DESIGN AND VERIFICATION™

CONFERENCE AND EXHIBITION

Practical Applications of the Portable Testing and
Stimulus Standard (PSS)

Sharon Rosenberg

cadence

IIIIIIIIIIIIIIIIII

2019

vt What is Portable Testing and Stimulus Standard (PSS)?

CONFERENCE AND EXHIBITION

* Behavioral standard language to express scenarios
— Control flow with loops, conditionals
— Parallelism and sequential execution (similar to fork and join) i
* Powerful built-in verification-specific semantics for
— Resource availability and distribution
— Configuration, and operation modes ,
— Data flow requirements =
* Codified in two equally powerful input formats: o i a4
— PSS C++ library — appeals to C++ users
— PSS Domain Specific Language (DSL) — easiertoreadand |
better error messages
* Defined by PSWG in Accellera a@ mmmmm

SYSTEMS INITIATIVE

201

DESIGN AND VERIFICATION™

9
vl What You Need to Know About PSS

* Motivation and value
— May vary between teams and verification objectives
— Concepts, mindset, and syntax

* Modeling patterns and methodology

— The same concepts can be applied differently to solve various problems

e PSS technology

— Vendors can provide additional value on top of the standard semantics

We are going to cover all the above in the context of specific applications

SYSTEMS INITIATIVE

e Accellera User-Contributed Usage-Examples

CONFERENCE AND EXHIBITION

* Motivation:
— Define the committee’s scope and drive requirements
— Achieve a regression suite and thus a viable consistent solution across vendors

o

Stimulus
portability
across pad
selection

Resource

Exhaustive Exercising

allocation for processing
exercise of Ethernet

concurrent pipeline
peripheral
activity

power states controller
connectivity

PSS Standard Scope

SYSTEMS INITIATIVE

sveerr Accellera User-Contributed Usage-Examples

CONFERENCE AND EXHIBITION

In this workshop we selected a
couple of usage examples
representing different

requirements

Stimulus Resource

portability allocation

across pad concurrent pipeline
selection peripheral
connectivity activity

for processing

We present two additional
challenges at the end of the
workshop that are
demonstrated at the Cadence
Booth throughout the week:
1. Multi-core/multi-master
data cache coherency
2. Applying PSS to UVM

Exhaustive Exercising
exercise of Ethernet
power states controller

PSS Standard Scope

SYSTEMS INITIATIVE

DESIGN AND VERIFICATION™

DVCON Seminar Table of Content

* Introduction to PSS via the user-contributed usage example

— DMA allocation for peripherals + demo

— Exhaustive exercise of power-states + demo
e PSS hands-on Exercise
* |Introduction to other PSS use-cases

— Multi-core/master data-cache and coherency
— PSS UVM example

e PSS and Metric Driven Verification

* Summary

SYSTEMS INITIATIVE

2019

DESIGN AND VERIFICATION™

5viitti DMA Allocation for Peripherals Challenge

Four-channel DMA engine
: T

moves data between three
‘p| peripheral devices and memory
s’cmrt’W\'@ the

-Be-(:ore) taSRr DDR Controller DMA
moteWnd P EED
review the test ~
salls (ft Lrmware, | l

cegUenetss ee’) .
Peripherals transfer data between
memory and external device

Testbench can load and
check data in memory
via backdoor access

accellera)

SYSTEMS INITIATIVE

0o Let’s do Verification Together!

DESIGN AND VERIFICATION™

EYoi= Assume we are experienced validation engineer...

Memory related rules:
* Don't use the same memory Code can be executed on multiple CPU

addresses for concurrent activities. cores to activate system engines and
e Initialize the memory in areas that my_firmware.h devices, with a main function for each
I ~

require read and check // TB memory initialization core, following the system rules

* Not all cores may access all , . , N
memories void tb initial mem(vold *addr, char
*data) ;
// DMA programming Power related rules:
System resource rules: \| void dma program(int chan num, * Don’tuse the DMAifitis
. imi - - owered-down
mere st mmuerorout [N voia® src_buft, —
’ volid¥* dst buff,

int size);
volid dma start (int chan num);
volid dma walt for done (int chan num);

Data dependencies rules: N
« Don’t write before the Peripheral N\ . .
buffer was initialized // Peripheral programming

void init periph(int periph num);
void periph write (int periph num);
avaw%ya Void periph read(int periph num) ;

SYSTEMS INITIATIVE

2012. Without PSS: Let’s do Verification Together!

DESIGN AND VERIFICATION™

DVCON

CONFERENCE AND EXHIBITION
my_firmware.h
my_first_test.c

// TB memory initialization)
void tb initial mem(void *addr, char // my first test
*data) ; int main corel ()

{

// DMA programming
void dma program(int chan num,

tb initial mem(0x5000,my data);

void* src buff, init periph(2);
void* dst_buff, dma program(l, 0x5000, PERIPHZ, 20);
int size); -

dma start(l);

void dma start (int chan num);
void dma wait for done(int chan num);

signal core(2);
// Peripheral programming 7 done (17 \

dma wait for done(l);

void periph write (int periph num);) No! Need to signal 2 that
Void periph read(int periph num) ; ”’,,— i&;mSZﬁoﬁZ%ﬁ;;mﬁ °

Is this a good system test?

int main core?2 ()

{

No! Must wait for peripheral — walt for core(l);
initialization to complete periph_write (2) ;

\

Consider activating 8 cores in parallel for long scenarios, data needs to be shared, cores and devices are powering

on or off, operation modes can impact activities — Long iterative process per test!

2019

BV DMA Allocation for Peripherals Challenge

CONFERENCE AND EXHIBITION

Four-channel DMA engine
-‘-‘ moves data between three
Le oWW peripheral devices and memory

-rB LOGLLM dbﬁeYCW i Z&,o\ 0\6‘0%9°

tLow,
’ test oved LV\' L
‘M,oo\e\«l« @ v teawt aoooYU\ 29 DDR Controller DMA
proawize Yo [T T 1]
| |

Periph1 Periph2 Periph3

Peripherals transfer data between
memory and external device

Testbench can load
and check data in
memory via backdoor

accellera)

SYSTEMS INITIATIVE

......222. PSS Behavioral Modeling Motivation
component periph c ({ | - l

Actions are “pieces of behavior”
action write out {% SN
action read_in [..};]
} . periph PSS
14

component dma c {

action m2g xfer {..};

action gZ2m xfer {..};
action m2m xfer {..}; Desired scenarios are captured in compound action
I B activity block
Legal test considerations: action,ﬁ‘cenario {
* We should not read non-initialized data \ activity {
 How do we capture constraints between do m2m xfer:
behaviors? repeat (5) {
* Do we have enough resources to this parallel parallel {
activity? What is a legal resource distribution? do write_out;
* Is there a configuration that supports this same do read_inj
time activity? } b
« How do we translate this loop to run within } '

31' embedded cores, C++ host, SV code? };

SYS ITIATIVE

2019

sveeyr About Input and Output Flow-Objects

CONFERENCE AND EXHIBITION
A e HEN S TSI AT RN 3o 5 S

Consider producer and consumer IPs connected to system memory

The consumer can consume a buffer
of size bigger than 10 bytes

The producer can produce a buffer

. DDR Controller
size smaller than 15 bytes

producer consumer

Question: What will be a proper data
size to enable communication
between them?

\ Answer: 11..14 bytes
System assumptions — IPs can be programmed to communicate if they are

connected to the same memory, and no restrictions prevent that
communication (e.g. data size or data kind mismatch)

accellera

SYSTEMS INITIATIVE

.....202. About Input and Output Flow-Objects (Cont’)

DVCON
CONFERENCE AND EXHIBITION .
Consider producer and consumer IPs connected to system memory
* A buffer for modeling memory — stream data_Dbuff s {

]] rand int in [1..20] size; . .
once written, the data persists and rand int data; | PSS allows capturing the dependencies
can be read many times. / i in a special flow-object struct

e Astream is for same-time
communication. Producing and
consuming must take place
simultaneously.
component consumer c { o o cormume. : component producer c { @ do bt
. - = © i0: produce [2] . -
acuiﬁpﬁiniﬂi k{mff s buf; @ producere petopprodee acuzﬁtiiidizia{buff s buf;
constraint buf.size > 10; X constraint buf.size < 15;
} ’ (i data_buff_s } ’
}s / size 11 }

data 310427054
buif \

al: consume [1]

. comsumer ¢ pes top.coneumer Each sub-system model captures its
A constraint solver solved the own dependencies according to its
scenarios to achieve a legal specifications.

programming sequence.

SYSTEMS INITIATIVE

.....202. About Input and Output Flow-Objects (Cont’)

DVCON

CONFERENCE AND EXHIBITION

Consider producer and consumer IPs connected to system memory

stream data buff s {
rand int in [1..20] size;
rand int data;

}s

Power-

/ domain B
config Consume in all legal configuration and
\ operation modes

size 11
data 310427054

\ © i0: produce [2] Powe r-
producer_c pss_top.producer .
domain A
buf
(i data_buff_s /

buf /
resou rce \‘ © a0: consume [1]
- - -
0O OI £ consumer ¢ pss_top.consumer G data_buff s & operation_mode_s T system_config_s
p mode Fill config kX Ejf] %
buf operation_mode system-config

(a0: consume)
3068//8[’8 consumer_c ?

SYSTEMS INITIATIVE

2019

svetrd PSS Behavioral Modeling with|can choose pss ces or pss sty

CONFERENCE AND EXHIBITION
‘ class periph ¢ : public component { . ‘\\\\\‘ periph PSS
attr<int> periph id { ”periph id” }; component periph c {
periph PSS C++ PSS CTOR (periph c,component) ; action write out {
L input data stream s src data;

class write out : public action ({ —
PSS CTOR(write out,action); @ o 1 s

input<data stream s> in{"in"};
@ data stream s }; — action read in {
el type decl<write out> write out; @ perstelc 7 output data stream s dst data;
gler
class read in : public action { Sammmns |}
PSS CTOR(read in,action);B |};

output<data stream s> out{"out"};
mer— constraint cl { .. };

© peripheral_c ?
} .
dst_data 14

type decl<read in> read in;

};

(% data_stream_s

Periph3

All the peripheral dependencies
are captured in PSS

SYSTEMS INITIATIVE

2019

DESIGN AND VERIFICATION™

DVCON

CONFERENCE AND EXHIBITION

PSS Behavioral Modeling

Model Writer Defines Actions and Rules

Define a pool of

four channels

\

component dmac c {

bind chan p *;

action m2m xfer ({

}s
Actions can lock

tion q2m xf
or share resources | 2¢ton dsm xfer i

}i

action m2g xfer {..};

b

Codeis:

e Concise Intuitive translation of the

functional Spec

* Well-encapsulated and reusable

resource dma channel r {};
— pool [4] dma channel r chan p;

input data buff b src;
output data buff b dst;
lock dma channel r channel;
constraint src.size == dst.size;

input data stream s src;

~~._~~~~~~ output data buff b dst;

lock dma channel r channel;
constraint src.size == dst.size;

aaaaaa

SYSTEMS INITIATIVE

SRR DMA Allocation for Peripherals

CONFERENCE AND EXHIBITION

..4‘—:__r B IR 35 45 A

S Model-Writer Defines Actions and Rules

. (data_buff s
action read check mem {
- - in_buff
input data buff s data buff;
} . © a0: read_check_mem
T pss_top ?
© a0: load_mem
action load mem { T pss.top ?

output data buff s data buff; out_buff
bi

(i data_buff_s

. acf cellera)

SYSTEMS INITIATIVE

2019

DESIGN AND VERIFICATION™

Ve Action Implementation Layer

PSS supports OOP and Aspect
Oriented Programming (AOP)
e Allows separation of abstract
model to multiple concrete
implementations

* Exec ‘body’ block specifies implementation

— Call init_periph(), upon starting

ime in the test

— Call periph_write() at the

extend component dma c {
function void dma program(int channel 1d, sml addr t src addr,
sml addr t dst addr, int size);
function void dma start (int channel 1id);
function bool dma is done (int channel 1d);

function void 1
function void p

extend action p

exec run stj{
init pe J T Canbe implemented in any
exec body { exec body | . : : .
. comp.dma program(channel.instance 1i1d,..,1n buff.mem seg.size);
periph w — — — —

comp.dma start (channel.instance 1d);
while (!comp.dma is done (channel.instance id)) {

ield () ;
1110 ; yietdt) \ Perspec generates the

}
}

acse//era described control flow in the
target platform language

SYSTEMS INITIATIVE

2019

DESIGN AND VERIFICATION™

DVCON

CONFERENCE AND EXHIBITION

My First Test Code

copy it to a different location

My first test: load the memory with data and use the DMA to

Which CPU core will
call the Ioad=mem?

/ € pss top ?

¢ ao0: Ioad_mem)

out buff

configure the DMA?
Add sync if needed

SYSTEMS INITIATIVE

(5 data_buff s

src_data

¢ al: mem2mem_xfer

-

/ IE dma c ?
Which CPU core wiill dst_data

7y data_buff_s

—

Select legal memory location
that is reachable by producer
and consumer

nne (Tg channel

AN

Select a DMA channel

2019

DESIGN AND VERIFICATION™

DVCON

My First Test Code (C

CONFERENCE AND EXHIBITION

My first test: load the memory with data and use the DMA to

copy it to a different location

O a0: load_mem
it pss top ?

out buff

(0 data buff s

src_data

¢ al: mem2mem_xfer

I dma c ?

nne

dst_data

7y data_buff_s

) {

')

This might be a UVM virtual sequence
creating the same test

// my first test
int main core3()

signal core (1)
done (1) ;

=)

int main corel ()

{

(7@ channel

dma program (2,
dma start(2);

e

Tool generated code
Synchronizations, loops,
fork and joins, all are done

done (1) ;

tb iInitial mem(0x5000,my data);

wait for core(l);

dma walt for done (2);

/
AN

User firmware code

'

0x5000, 0x700, 20);

by the PSS tool

SYSTEMS INITIATIVE

2019

DESIGN AND VERIFICATION™

DVCON

CONFERENCE AND EXHIBITION

SYSTEMS INITIATIVE

Model Top Instantiation

component pss top {

peripheral c¢ periph a;
peripheral c¢ periph b;
peripheral c¢ periph c;

dma c dma;
// Bind data buff s and data stream s

// pools to periph * and dma components - T
) / binding them to the sub-components

pool data buff s sysmem;
bind sysmem *;

pool data stream s sysfabric;
bind sysfabric *;

The entire component hierarchy is instantiated directly
or indirectly with a singleton pre-defined component
called pss_top.

Instantiation of flow-objects and

The system memory is instantiated by
~ | the integrator following the system
configuration

This simple semantics of actions, inputs and outputs, and resources

can be analyzed by tools and enable an efficient automated use-case creation

BV DMA Allocation
Demo

SYSTEMS INITIATIVE

DESIGN AND VERIFICATION™

DVCON Seminar Table of Content

* Introduction of PSS via the user-contributed usage example

— DMA Allocation for peripherals + demo

— Exhaustive exercise of power-states + demo

PSS hands-on Exercise
 |ntroduction of other PSS use-cases

— Multi-core/master data-cache and coherency
— PSS UVM example

e PSS and Metric Driven Verification

* Summary

SYSTEMS INITIATIVE

e PSS Support for State-Machines and Operation Modes

DVC:CIN

CONFERENCE AND EXHIBITION

Covering the Spectrum with Usage
Examples

ROREE

Stimulus
portability
across pad
selection
connectivity

Exhaustive Exercise of Power States
Key Requirements and challenges

DMA
Allocation

Memory to
Memory
System

Data Paths

Exhaustive System Portability

exercise of aggregated
power PM state
states validation

multi-view
deployment

for
Peripherals

= Product under test: -1/+1

- Three power domains A,B,C

- Each has four power levels
- 0: off, 1-3: functional states

- Domain dependencies A
- level(A) >= level(B)
- Domain C can be functional iff domain B is off

PSS Standard Scope >

vvvvvvvvvvvvv

= Transitions must be in consecutive steps

= Challenge: A1

- Automate complex legal state walks

- Use coverage to define a subset of the desired walks LOW—power related use-cases are one of
"""" the most asked-for user use-cases

90,0,

)

SYSTEMS INITIATIVE

_
accellers)

SYSTEMS INITIATIVE

DESIGN AND VERIFICATION™

2019 Capturing the State Space

DVCON

CONFERENCE AND EXHIBITION

state power state s {
rand int in [0..3] domain A,
domain B,
domain C;

// Level of domain A must be greater or equal
// to that of B
constraint domain A >= domain B;

// Domain C can be in a functional state only
// if B is off

constraint (domain C != 0) -> domain B == 0;
constraint (initial) -> {

domain A == H

domain B == H

domain C == 0;

}
b

SYSTEMS INITIATIVE

Model Writer Defines Actions and Rules

“Each of the domains — A, B, and C —
can be in any one of 4 power levels,
level O (off), and level 1 to 3
(functional states)”

“The level for switch A must be
greater or equal to that of B”

“Domain C can be in a functional
state only if B is off “

StateVar

A[0..3]

B[O..3]

C[0..3]

obransition Actions with Inputs and Outputs

DESIGN AND VERIFICATION™

R A Model Writer Defines Actions and Rules

abstract action power transition ({ o
rand int in [-1,1] step; —
input power state s prev;
output power state s next;

constraint A {next.domain A == prev.domain A; };
constraint B {next.domain B == prev.domain B; }; StateVar
constraint C {next.domain C == prev.domain C; }; //’N\N
Vi = A[0..3]
action A Transition : power transition { N\"//
constraint A {next.domain A == prev.domain A + step; } //’Q\N
i —
action B Transition : power transition { S B[O..3]
constraint B {next.domain B == prev.domain B + step; } 'mg;ﬁf//
i
action C Transition : power transition { //’~\N
constraint C {next.domain C == prev.domain C + step; } N C[0..3]
i .
action power state observe { N\\’//
input power state s curr state;
~ / i

SYSTEMS INITIATIVE

soioExhaustive Exercise of Power States

DESIGN AND VERIFICATION™

DVCON

T Test-Writer Scenario Specification

Test requirement:

Get domain_B to be active, followed by domain_C to be in power-
level 3, followed by doman_B to be active.

action full C between functional Bs a {
rand int[1l..3] first B state;
rand int[l..3] second B state;

activity {

b

curr state.domain C == 3;

}s

b

do power state observe a a0 with {
curr state.domain B == first B state;

do power state observe a al with {

do power state observe a a2 with {
curr state.domain B == second B state; d Iegal chain per user

Scenario specification

With this approach, a
tool can auto-complete

request.

Scenario instance

a0

al

a2

observe. pwrstate

pwrstate

pwrstate

pwrstate

o

g @ @ @ :
€ - -

2 ~

<

o

<+«— pwrstate

c=3
]
1
a pwrstate
a pwrstate
1
@ pwrstate
v

observe

Boy € pwrstate

CONFERENCE AND EXHIBITION

Exhaustive Exercise
of Power State
Demo

SYSTEMS INITIATIVE

DESIGN AND VERIFICATION™

DVCON Seminar Table of Content

* Introduction of PSS via the user-contributed usage example
— DMA Allocation for peripherals + demo

— Exhaustive exercise of power-states + demo

PSS hands-on Exercise

* |ntroduction of other PSS use-cases

— Multi-core/master data-cache and coherency
— PSS UVM example

e PSS and Metric Driven Verification

* Summary

SYSTEMS INITIATIVE

2019

DESIGN AND VERIFICATION™

bvi.oii - Modeling Abstract System Behavior

wrlte data

read data U
SIRVAY
copy_ data
Decode_to
displa
orma

USB controller

DDR Controller

ED:

Display controller

4 ICE camera_c
© capture
4 Edma_c
© transfer
4 i modem_c
© receive
® transmit
4 CE gpx ¢
©® decode_to_display
® convert_format
4 CE usb_c
© read
© write
4 ICE usb_agent_c
© read
© write
4 Tk display _c
® show
4 € audio_c
® play
® record

=
dce

SYSTEMS INITIATIVE

2019

DESIGN AND VERIFICATION™

=Xei=is (Goals: Measure Your Potential as a PSS User

Scenario creation E—
e Taskl: prescribed scenario or o | € oad| 31 WA D sobeirion) 81 5.

cadence

TR el E e —— T ‘
— Capture a video from the camera e e — -
_ Copy the data three time by selecting either |, .= | 5= el LI e
* The CPU_core: copy_data ,dmi‘f?::::at: o :
« The DMA device: transfer pttT T i o R Te

— Check the result using read_check_data N —— -
i s = o 2w e ali sml_sw_ops.sin x gpio.cpp x 4B =
— Tip: use repeat, select s o P— :
* Task2: Use PSS resource-aware random ' el § et
scheduling M == == == e —

— Generate two random tests with |
e 2 CPU write data UML based GUI - composer

* 5 DMA transfers
— Tip: use schedule

SYSTEMS INITIATIVE

Password: CdnDVCon2019
%cd yamm_sml_pss/yamm/run
% ./.run.sh

2019

DESIGN AND VERIFICATION™

DVCON

=<== (30als: Measure Your Potential as a PSS User

[=] IMC (64) [Analysis - Functional: Types] (on vinx429) - o x

File View Analysis Help cadence
[@ CoverGro... ~

B 0 5 S S 2 . °
2 * PSS functional coverage analysis
R S

Context Views Analyze Locality Refinement Report

Type (default scope) : & Types

Overall Covered Grade: 1 2.65% | Functional Covered Grade: [2.65% | CoverGroup Covered Grade: [2.65% | Assertion Covered Grade: n/a « Edit...

] * Select all the generated solutions from the

Ex i [Name Overall Overall Enclosing Ei | Abstract Expand q4b e . M
Average Grade Covered Flex b Name overall Overall [Score
Average Grade Covere: d ¥
& generated T 30% 9/85 (.. sml_sw_opl~ o tems
I ended I/ 0% 0/85(.. sml_sw_op =5 SRAM1 I 0% 0/1(0%) O -
@ generated I 0% 0/66(.. copy_data 8 SRAM2 100% 1/1(10... 1 w8 Bins .
& ended I— 0% 0/66 (... copy_data o3 SRAM3 I— 0% 0/1(0%) 0 [)
25 generated 0% 0/4 (0%) copy_chain =3 SRAM4 100% 1/100.. 2 B oetais
& ended I——Jo% 0/4(0%) copy_chain
2 generated 0% 0/15 (.. proc_to_me .
S coverage viewer (IMC
D] e

Showing 8 items Showing 4 items

generated
E:c [0 Name Overall overall
Attributes Source q4b =
laverage Grade (Covered ¥ S (4} l ut ons x
Col # Name 4 Value
& proc_tag 100% 1/1 (100%) b4
& direction T 50% 172 (50%) At Least 1 q
& instruction_width CT—J40% 275 (40%) Combined Covered Grade = -
& mem_block CIT150% 2/4 (50%) Comment Memory block name. Ignoring ANY and £l L
& actual_alignment o 20% 1/5(20%) NONE - (|
& of_words_size 100% 2/2(100%) - =
B o generated
Showing 12 items o
compo s_cov

oaded Run: /development/perspec/work/sharonr/DAC/DAC_Relfrun/cov_worl & Messages

* Observe the coverage on the memory blocks

/(\ * Select types->sml_data_s

R = W E = = O * Click on the cover group button

n Toggle Statement F Cover Aslirtion | Set Foc Hide Freeze Exclu

Group Facus non-focusiExclusions

Analyze Focus Refineme] b What Sizes Of data Wi” be exercise?

s verification Hierarchy

Ex UNE Name Overall Overall Assertion
Average Crade Covered Status Graty,
4 8 vVerification Metrics =1 90% 7/81(8... (=]
4 &F Types == 90% 7/81(8.. GOOd LUCk!
{F sml_data_s === 90% 7/81(8...
I Instances 0/0 (n/a)

accellera

SYSTEMS INITIATIVE

DESIGN AND VERIFICATION™

DVCON Seminar Table of Content

* Introduction of PSS via the user-contributed usage example
— DMA Allocation for peripherals + demo

— Exhaustive exercise of power-states + demo

PSS hands-on Exercise

g Introduction of other PSS use-cases

— Multi-core/master data-cache and coherency
s PSS UVM example

e PSS and Metric Driven Verification

* Summary

SYSTEMS INITIATIVE

ezt PSS Support for Coherency and Low-power

CONFERENCE AND EXHIBITION

| _#4 { #4
e S e S S S s | | #8 [y | # e e I
| | # | PCle I System

| [T m I RC II Control ! Mobile
| 1 Processor E |
[| ¥ I ¥ ! xample

W I . System
[Thread = I 400 II y

I —)

I I DVFS CLK/PSO
Domain

1 ! cLk/Pso Domain

—_—— e ——— -

MALI or
Customer
GPU

DMA

| I Coherent Masters

i | Non-Coherent
| = == Masters

S |
I |
I —>| Timers | |
v |) =p| onchiprom | : | |
: | nNicaooxy) | i | o | : %‘E‘E‘ahﬁ:: with U;a:a
12C 300 = b = —J | " =P videosrav | ! = @ B =
|
‘ —>| periph | I
| o A B b _
| : -

| e |
accellera

SYSTEMS INITIATIVE

2019

DESIGN AND VERIFICATION™

DVCON

CONFERENCE AND EXHIBITEN

Requirements/opportunities:
— Much of the SoC logic is common

— Libraries can be built for many aspects to provide
readability, reuse and out of the box-content

e (Cadence PSS reusable action libraries

Ovides
ilt-in |
C e
%.ent fo Stem Xib|
Verlﬂcation
®
e.
ouoerency, pyy,
“Power SCenarios nd

SYSTEMS INITIATIVE

Productivity with Built-in Content

4 ICE cdn_coherency_ops_c
@' false_sharing_rw

@' false_sharing_traffic_and
@' false_sharing

@' false_sharing_random_op
@' multi_false_sharing_rand
@ false_sharing_on_buffers

@ true_sharing_operator

@'true_sharing_mutti_copy | @chieve user-defined scenarios

© select_cache_region

© allocate_to_cache

© multi_rw_cache

©® check_cache_region

© invalidate_cache

© invalidate_tlb

© evict_line

© barrier

@' exclusive_cache_access
& and_barrier

@' traffic_and_barrier

@' copy_chain_and_barrier
@' cache_actions_and_barrier
@' choose_legal_cache_op

© select_region_to_mem_buff
@ do_while_powering_operator
@' coherency_ts_power

@' coherency fs_power

@' false_sharing_random_power
© vyield

© set_pages

© tlb_invalidate_all

© change_page

Cache and I/O coherency,
Power up/down, DVM
@'false_sharing_on_io_operl gcenarios can be combined to

4 ICE cdn_core_power_c
© power_down
© power_up
© power_down_single
© power_up_single
4 ICE cdn_power_ops_c
@' power_down_up_counter
@ multi_power_down
@ multi_power_up
@ multi_power_down_power_up
@' run_serial_pd_then_pu
@' pd_then_pu
@ coherency low_power
4 iCE cdn_coherency fine_ops_c
@ shr_read_shr_read
@ shr_read_shr_write
@ shr_read_invalidate_read
@ pack_shr
@ state_transition
{5 do_in_MOESI_state_operator
) do_exclusive_in_MOESI_state
© fill_state_transition

2019

DESIGN AND VERIFICATION™

pvoor! Consider the Following UVM Challenge:

Testbench

The challenge:

e Visit all power_states

* Send different traffic kinds and
mix alarms in all states

12C Master
Agent

Virtual
sequence

Controllerl
The controller has a dozen state-
E machines that require complex
@ set_alarm_a virtual sequences.
12C Slave (task) HW Verification manager: “l do

not know where to start!?”

power_transition Controllerz

read _enc 12C slave

set_alarm_b
(task)

accallera

SYSTEMSIMITIATIAE e o o o o o o o o o o o o o o o o e e e = - — I

2019

DESIGN AND VERIFICATION™

=]y Perspec Value for UVM Users

Automating UVM virtual sequence logic
— Smart, quality tests reduce manual effort while improving regression quality and thoroughness
— Lightweight solution to complement and further leverage the existing UVM assets
Systematic coverage and verification goals filling (coverage maximization)
— Better aiming at the hard to achieve remaining coverage goals
— Optimized solution with controlled repetitions

Portability

— Core-to-coreless reuse
— Portable programming sequences (not part of PSS yet)

Performance

— Allows using the same scenarios on VIP and AVIP UVM

e
— Reduces the randomization time by legally mixing pre-generated traffic @
Simplified test creation via UML GUI

SYSTEMS INITIATIVE

DESIGN AND VERIFICATION™

DVCON Seminar Table of Content

* Introduction of PSS via the user-contributed usage example
— DMA Allocation for peripherals + demo

— Exhaustive exercise of power-states + demo
e PSS hands-on Exercise
* |Introduction of other PSS use-cases

— Multi-core/master data-cache and coherency
— PSS UVM example

[° PSS and Metric Driven Verification

* Summary

SYSTEMS INITIATIVE

el 2019 Traditional MDV Flow

DVCON

CONFERENCE AND EXHIBITION

MR A Ao oD s N LS A ".:7:,:*15.'(’:' g
f UNITED STATES

Create/Update

Implement TB
Measure and Tests
« Progress against including
the plan coverage
collectors

executions

Perspec modifies the traditional MDV flow by optimizing and further
automating each step

'3;‘;"' celler. a) Join our data driven verification tutorial or visit us at the Cadence booth

SYSTEMS INITIATIVE

DESIGN AND VERIFICATION™

DVCON Seminar Table of Content

* Introduction of PSS via the user-contributed usage example
— DMA Allocation for peripherals + demo

— Exhaustive exercise of power-states + demo
e PSS hands-on Exercise
* |Introduction of other PSS use-cases

— Multi-core/master data-cache and coherency
— PSS UVM example

e PSS and Metric Driven Verification

[+ Summary

SYSTEMS INITIATIVE

skl Perspec Multi-Front-End Architecture

CONFERENCE AND EXHIBITION

Proven Support for PSS concepts since 2010

build
solve

code-gen /
run

post-
process

DESIGN AND VERIFICATION™

DVELIN If Any of This Is Interesting ...

* We will be happy to asses the relevancy of PSS to your specific needs
— Typically requires two hours of white-board discussion

 We have two more interesting demos at the Cadence booth
— UVM automation and coverage maximization
— Multi-core/master data-cache and coherency

* Talk to your Cadence local deployment team email us at
pss _info@cadence.com

Thanks!

SYSTEMS INITIATIVE

mailto:pss_info@cadence.com

