect out-of-bound indexing X sources. It can also help
designers to analyze the validity of these X sources. In this
case, the out-of -bound indexing occurrence was not intended
by the designer. This led us to the conclusion that in our
methodology, structural properties should be checked prior to
running X-optimism formal check.

VI. SUMMARY AND FUTURE WORK

In summary, the methodology we recommend to address the
X-optimism problem is an X-source-driven holistic approach
centered around using a formal X-propagation app. Several
other methods are used to complement the formal X-
propagation tool itself, such as using reset analysis, out-of-
bound indexing checks, and X-propagation-enabled simulators.
We believe this is the most practical for us as a SoC team
having to deal with IPs coming from many sources that we do
not have control over.

Our X-optimism methodology is quite new, and we are in
the process of experimenting with our current methodology for
the next SoC chip. One area we are investigating is whether
code coverage data collected from formal engine proof
execution can be used to qualify bounded proofs as acceptable
signoff criteria. Another major shortcoming we have is that the
formal tool needs to understand UPF semantics and generate X
accordingly when certain conditions are met. Other
improvement areas are expected to be found as well.

ACKNOWLEDGMENT

We would like to thank Jennifer Hwang at Broadcom for the
encouragement and support of writing this paper.

REFERENCES

[1] IEEE Standard for Verilog Hardware Description Language, IEEE
1364-2005.

[2] IEEE Standard for SystemVerilog Unified Hardware Design,
Specification, and Verification Language, IEEE 1800-2009.

[3] Lionel Bening, "A Two-State Methodology for RTL Logic Simulation,”
DAC 1999.

[4] Stuart Sutherland, “I’m Still In Love With My X!,” DVCon 2013.

[5] Mike Turpin, “The Dangers of Living with an X,” SNUG Boston, 2003.

[6] IEEE Standard for Design and Verification ofLow-Power Integrated
Circuits, IEEE 1801-2013.

[7] Atrenta, Spyglass, http://www.atrenta.com/solutions/spyglass.htm5.

http://www.atrenta.com/solutions/spyglass.htm5

[8] Synopsys, “VCS Xprop Datasheet,” http://www.synopsys.com/Tools/
Verification/FunctionalVerification/Documents/vcs-xprop-ds.pdf.

[9] Jasper Design Automation, “JasperGold X-Propagation Verification
App,” http://jasper-da.com/products/jaspergold-apps/x-propagation-
verification-app.

[10] Jasper Design Automation, “Structural Property Synthesis App,”
http://jasper-da.com/products/jaspergold_apps/SPS_App.

[11] Laurent Arditi, “A Simple and Efficient X-propagation Checking
Method Based on Formal Verification,” DAC, User Track, 2011

http://www.synopsys.com/Tools/

