
Practical Approach Using a
Formal App to Detect X-
Optimism-Related RTL Bugs

Shuqing Zhao, Shan Yan, Yafang Feng
Broadcom Corporation

Agenda

• Problem Statement
• Related Work
• Methodology Outline
• Case Study 1: Power Management Controller
• Case Study 2: Audio Processor
• Summary

X Sources

• What is X? Simulation logic state—unknown (0 or 1)
• X Sources that can potentially hide RTL bugs:

1. Uninitialized variables—nonresettable registers
2. Out-of-bound bus bit select or array access
3. Explicit X assignments that are reachable

• “Don’t care” used for logic minimization purpose
• Modeling unknown, e.g., memory output or gate output with no power
• Modeling error cases—should be replaced with assertions

4. Power-aware semantics specified by UPF/CPF

• Less likely RTL bug sources:
– Floating wires/ports, multiple drivers—detected by lint tools
– Timing violations

Problem Statement
• X-Optimism in standard RTL simulation is dangerous and causes

bug escape.
– X-Optimism: “optimistically” resolving X, not matching silicon behavior
always @(posedge clk or negedge rst_n)

if (!rst_n)
count <= 0;

else if (count_enable)
count <= count + 1;

– Problematic Verilog constructs: if, case, posedge, negedge

• Gate-level simulation is not adequate.
– It suffers from X-Pessimism: e.g., (a & ~a) should not be x.
– It usually is a subset of RTL simulation coverage.
– Bugs found at this late stage require costly resynthesis or ECOs.

2 3
4

1

Related Work

• RTL coding style to explicitly propagate X.
– Readability problem.
– It’s not practical to intercept all combinations.

• 2-state simulation—randomize X to 0 or 1.
– Complete coverage is not practical.

• Model checking using 4-state:
– Suffers usual formal capacity limitation—bounded proofs.
– Depends on completeness of assertions created manually by

users.

• Model checking of X checkers is automatically inserted.
– Basis of our approach

Formal X-Propagation App
• How the formal X-prop app works:

– Environment input: clocks, resets, modes, X to input ports.
– Analyzes/elaborates RTL into an internal “netlist.”
– Automatically creates the X detection assertions on targets:

• Clocks and resets
• Output ports
• Test condition for if/case statements
• User-specified signals

– Prove that X’s cannot propagate to targets.
– A counter-example is generated if any assertion fails.

• Main issue: some assertions will get full proof and
some will only get bounded proof.

• Our contribution: a methodology to improve ROI.

X Source-Driven Methodology

Coding
• Async reset, use assertions for X, avoid casex/casez, etc.

Scan
for X’s

• Lint, “Formal” reset analysis, Structural property analysis,
X-assignment reachability

Formal
App

• Where can X propagate to?

Debug
• Counter-examples for failed assertions

X-prop
Sim.

• Cover unproved X assertions
• Power-aware simulation with UPF/CPF

Case Study 1: PM Controller

• Background
– DUT: Critical power management controller for quad core app processor
– Presilicon verification

• Process
– Ran very comprehensive UVM constraint random simulation.
– Used formal reset analysis to check for uninitialized flops.
– Used the formal X-prop app to scan for targets X can propagate to.

• Results
– Reset analysis found four flops that were not initialized by reset.
– X-prop app detected one flop that caused a nasty bug in the state-

machine transition after reset.

XPROP App GUI Report

RTL Bug Counter Example

Case Study 2: Audio Processor
• Background

– DUT: audio processor module
– Post-silicon analysis of bug escape
– Bug: one of the channels was hanging the system.

• Process
– Gatesim reproduced the bug.
– Used the X-prop app to scan for targets X can propagate to.

• Results
– X-prop app confirmed out-of-bound array access due to an RTL coding

error.
– The SPS app caught the same bug in a shorter runtime.
– Xprop app proved absolute safety of a software workaround.

Summary

• Conclusions
– X-optimism causes RTL bugs to be missed from simulation.
– Formal approach is exhaustive but has limitations.
– We recommend an X source-driven formal approach.
– We found show-stopper bugs using this approach.

• Future Plan
– Run X-prop app + low-power formal app to detect X issues

from UPF.
– Study formal code coverage relationship for bounded proof.

• Acknowledgements
– Jennifer Hwang from Broadcom

Thank you!

	Slide Number 1
	Agenda
	X Sources
	Problem Statement
	Related Work
	Formal X-Propagation App
	 X Source-Driven Methodology
	Case Study 1: PM Controller
	XPROP App GUI Report
	RTL Bug Counter Example
	Case Study 2: Audio Processor
	Summary
	Thank you!

