
1

Confidential

Practical Applications of the Portable Testing and
Stimulus Standard (PSS)

Sharon Rosenberg

2

What is Portable Testing and Stimulus Standard (PSS)?

• Behavioral standard language to express scenarios
– Control flow with loops, conditionals
– Parallelism and sequential execution (similar to fork and join)

• Powerful built-in verification-specific semantics for
– Resource availability and distribution
– Configuration, and operation modes
– Data flow requirements

• Codified in two equally powerful input formats:
– PSS C++ library – appeals to C++ users
– PSS Domain Specific Language (DSL) – easier to read and

better error messages

• Defined by PSWG in Accellera

3

What You Need to Know About PSS
• Motivation and value
– May vary between teams and verification objectives
– Concepts, mindset, and syntax

• Modeling patterns and methodology
– The same concepts can be applied differently to solve various problems

• PSS technology
– Vendors can provide additional value on top of the standard semantics

We are going to cover all the above in the context of specific applications

4

Accellera User-Contributed Usage-Examples
• Motivation:

– Define the committee’s scope and drive requirements
– Achieve a regression suite and thus a viable consistent solution across vendors

PSS Standard Scope

Stimulus
portability
across pad
selection

connectivity

Exhaustive
exercise of

power states

Multi-
core/Multi-
master data

cache
coherency

Resource
allocation for
concurrent
peripheral

activity

Exercising
Ethernet
controller

Video
processing

pipeline

Tip!
If and when you

decide to adopt a PSS

solution, ask your

vendor to show that it

can run the usage

examples

5

Accellera User-Contributed Usage-Examples

PSS Standard Scope

Stimulus
portability
across pad
selection

connectivity

Exhaustive
exercise of

power states

Multi-
core/Multi-
master data

cache
coherency

Resource
allocation for
concurrent
peripheral

activity

Exercising
Ethernet
controller

Video
processing

pipeline

We present two additional
challenges at the end of the
workshop that are
demonstrated at the Cadence
Booth throughout the week:
1. Multi-core/multi-master

data cache coherency
2. Applying PSS to UVM

In this workshop we selected a
couple of usage examples
representing different
requirements

6

Seminar Table of Content
• Introduction to PSS via the user-contributed usage example
– DMA allocation for peripherals + demo
– Exhaustive exercise of power-states + demo

• PSS hands-on Exercise
• Introduction to other PSS use-cases
– Multi-core/master data-cache and coherency
– PSS UVM example

• PSS and Metric Driven Verification
• Summary

7

DMA Allocation for Peripherals Challenge

TB

SoC

Bus
VIP

Bus

Periph2 Periph3

DDR Controller DMA

Periph1

Four-channel DMA engine
moves data between three
peripheral devices and memory

Peripherals transfer data between
memory and external device

Testbench can load and
check data in memory
via backdoor access

Tip!
Before starting the

modelling task,

review the test API

calls (firmware,

sequences, etc’)

8

Let’s do Verification Together!

Assume we are experienced validation engineer…

// TB memory initialization
void tb_initial_mem(void *addr, char
*data);

// DMA programming
void dma_program(int chan_num,

void* src_buff,
void* dst_buff,
int size);

void dma_start(int chan_num);
void dma_wait_for_done(int chan_num);

// Peripheral programming
void init_periph(int periph_num);
void periph_write(int periph_num);
Void periph_read(int periph_num);

Code can be executed on multiple CPU

cores to activate system engines and

devices, with a main function for each

core, following the system rules

Memory related rules:

• Don't use the same memory

addresses for concurrent activities.

• Initialize the memory in areas that

require read and check

• Not all cores may access all

memories

System resource rules:

• There are limited number of DMA

channels, CPU cores

Data dependencies rules:

• Don’t write before the Peripheral

buffer was initialized

Power related rules:

• Don’t use the DMA if it is

powered-down

my_firmware.h

9

Without PSS: Let’s do Verification Together!

// TB memory initialization
void tb_initial_mem(void *addr, char
*data);

// DMA programming
void dma_program(int chan_num,

void* src_buff,
void* dst_buff,
int size);

void dma_start(int chan_num);
void dma_wait_for_done(int chan_num);

// Peripheral programming
void periph_write(int periph_num);
Void periph_read(int periph_num);

// my first test
int main_core1()
{

tb_initial_mem(0x5000,my_data);
init_periph(2);
dma_program(1, 0x5000, PERIPH2, 20);
dma_start(1);
dma_wait_for_done(1);

done(1);
}

int main_core2()
{

periph_write(2);
done(1);

}

Is this a good system test?

No! Must wait for peripheral

initialization to complete

signal_core(2);

wait_for_core(1);

Is this a good system test?

No! Need to signal core2 that

initialization is done

Consider activating 8 cores in parallel for long scenarios, data needs to be shared, cores and devices are powering

on or off, operation modes can impact activities – Long iterative process per test!

my_firmware.h

my_first_test.c

10

TB

SoC

Bus
VIP

Bus

Periph2 Periph3

DDRController DMA

Periph1

Peripherals transfer data between
memory and external device

DMA Allocation for Peripherals Challenge
Tip!

Typically different people own

modeling, test creation, and debug.

Organize your team accordingly

Four-channel DMA engine
moves data between three
peripheral devices and memory

Testbench can load
and check data in
memory via backdoor

11

PSS Behavioral Modeling Motivation
component periph_c {
action write_out {…};
action read_in {…};

}; periph PSS

TB

SoC

Bus
VIP

Bus

Periph2 Periph3

DDR Controller DMA

Periph1

action my_scenario {
activity {

do m2m_xfer;
repeat (5) {

parallel {
do write_out;
do read_in;

};
};

};
};

Legal test considerations:
• We should not read non-initialized data
• How do we capture constraints between

behaviors?
• Do we have enough resources to this parallel

activity? What is a legal resource distribution?
• Is there a configuration that supports this same

time activity?
• How do we translate this loop to run within

embedded cores, C++ host, SV code?

Actions are “pieces of behavior”

Desired scenarios are captured in compound action
activity block

component dma_c {
action m2q_xfer {…};
action q2m_xfer {…};
action m2m_xfer {…};

}; DMA PSS

12

SoC

Bus

consumer

DDR Controller

producer

About Input and Output Flow-Objects
Consider producer and consumer IPs connected to system memory

SoC

Bus

consumer

DDR Controller

producer

The consumer can consume a buffer
of size bigger than 10 bytes

The producer can produce a buffer
size smaller than 15 bytes

Question: What will be a proper data
size to enable communication
between them?

Answer: 11..14 bytes
System assumptions – IPs can be programmed to communicate if they are
connected to the same memory, and no restrictions prevent that
communication (e.g. data size or data kind mismatch)

13

• A buffer for modeling memory –
once written, the data persists and
can be read many times.

• A stream is for same-time
communication. Producing and
consuming must take place
simultaneously.

About Input and Output Flow-Objects (Cont’)
Consider producer and consumer IPs connected to system memory

buffer data_buff_s {
rand uint[1..20] size;
rand uint data;

};

component producer_c {
action produce {

output data_buff_s buf;
constraint buf.size < 15;

};
};

component consumer_c {
action consume {

input data_buff_s buf;
constraint buf.size > 10;

};
};

PSS allows capturing the dependencies
in a special flow-object struct

Each sub-system model captures its
own dependencies according to its
specifications.

A constraint solver solved the
scenarios to achieve a legal
programming sequence.

stream data_buff_s {
rand int in [1..20] size;
rand int data;

};

14

buffer data_buff_s {
rand uint[1..20] size;
rand uint data;

};

stream data_buff_s {
rand int in [1..20] size;
rand int data;

};

config

Power-
domain B

Power-
domain A

resource
pool

Consume in all legal configuration and
operation modes

About Input and Output Flow-Objects (Cont’)
Consider producer and consumer IPs connected to system memory

15

PSS Behavioral Modeling with Dependencies

TB

SoC

Bus
VIP

Bus

Periph2 Periph3

DDR Controller DMA

Periph1

All the peripheral dependencies
are captured in PSS

Can choose PSS C++ or PSS (DSL)

component periph_c {
action write_out {
input data_stream_s src_data;
…

};

action read_in {
output data_stream_s dst_data;
…

};
};

periph PSSclass periph_c : public component {
attr<int> periph_id { ”periph_id” };

PSS_CTOR(periph_c,component);

class write_out : public action {
PSS_CTOR(write_out,action);
input<data_stream_s> in{"in"};

};
type_decl<write_out> write_out;

class read_in : public action {
PSS_CTOR(read_in,action);ß

output<data_stream_s> out{"out"};
constraint c1 { … };

};
type_decl<read_in> read_in;

};

periph PSS C++

16

PSS Behavioral Modeling
Model Writer Defines Actions and Rules

component dmac_c {
resource dma_channel_r {};
pool [4] dma_channel_r chan_p;
bind chan_p *;

action m2m_xfer {
input data_buff_b src;
output data_buff_b dst;
lock dma_channel_r channel;
constraint src.size == dst.size;

};

action q2m_xfer {
input data_stream_s src;
output data_buff_b dst;
lock dma_channel_r channel;
constraint src.size == dst.size;

};

action m2q_xfer {…};
};

Code is:
• Concise Intuitive translation of the

functional Spec
• Well-encapsulated and reusable

TB

SoC

Bus
VIP

Bus

Periph2 Periph3

DDR Controller DMA

Periph1

Define a pool of
four channels

Actions can lock
or share resources

17

DMA Allocation for Peripherals
Model-Writer Defines Actions and Rules

action load_mem {
output data_buff_s data_buff;

};

TB

SoC

Bus
VIP

Bus

Periph2 Periph3

DDR Controller DMA

Periph1

action read_check_mem {
input data_buff_s data_buff;

};

18

Action Implementation Layer
• Exec ‘body’ block specifies implementation
– Call init_periph(), upon starting
– Call periph_write() at the right time in the test

function void init_periph(int periph_id);
function void periph_write(int periph_id);

extend action periph_c::write_out {
exec run_start {

init_periph(periph_id);
}
exec body {

periph_write(periph_id);
}

}

extend component dma_c {
function void dma_program(int channel_id, sml_addr_t src_addr,

sml_addr_t dst_addr, int size);
function void dma_start(int channel_id);
function bool dma_is_done(int channel_id);

}
extend action dma_c::transfer {
exec body {

comp.dma_program(channel.instance_id,…,in_buff.mem_seg.size);
comp.dma_start(channel.instance_id);
while (!comp.dma_is_done(channel.instance_id)) {

yield();
}}}};

Can be implemented in any
language or testbench

• PSS supports OOP and Aspect
Oriented Programming (AOP)

• Allows separation of abstract
model to multiple concrete
implementations

Perspec generates the
described control flow in the
target platform language

19

My First Test Code
My first test: load the memory with data and use the DMA to
copy it to a different location

Which CPU core will
call the load_mem?

Which CPU core will
configure the DMA?
Add sync if needed

Select legal memory location
that is reachable by producer
and consumer

Select a DMA channel

20

My First Test Code (Cont’)
My first test: load the memory with data and use the DMA to
copy it to a different location

// my first test
int main_core3()
{

tb_initial_mem(0x5000,my_data);
signal_core(1);
done(1);

}

int main_core1()
{

wait_for_core(1);
dma_program(2, 0x5000, 0x700, 20);
dma_start(2);
dma_wait_for_done(2);
done(1);

}

User firmware code

• Tool generated code
• Synchronizations, loops,

fork and joins, all are done
by the PSS tool

This might be a UVM virtual sequence
creating the same test

21

Model Top Instantiation
component pss_top {

peripheral_c periph_a;
peripheral_c periph_b;
peripheral_c periph_c;

dma_c dma;
// Bind data_buff_s and data_stream_s
// pools to periph_* and dma components

pool data_buff_s sysmem;
bind sysmem *;
pool data_stream_s sysfabric;
bind sysfabric *;

};

The entire component hierarchy is instantiated directly
or indirectly with a singleton pre-defined component
called pss_top.

Instantiation of flow-objects and
binding them to the sub-components

The system memory is instantiated by
the integrator following the system
configuration

This simple semantics of actions, inputs and outputs, and resources
can be analyzed by tools and enable an efficient automated use-case creation

22

DMA Allocation
Demo

23

Seminar Table of Content
• Introduction of PSS via the user-contributed usage example
– DMA Allocation for peripherals + demo
– Exhaustive exercise of power-states + demo

• PSS hands-on Exercise
• Introduction of other PSS use-cases
– Multi-core/master data-cache and coherency
– PSS UVM example

• PSS and Metric Driven Verification
• Summary

24

PSS Support for State-Machines and Operation Modes

Low-power related use-cases are one of
the most asked-for user use-cases

25

Capturing the State Space
Model Writer Defines Actions and Rules

• “Each of the domains – A, B, and C –
can be in any one of 4 power levels,
level 0 (off), and level 1 to 3
(functional states)”

• “The level for switch A must be
greater or equal to that of B”

• “Domain C can be in a functional
state only if B is off “

state power_state_s {
rand int in [0..3] domain_A,

domain_B,
domain_C;

// Level of domain A must be greater or equal
// to that of B
constraint domain_A >= domain_B;

// Domain C can be in a functional state only
// if B is off
constraint (domain_C != 0) -> domain_B == 0;

constraint (initial) -> {
domain_A == 0 ;
domain_B == 0 ;
domain_C == 0;

}
};

StateVar

A[0..3]

B[0..3]

C[0..3]

26

Transition Actions with Inputs and Outputs
Model Writer Defines Actions and Rules

abstract action power_transition {
rand int in [-1,1] step;
input power_state_s prev;
output power_state_s next;
constraint A {next.domain_A == prev.domain_A; };
constraint B {next.domain_B == prev.domain_B; };
constraint C {next.domain_C == prev.domain_C; };

};

action A_Transition : power_transition {
constraint A {next.domain_A == prev.domain_A + step; }

};
action B_Transition : power_transition {

constraint B {next.domain_B == prev.domain_B + step; }
};
action C_Transition : power_transition {

constraint C {next.domain_C == prev.domain_C + step; }
};
action power_state_observe {

input power_state_s curr_state;
};

StateVar

A[0..3]

B[0..3]

C[0..3]

27

Exhaustive Exercise of Power States
Test-Writer Scenario Specification

pwrstateobserve
B = ?a0

action full_C_between_functional_Bs_a {
rand int[1..3] first_B_state;
rand int[1..3] second_B_state;
activity {

do power_state_observe_a a0 with {
curr_state.domain_B == first_B_state;

};
do power_state_observe_a a1 with {

curr_state.domain_C == 3;
};
do power_state_observe_a a2 with {

curr_state.domain_B == second_B_state;
};

};
};

pwrstateobserve
c = 3a1

pwrstateobserve
B = ?a2

trans

trans

trans
pwrstate

pwrstate

pwrstate

trans

trans

trans
pwrstate

pwrstate

pwrstate

With this approach, a
tool can auto-complete
a legal chain per user
request.

Test requirement:
Get domain_B to be active, followed by domain_C to be in power-
level 3, followed by doman_B to be active.

Tips!

Use the model to check that all power

states and all transitions are legal

Scenario specification

Scenario instance

28

Exhaustive Exercise
of Power State

Demo

29

Seminar Table of Content
• Introduction of PSS via the user-contributed usage example
– DMA Allocation for peripherals + demo
– Exhaustive exercise of power-states + demo

• PSS hands-on Exercise
• Introduction of other PSS use-cases
– Multi-core/master data-cache and coherency
– PSS UVM example

• PSS and Metric Driven Verification
• Summary

30

Modeling Abstract System Behavior

TB

SoC

USB controller

USB
VIP

CPU

Bus

GPX Audio

Display controller

Camera controller

CPUCPUCPU

DDR Controller

DMA MODEMSRAM

Speaker Microphone

transfer transmit

receive

capture

read

write

read

write

Decode_to
_display

Convert_
format

play

record

write_data

read_data

copy_data

31

Goals: Measure Your Potential as a PSS User
Scenario creation
• Task1: prescribed scenario

– Capture a video from the camera
– Copy the data three time by selecting either

• The CPU_core: copy_data
• The DMA device: transfer

– Check the result using read_check_data
– Tip: use repeat, select

• Task2: Use PSS resource-aware random
scheduling
– Generate two random tests with

• 2 CPU write data
• 5 DMA transfers

– Tip: use schedule

UML based GUI - composer

Password: CdnDVCon2019
%cd yamm_sml_pss/yamm/run
% ./.run.sh

32

• PSS functional coverage analysis
• Select all the generated solutions from the

solution pane (use the shift button)
• Click on the coverage button to open the PSS

coverage viewer (IMC)

• Observe the coverage on the memory blocks
• Select types->sml_data_s
• Click on the cover group button
• What sizes of data will be exercise?

Goals: Measure Your Potential as a PSS User

Good Luck!

33

Seminar Table of Content
• Introduction of PSS via the user-contributed usage example
– DMA Allocation for peripherals + demo
– Exhaustive exercise of power-states + demo

• PSS hands-on Exercise
• Introduction of other PSS use-cases
– Multi-core/master data-cache and coherency
– PSS UVM example

• PSS and Metric Driven Verification
• Summary

34

CCI-400/500 or Customer CCI

A53 Cluster A57 Cluster

MALI or
Customer

GPU

S4 S3 S2 S1 S0

ADB ADB ADB

ADB

GIC-400

NIC-400

PCIe
RC

LCDDMA
Mobile
Example
System

NIC-400 (2x1)

ADB

NI
C-

40
0

ADB ADB

TZC-400

DDR Controller

F0F1F2F3

On-Chip ROM

SRAM

Video SRAM

#2
#4

L2 Cache

Customer
DMA

ADB

#1
#3

#2
#4

L2 Cache

#1
#3

Timers

periph

NIC-400 NIC-400

IP IP IPIPIP

DVFS CLK/PSO
Domain
CLK/PSO Domain

System
Control

Processor

Coherent Masters

Non-Coherent
Masters

IP

ADB ADB

ADB

SMM
U

SW
Thread

#4

SW
Thread

#3

SW
Thread

#2

SW
Thread

#1SW
Thread

#4

SW
Thread

#3

SW
Thread

#2

SW
Thread

#1

PSS Support for Coherency and Low-power

35

Productivity with Built-in Content
• Requirements/opportunities:

– Much of the SoC logic is common
– Libraries can be built for many aspects to provide

readability, reuse and out of the box-content

• Cadence PSS reusable action libraries

Cache and I/O coherency,
Power up/down, DVM
scenarios can be combined to
achieve user-defined scenarios

Out-of-the-box scenarios and building blocks co-developed with users to stress systems

36

Consider the Following UVM Challenge:
Testbench

Controller1

I2C Slave

Controller2

I2C slave

I2C Master
Agent

power_transition

alarmB

power_transition

alarmA

write

read

write_enc

read_enc set_alarm_b
(task)

Virtual
sequence

set_alarm_a
(task)

DUT

The challenge:
• Visit all power_states
• Send different traffic kinds and

mix alarms in all states

The controller has a dozen state-
machines that require complex
virtual sequences.
HW Verification manager: “I do
not know where to start!?”

37

Perspec Value for UVM Users
• Automating UVM virtual sequence logic

– Smart, quality tests reduce manual effort while improving regression quality and thoroughness
– Lightweight solution to complement and further leverage the existing UVM assets

• Systematic coverage and verification goals filling (coverage maximization)
– Better aiming at the hard to achieve remaining coverage goals
– Optimized solution with controlled repetitions

• Portability
– Allows using the same scenarios on VIP and AVIP
– Core-to-coreless reuse
– Portable programming sequences (not part of PSS yet)

• Performance
– Reduces the randomization time by legally mixing pre-generated traffic

• Simplified test creation via UML GUI

38

Seminar Table of Content
• Introduction of PSS via the user-contributed usage example
– DMA Allocation for peripherals + demo
– Exhaustive exercise of power-states + demo

• PSS hands-on Exercise
• Introduction of other PSS use-cases
– Multi-core/master data-cache and coherency
– PSS UVM example

• PSS and Metric Driven Verification
• Summary

39

Create/Update
plan

Implement TB
and Tests
including
coverage
collectors

Launch
executionsDebug failures

Measure
Progress against

the plan

Traditional MDV Flow
39

- Coverage is measured after
simulation is done

- Manual work to achieve
100% coverage or for
declaring a value to be
unreachable (ignored)

Need to re-do the work in case
of testbench changes or a
different simulator release

Perspec modifies the traditional MDV flow by optimizing and further
automating each step

Join our data driven verification tutorial or visit us at the Cadence booth

40

Seminar Table of Content
• Introduction of PSS via the user-contributed usage example
– DMA Allocation for peripherals + demo
– Exhaustive exercise of power-states + demo

• PSS hands-on Exercise
• Introduction of other PSS use-cases
– Multi-core/master data-cache and coherency
– PSS UVM example

• PSS and Metric Driven Verification
• Summary

41

Perspec Multi-Front-End Architecture
Proven Support for PSS concepts since 2010

PSS
DSL

user
C++
code

parser

user
C++
.so

build

solve

post-
process

code-gen /
run

SLN

PSS
C++
lib gcc

Json
meta-model

callback
introspection

Json
scenario-model

Target
C

test
Target

C
test
Target
code

Optimized to support sub-
systems all the way to the largest
systems in the industry today

Perspec innovated much of the PSS
concepts including, actions, activities,
resources, AOP, data-flow with
inputs/outputs, state-machines,
components, exec blocks, UML activity
diagrams and more

Methodology and open-source
library (SML) were developed

World-wide experienced AEs in
PSS practical applications

42

If Any of This Is Interesting …
• We will be happy to asses the relevancy of PSS to your specific needs
– Typically requires two hours of white-board discussion

• We have two more interesting demos at the Cadence booth
– UVM automation and coverage maximization
– Multi-core/master data-cache and coherency

• Talk to your Cadence local deployment team email us at
pss_info@cadence.com

Thanks!

mailto:pss_info@cadence.com

