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Abstract - The increasing use of advanced power management techniques has led to great complexities in the low 

power verification process. Today’s chips have multiple power domains each having multiple operating power modes and 
dynamically changing voltage levels. Unified Power Format (UPF) provides specification of active power management for 
RTL designs to carry out the verification process. Accellera UPF provided commands to define the possible values of 

supply ports (“port states”) used to deliver power to a system, together with “power state tables” (or PSTs) that defined 
legal combinations of port states. Verification tools and engineers relied on PST-based analysis of the possible 
combinations of power supply values to determine where isolation and level shifting would be required in a given design. 

However, it effectively required implementation of power management in detail before verification could start, tending to 
delay power aware verification until later in the flow than necessary or require that verification be repeated later if 
earlier assumptions about implementation details proved to be incorrect. Also, Accellera UPF had no way of specifying 

power management requirements for IP components that might be used in a system. To address these issues, IEEE Std 
1801 UPF added a number of new concepts such as supply-sets and power-states that enables users to construct complex 
power state definitions sufficient to model various possible situations. However, this additional flexibility often results in 

power state definitions that are difficult to understand, difficult to debug, and even more difficult for tools to analyze. In 
this paper, we highlight the power aware verification challenges involved for a design having power states defined using 
add_power_state command. Further, we demonstrate an approach to simplify the process of static analysis and 

debugging for such designs. This paper also includes guidelines to define power state definitions adhering to which can 
help ease the verification process. 

Keywords - Power Management, Power Aware Verification, Static Analysis, Debugging Challenges in Low-Power 

Designs. 

I. Introduction 

The advent of the Unified Power Format (UPF) Standard has probably been the single biggest factor in 

increasing productivity when it comes to verifying the power management behavior of today's complex SoC 

designs. However, this increased productivity has come at the expense of increased complexity. There can be no 

doubt that the evolution of the UPF standard, from the original Accellera 2007 UPF 1.0 LRM, followed by the initial 

IEEE 1801-2009 UPF 2.0 LRM, and updated by the release of IEEE 1801-2013 UPF 2.1 LRM, has provided many 

new capabilities that have eased the power intent specification process as well as enabled new power management 

verification flows aligned with the needs of IP based SoC designs today. Unfortunately the evolution of the UPF 

LRM alone has not lessened the complexity of the power management verification task whatsoever.  One such 

enhancement has been ‘defining power states on a more abstract level of supply sets/power domains with the help of 

add_power_state command’, which is an extremely flexible and powerful command that enables the user to 

construct very complex power state definitions sufficient to model any possible situation. However, this flexibility 

and power causes complexities in understanding the supply dependencies between two power domains being 

evaluated for static analysis. Moreover it becomes difficult to debug individual and combinations of these power 

states since we often end up with power state definitions that are difficult to understand, difficult to debug and even 

difficult for tools to analyze.  

The difficulty of power management debug is reflected in the large number of EDA vendors that provide not 

only power aware front-end simulation and emulation capabilities but also by those focused on power management 

verification tools ranging from static analysis and rule based power checks, to power aware logic equivalency 

checking and layout tools. In this paper, we shall analyze how power states of supply sets and power domains can be 

used for doing static analysis to determine isolation or level shifting requirements for a given design. As power 

states are composed of not only supply information but also the logic information, it becomes more difficult to get 

the overall supply dependencies between two power domains for static analysis. By taking relevant examples and 

case studies, we shall demonstrate a way by which power states of supply sets and power domains can be interpreted 

and represented as a PST table, thereby making it simpler for static analysis and debugging of power states. We shall 

also highlight some of the common pitfalls that low-power designers can avoid in defining power states which 

otherwise can lead to complex power states definitions difficult to analyze for static analysis. Additionally, we shall 

highlight some of the validations for a SOC integrating multiple IP’s each with power state definitions. 
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II. Power Intent Specification and Basic Concepts 

UPF (Unified Power Format) provides mechanism to specify power intent for power management of low power 

designs. UPF standard is still evolving with new features, concepts and clarifications being added over the releases. 

Accellera UPF (UPF 1.0) included support for defining the possible values of supply ports (“port states”) used to 

deliver power to a system, together with “power state tables” (or PSTs). 

A power state table (PST) defines the legal combinations of port states, i.e., those combinations of port states 

that can exist at the same time during operation of the design. PST based analysis of the possible combinations of 

power supply values enables UPF-supporting tools to perform static analysis so as to determine isolation and level 

shifting requirements of a given design. 

However, it effectively required implementation of power management in detail before verification could start, 

tending to delay power aware verification until later in the flow than necessary or require that verification be 

repeated later if earlier assumptions about implementation details proved to be incorrect. Also, Accellera UPF had 

no way of specifying power management requirements for IP components that might be used in a system.  

To address these issues, IEEE Std 1801 UPF added a number of new features. Particular to this paper following 

two are of much relevance: 

A supply set represents the power provided to a power domain for a particular use, such as the primary supply 

of the domain, an isolation supply, or a retention supply. Supply sets are an abstraction of connections to a power 

distribution network, and they can be used to model incoming power to the domain before the supply distribution 

network has been defined. Supply sets for a given power domain are defined along with the power domain. They can 

also be defined as separate objects via the create_supply_set command. 

A power state represents a particular mode of operation of supply set or a power domain. For a supply set, a 

given power state indicates whether and how it is providing power to a power domain or related power management 

cell. For a power domain, a power state indicates the current operational mode of that domain, and as a consequence, 

whether or how the power domain is consuming power. Power states are defined with the add_power_state 

command. 

III. Power States and add_power_state command  

Any object consists of a set of items that characterize its functional state. For example, a supply set’s state is 

characterized by the states of its supply set functions; a power domain’s state is characterized by the states of its 

supply sets; an IP block’s state is characterized by the states of its constituent elements (power domains and macro 

instances). The set of all possible combinations of values of these characteristic items is the set containing all 

possible functional states of the object. This set of possible value combinations defines the functional state space of 

the object. 

A power state represents a subset of this set of all possible functional states of an object, or equivalently, a 

region within the functional state space of the object. The defining expression of a power state evaluates to True for 

every value combination in this subset and evaluates to False for every value combination outside this subset. Power 

states are defined with the add_power_state command. 

The add_power_state command is an extremely flexible and powerful command that enables the user to 

construct very complex power state definitions sufficient to model any possible situation. However, that flexibility 

and power, if used indiscriminately, can result in power state definitions that are difficult to understand, difficult to 

debug, and even difficult for tools to analyze. To avoid these potential problems, it is important to understand what 

power states represent, how they can be defined in an orderly and methodical fashion to ensure maximum clarity, 

and how they can be organized to most effectively support verification and analysis by tools. 

 

A. The add_power_state Command: 

The UPF add_power_state command defines power states of a supply set or a power domain. Any number of 

power states can be defined for a given object. Power states of a given object are defined in terms of the states of 

other objects that either comprise the given object or are contained in or below the HDL scope in which the given 

object is defined. 

Each power state is defined in terms of a supply expression, a logic expression, or both. A supply expression is used 

only for supply set power states; it refers to supply states of the functions of that supply set. A logic expression can 

be used in the definition of power states for either supply sets or power domains. It can refer to control conditions, 

clock frequencies, and power states of the domain’s supply sets. 



Each power state can be defined as either legal or illegal. If unspecified, the default is legal. A supply set power state 

can also specify a simstate, which defines how logic powered by this supply set will behave in simulation when in 

this power state. Simstate values range from NORMAL to CORRUPT, with intermediate values indicating 

successively more sensitivity to changes that could cause corruption. 

An initial power state definition can be refined later by repeating the command with the -update option. Command 

refinement can extend an existing state definition - for example, to add a logic expression. It can also extend an 

existing state’s supply expression or logic expression by ANDing the original with a new term. 

 
#--------------------------------------------------------------- 

# Example Power State Definitions 

# Adapted from examples in IEEE Std 1801-2013, clause 6.4, pg 57 

#--------------------------------------------------------------- 

 

# Power states for the primary supply set of power domain PDA 

add_power_state PDA.primary –supply \ 

-state {ON –simstate NORMAL \ 

–logic_expr {SW_ON} \ 

-supply_expr { power == {FULL_ON 0.8} && \ 

ground == {FULL_ON 0.0} } } \ 

-state {OFF –simstate CORRUPT \ 

–logic_expr {!SW_ON} -supply_expr { power == OFF || \ 

ground == OFF } } 

 

# Another power state for the primary supply set of power domain PDA 

add_power_state PDA.primary –supply –update \ 

-state {SLOW –simstate CORRUPT_STATE_ON_CHANGE \ 

–logic_expr {SW_ON && interval(clk posedge negedge)>= 100ns} \ 

-supply_expr { power == {FULL_ON 0.8} && \ 

ground == {FULL_ON 0.0} } } 

 

# Declaring that there are no more legal power states of PDA.primary 

add_power_state PDA.primary –supply –update –complete 

 

# Power states of power domain PDA based on its primary supply and a control input 

add_power_state PDA –domain \ 

-state {RUN –logic_expr { primary == ON && !sleep } } \  

-state {SLEEP -logic_expr { primary == ON && sleep } } \ 

-state {SHUTDOWN –logic_expr { primary == OFF } } 

 

# Power states of power domain PDTOP based on the power states of domains PDA, PDB 

add_power_state PDTOP –domain \ 

-state {S1 –logic_expr { PDA == RUN && PDB == RUN } } \ 

-state {S2 –logic_expr { PDA == SLEEP || PDB == SLEEP } } \ 

-state {S3 –logic_expr { PDA != RUN && PDB != SHUTDOWN } } 

    

B. The Power of add_power_state: 

The add_power_state command is very powerful in part because the supply and logic expressions used to define 

power states allow for general Boolean expressions. As the above example code illustrates, these expressions 

include support for the following special subexpression forms: 

- interval (signal name [, edge1 [, edge2]]) 

- for detecting clock frequencies 

- supply == {supply net state [voltage1 [voltage2]]} 

- for detecting a supply port/net or supply set function’s value 

- supply set == power state 

- for detecting the state of a supply set that affects another object’s power state 

- power domain == power state 

- for detecting the state of a power domain that affects another object’s power state 



Since power states are defined with Boolean expressions, they are essentially predicates. When a given 

power state’s defining expressions are True, that power state is active. As a consequence of this definitional 

approach, more than one power state can be active at a given time. This allows definition of non-mutually-exclusive 

power states as well as mutually-exclusive power states. 

 

C. Power State Refinement: 

Refinement of a power state amounts to subsetting. Refining a given power state involves definition of a new 

power state characterized by a more restricted subset of the functional states of the given power state. A refined 

power state is therefore always contained within the functional state space of the original, more abstract power state. 

Refinement (i.e., restriction) is accomplished by imposing additional requirements that must be satisfied by the 

set of characteristic item values that define the more abstract power state. This amounts to extending the defining 

expression of the more abstract power state with another condition. 

Refinements can be categorized in two categories: 

- In-place Refinement: Use of –update to refine power-states amounts to “refinement in place”, in that the 

original definition is modified in the process. 

- Refinement by derivation: This approach involves defining a new power state (with a new name), based on 

the original power state. Such refinement can be done any number of times without modifying the original power 

state definition. Each refinement produces a new power state that is non-mutually-exclusive with the original 

abstract state. This approach preserves the original power state definition and thus avoids unexpected semantic 

changes in other commands that refer to that original power state. 

IV. Power Aware Verification: Static Analysis  

In this section we shall discuss basic steps performed during static-analysis to identify level-shifter and isolation 

requirements of the design, using power intent specified in UPF. 

 

A. Static analysis of the design for Level-shifter requirment: 

Level shifters are normally required for the signals crossing the power domain boundaries when source and sink 

supplies operate at different voltage levels when they are on. Following are the steps performed by the verification 

tools to determine the level shifters placement requirements: 

1. Identify the signals that are crossing the voltage island boundary. This can be achieved by traversing over 

the interface of the elements that belong to the power domain. 

2.  Detect the operating voltages of the two islands. Using the information from the power state table, the tool 

can easily figure out the operating voltage of a particular domain. Depending on whether there is a 

difference in the operating voltage, then the particular signal is a potential candidate for a level shifter. 

3.  Check if there is a level shifting strategy specified in the UPF through ‘set_level_shifter’ command.  

4.  Depending on whether ‘a level shifter is required or not’ and ‘a corresponding level shifting strategy is 

specified or not’ we can detect ‘a valid’, ‘a missing’ or a ‘redundant’ level-shifter. Further by comparing 

properties of specified and required level-shifter we can deduce ‘incorrect’ level-shifter. 

 

B. Static analysis of the design for  Isolation requirment: 

Isolation cells are clamps that drive a particular value on the signal when the isolation-enable control is 

triggered. They are required to mask the floating values on the inputs that are driven by signals from the domain that 

is switched off. Following are the steps performed by the verifications tools to determine isolation cell placement 

requirements: 

1.  Identify the signals that are crossing the power domain boundary similar to what is specified for level 

shifters. 

2.  Determine whether the primary supply could be switched or not. This is done by tracing back the primary 

power and ground pins until they terminate at the port of a switch or a port of the domain boundary. If they 

terminate at the port of a domain boundary, then the switch is again retraced back until they end at a supply 

pad. Since a supply pad is considered to be always on, a primary power and ground supply of a domain 

driven by a supply pad will be a possible candidate for an always-on domain, whereas the one terminating 



at the port of a switch will be a switched supply. Also, supplies that are switched can be matched with 

entries in a power state table to figure out whether they are switched at the same time or not. 

3.  Check if there is an isolation strategy specified for the signal or not through the set_isolation command. 

4.  Depending on whether ‘an isolation is required or not’ and ‘a corresponding isolation strategy is specified 

or not’ we can detect ‘a valid’, ‘a missing’ or a ‘redundant’ isolation. 

 

C. Static Analysis of the design with power states: 

As mentioned in earlier sections, IEEE Std 1801 UPF empowers users to specify power states for supply-sets 

and power-domains that enables the user to construct complex power state definitions sufficient to model various 

possible situation. However, with this additional flexibility UPF supporting tools have to do the analysis of possible 

combinations of power supply values and thus heavily rely on the power state definitions during ‘static analysis 

phase’. The additional challenges thus posed for the static analysis of the design are discussed in detail in next 

section. 

V. Challenges in static analysis & debugging of design with Power States 

 

Any low power IP may operate in different power modes. These power modes are typically represented in the form 

of power state information in the power intent specification files. The knowledge of power states can help the IP 

integrator check the integration doesn’t contradict IP’s power modes. A power state on a supply set can also drive 

the simulation as it can also specify a simstate, which defines how logic powered by this supply set will behave in 

simulation when in this power state. These simstate values range from NORMAL to CORRUPT. In order to 

determine where isolation and level shifting would be required in the design and to check that isolation and level 

shifting is actually inserted by the UPF power intent specification where it is required, UPF supporting tools have to 

do the analysis of possible combinations of power supply values and thus heavily rely on the power state definitions.  

One of another major debug tasks is verification of the designs operational power states. This requires verifying that 

each defined power state of every power domain has been covered and functioning properly. It also requires 

verification of all power state combinations across all domains that comprise each operational power state. 
 

Accellera UPF 1.0 standard supported the creation of power states using the three Power State Table (PST) 

commands, add_port_state, create_pst, and add_pst_state, however there were several limitations that were not 

addressed in the standard. The IEEE UPF 2.0 standard addressed these limitations by providing the 

add_power_state and describe_state_transition commands. Not only does add_power_state support bias 

states, hierarchical power state creation, and an incremental update capability, it also allows any named power state 

to be declared as legal or illegal. Likewise, the describe_state_transition command allows any transition 

between two power states to be declared legal or illegal.  

 

For a low-power design operating in different power modes, debugging & analysis of power states for static 

verification of design are the two very important tasks. With the usage of PSTs in UPF 1.0; both the debugging and 

static analysis of design were relatively simpler tasks as the power state definitions were defined on supply 

nets/ports, and also these definitions were represented in tabular manner which was easy to interpret. Defining 

power states on a more abstract level of supply sets/power domains with the help of add_power_state command is 

an extremely flexible and powerful command that enables the user to construct very complex power state definitions 

sufficient to model any possible situation. However, that flexibility often result in power state definitions that are 

difficult to understand, difficult to debug, and even difficult for tools to analyze.  

 

A. Static Analysis of the design with power states 

 Incremental refinement of power states: One of the methodologies followed in low-power verification 

is to simulate and verify the design at various states of UPF implementation. Low-power design can be 

statically verified for isolation requirements even if the implementation UPF containing the definitions 

for supply nets/ports is not present. This verification was not possible with the help of PSTs as it 

required the actual supply nets/ports. However the analysis for isolation requirements requires analysis 

of simstates of driver/receiver logic. This is further explained with help of a case study in the below 

section [VIII]. 

 Getting the inter-dependencies of supply states: The power state of a system depends on the power 

states of its constituents IPs which are then sub-dependent on states of their supply sets. The power 



states of these supply sets are further dependent on state and voltage values of supply nets and ports. In 

PSTs based analysis, getting these dependencies was fairly straightforward as everything was available 

in tabular format. However with add_power_state command which allows usage of various Boolean 

operators, getting the dependencies of supplies of two power domains is a tedious process. This 

problem gets even more complex, when the power state definitions for driver/receiver logic do not 

have direct/indirect reference of each other, however may have a common signal in power states 

definitions.  

 

B. Debugging challenge – Why this power state reached? 

Power state definitions on supply sets can control the behavior of logic controlled by this supply set. It is even 

more important to know how and when a system reaches an erroneous state. Low-power simulation vendors issue 

run-time error messages to indicate that an illegal power state is reached or any illegal power state transition occurs. 

However as the power state definitions are quite complex, it is very difficult for a user to answer the question “why 

this power state reached”? 
 

UPF Code  
add_power_state PD_CPU_SS -state ON4 { -logic_expr { PD_ALU1_SS == ON5 ||  PD_ALU2_SS == ON5 } -

simstate CORRUPT -illegal} 

add_power_state PD_ALU1_SS -state ON5 { -logic_expr { !pwr_alu1 } -simstate CORRUPT }  

add_power_state PD_ALU2_SS -state ON5 { -logic_expr { !pwr_alu2 } -simstate CORRUPT }  

 

Simulation message  

# ** Error: (vsim-8933) MSPA_UPF_ILLEGAL_STATE_REACHED: Time: 129 ns, Supply set 'PD_CPU_SS' 

reached an illegal power state 'ON4'. # File: src/parser_test22/demo.upf, Line: 73, Power 

state:ON4 

The simulation message denotes that the system PD_CPU_SS reached an illegal state. For a user, it is important to 

know the reason as to why the system reached illegal state. One of the ways would be to identify all the control 

signals and supply nets/ports used to construct this power state and check for their values. However as the power 

state definition here involved the logical operator “||”, it is slightly difficult for a user to do this root cause analysis to 

figure the particular culprit control/supply signal. 

VI. Power State to PST conversion 

Every object, for which power states has been defined using UPF 2.0 command add_power_state, can be represented 

in the form of a power state table (PST). The power objects (power domain, supply set, supply nets, control signals) 

are represented as column objects in the converted power state table. The power states defined for this power object 

(supply set or power domain) are represented as rows objects of converted power state table. The power/supply sets 

state of the power objects are the entry values in the power state table.  

In UPF 2.0, power state definitions using add_power_state commands are hierarchical in nature. That is, the power 

state of a system is dependent on power state of its constituent IPs (represented as power domains). The power states 

on power domains are dependent on power state of its supply sets which are further dependent on state of supply 

functions. As a result, it can be seen that every power state can be represented as combination of values of supply 

ports & control signals. As power state for a particular object can be represented in a power state table, where each 

of this combination can be represented as a row of a power state table. 

The power state table representation of power states of a power object can be done at any stage of the design. In the 

incremental refinement of power states, the PST conversion can be done at each step of refinement. Static checking 

by the verification tools can be performed at any step.  

 

A. Basic properties of this approach of power state to PST conversion: 

 One power state table is constructed for one power object (supply set/power domain) 

 At any point of time, the system will be in a defined state. That is at any point of time, one of the rows of 

this power state table will evaluate to be true. 

 All the other power objects (Power Domain, Supply Sets, Control Ports/Nets, Supply Ports/Nets) referred 

in the power state definitions are represented as column objects in the converted power state table.  

 One additional column of simState is added to the table, which represent the simstate of supply sets when 

the power object for which PST is created is a supply set. In case of power domain, this simState represent the 



simstate of primary supply set of power domain for which PST is created. This simState helps in determining 

whether isolation is required during the static analysis of the low-power design.  

 A power state of a power object is represented as one or more rows in the converted power state table. 

 The use of Boolean operator’s is limited to “&&” and “||”. The “&&” operator effectively means that either 

the values of rows will get refined or new column’s will be added to the table. The “||” operator effectively 

means that splitting of rows will take place, and new rows will be added in the table.  

 Don’t cares may get added in the cell values. This represent that the power object can be in a defined 

particular state even if one of the dependent power object is in unknown (but defined) state.  

 This approach is in accordance with successive refinement methodology where the power state table will 

also get refined based on the incremental updates in power state definitions.  

 As described in the case studies, consistency checks can be done at the time of conversion to catch issues in 

the power state definitions. 

 The converted power state table can be analyzed at any point of time by the verification tools to do the 

static analysis for isolation/level shifting requirements. For isolation requirements the converted PSTs can be 

analyzed even before implemented UPF is available. This facilitates early verification of design before the 

supply network gets implemented. 

 

B. Understanding with example: Power State to PST conversion 

The example follows hierarchical top down approach of building up UPF. Consider the figure 1; the power state 

of top level design unit PDTOP is dependent on power state definitions of its constituents IPs PDA and PDB. The 

power states of PDA and PDB are dependent on the power state of their respective primary supply sets and control 

signals.  

 

 

 

 

 

 

 

 

                                    Figure 1 

UPF Code  
add_power_state PD_TOP -state TOP1 \ 

   { -logic_expr { PDA == A1 && PDB == B1 && 

PD_TOP.primary == TOPSS1} } 

add_power_state PD_TOP.primary –state TOPSS1 \ 

   { –logic_expr { TOPPWR } –simstate NORMAL } 

add_power_state PDA –state A1 \ 

   { -logic_expr { PDA.primary == ASS1 && CTRL } } 

add_power_state PDB –state B1 \ 

   { -logic_expr { PDB.primary == BSS1 && CTRL } }  

add_power_state PDA.primary -state ASS1 \ 

   { -simstate CORRUPT }  

add_power_state PDB.primary -state BSS1 \ 

   { -simstate NORMAL } 

Even at this stage when implementation UPF is not present, the power state tabular representation can still be done. 

Verification tool can perform static analysis to determine the isolation requirements. 
 

Converted PSTs 

 

PDA.primary 
 

PDB.primary 

PDA.primary PDA.primary.SimState 
 

PDB.primary PDB.primary.SimState 

ASS1 CORRUPT 
 

BSS1 NORMAL 

 

PDA 

PDA PDA.primary CTRL PDA.primary.SimState 

A1 ASS1 1 CORRUPT 

 

PDB 

PDB PDB.primary CTRL PDB.primary.SimState 

B1 BSS1 1 NORMAL 

 

 



PDTOP 

PDTOP 
PDTOP 

.primary 
TOPPWR 

PDTOP 
.primary 
.simstate 

PDA 
PDA 

.primary 
CTRL 

PDA 
.primary 
.SimState 

PDB 
PDB 

.primary 

PDB 
.primary 
.simstate 

TOP1 TOPSS1 1 NORMAL A1 ASS1 1 CORRUPT B1 BSS1 NORMAL 

                                                                                                   

Once we have a PST based representation, verification tool can perform consistency error check to determine if the 

power state definitions are correct. In this case, as the CTRL signal is common in both the objects, it is added as one 

column. Tool checks if the value of CTRL is same for both CTRL (PDA) and CTRL (PDB) as the these objects 

points to same cell for TOP1 state.  

In successive refinement methodology, with implementation UPF the power state definitions and corresponding 

power state table will get refined. New columns of supply functions will get added. 

 

 

 

 

 

 

 

 

 

                                         Figure 2 

UPF Code  
add_power_state PDA.primary -state ASS1 \ 

   –update {-supply_expr \ 

   (POWER == OFF) }  

add_power_state PDB.primary -state BSS1 \ 

   –update {-supply_expr \ 

   (POWER == FULL_ON, 1.0) } 

 

 Two new power objects PDA.primary.power and PDB.primary.power get added as column objects to 

to the converted PST. 

 The rows are updated to capture the values of these newly added objects.  

 

PDTOP 

PDTOP PDA 
PDA 

.primary 
CTRL 

PDA 
.primary 
.SimState 

PDB 
PDB 

.primary 

PDB 
.primary 
.simstate 

PDA 
.primary 
.power 

PDB 
.primary 
.power 

… 

TOP1 A1 ASS1 1 CORRUPT B1 BSS1 NORMAL OFF FULL_ON, 1.0 … 

 

Use of “||” operator can result in don’t’ care in cell values.  

 
UPF Code  
add_power_state PDA -state A { -logic_expr { pwrctrl1 || pwrctrl2} } 

 

PDA 

PDA pwrctrl1 pwrctrl2 

A__1 * 1 

A__2 1 * 
 

 

 

 



VII. Case Studies 

To better understand the advantages of conversion of power state to PSTs, this paper includes a few case 

studies.  

A. Complex interaction between dependent power states 

Consider the following design example of a SOC having multiple power domains; the power states of top level 

IPs are dependent on power state of low level IPs. Power state dependencies are as follows: 

 

 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

                                                                                                                Figure 3 

                                                                                   

 

UPF Code  
add_power_state PDTOP -state TOP1 {-logic_expr {PDCPU1 == C1 && PDCPU2 == C2}} 

add_power_state PDTOP -state TOP2 {-logic_expr {(PDCPU1 == C1 && PDCPU2 == C3) || CTRL0} -

illegal} 

add_power_state PDCPU1 -state C1 {-logic_expr {PDA == A1 && CTRL1 == 1} } 

add_power_state PDCPU2 -state C2 {-logic_expr {PDB == B1 && CTRL2 == 1} } 

add_power_state PDCPU2 -state C3 {-logic_expr {PDB == B1 && CTRL2 == 0} } 

add_power_state PDA -state A1 {-logic_expr {PDA.primary == P1} } 

add_power_state PDB -state B1 {-logic_expr {PDB.primary == P2} } 

add_power_state PDA.primary -state P1 \ 

   {-supply_expr {(power == OFF) && (ground == FULL_ON}} –simstate CORRUPT } 

add_power_state PDB.primary -state P2 \ 

   {-supply_expr {(power == FULL_ON, 1) && (ground == FULL_ON}} –simstate NORMAL } 

 

 

In low-power intent specification, with the help of add_power_state commands, it is easy for the designer to specify 

the complex power intent. Even though the add_power_state commands only uses “&&” Boolean operator, however 

for the static analysis of isolation/level shifting requirement, it is still difficult for the verification tools and the 

verification engineer to figure out the possible combinations of supply states.  

 

In the above example, relationship needs to be identified between PDA.primary (source) and PDB.primary (sink). 

With the approach of verification tools internally converting these complex power states definitions to PSTs, it will 

be easy to clearly identify the supply dependencies.  

 

Converted PSTs (showing only relevant columns) 
 

PDTOP PDCPU1 PDCPU2 PDA 
PDA 

.primary 
PDB 

PDB 
.primary 

PDA 
.primary 
.simstate 

PDB 
.primary 
.simstate 

CTRL1 CTRL2 CTRL0 

TOP1 C1 C2 A1 P1 B1 P2 CORRUPT NORMAL 1 1 * 

TOP2__1 
(Illegal) 

* * * * * * * 
* * * * (0) 

TOP2__2 
(Illegal) 

C1 C3 A1 P1 B1 P2 CORRUPT 
NORMAL 1 0 1 

 

 

 



For Iso analysis, it can be easily identified from Row1 that PDA.primary can be in CORRUPT state when 

PDB.primary is in NORMAL state. When PDTOP is in TOP2 state, the system is in illegal state. Verification tool 

can highlight the corresponding row in the converted PST to show the active illegal state. From the Row3, it can be 

identified that CTRL0 was “1” which was the reason the system entered illegal state. 

 

B. Identify the supply dependencies between mutually exclusive power states 

In the following design scenario, the power states of PDA are dependent on its primary supply set and a control 

signal CTRL. The power states of PDB are dependent on its primary supply set and same control signal CTRL.  

 

 

 

 

 

 

  

                                Figure 4 

UPF Code  
add_power_state PDA -state A1 \ 

  {-logic_expr (PDA.primary == AP1 && CTRL == 1) }  

add_power_state PDA -state A2 \ 

  {-logic_expr (PDA.primary == AP2 && CTRL == 0) }  

add_power_state PDB -state B1 \ 

  {-logic_expr (PDB.primary == BP1 && CTRL == 1) }  

add_power_state PDA -state B2 \ 

  {-logic_expr (PDB.primary == BP2 && CTRL == 0) }  

 

PDA PDA.primary CTRL 

A1 
AP1 
(NORMAL) 1 

A2 
AP2 
(CORRUPT) 0 

 

PDB PDB.primary CTRL 

B1 
BP1 
(NORMAL) 1 

B2 
BP2 
(CORRUPT) 0 

 

 

As it can be seen there is no direct dependency between PDA and PDB, however since the control signal is 

common in the power state definitions, verification tools can still identify the relation between PDA and PDB. 

If we do not take consider CTRL in to account, then AP2 && BP1 is a valid combination which would mean 

that isolation is required. However on composing the two PSTs, we can figure that CTRL is different in two cases 

making the combination invalid.  

 

PDA PDA.primary CTRL PDB PDB.primary 

A1 
AP1 
(NORMAL) 1 

B1 
BP1 (NORMAL) 

A2 
AP2 
(CORRUPT) 0 

B2 
BP2 (CORRUPT) 

 

For a user, the task debugging of such static check would have been very difficult looking at these power states 

individually. However by this converted PST, the debugging is a much simpler task now.   

 

C. Consistency / Error Checks in power state definitions 

Consider the following example of refinement of power states.  

 

UPF Code 
#--------------------------------------------------------------- 

# Power state “refinement in place” 

#--------------------------------------------------------------- 

add_power_state PDA –domain -state {A1 –logic_expr {C1} } 

 

add_power_state PDTOP –domain -state {TOP1 –logic_expr {PDA == A1 && C2} } 

# The above is equivalent to  

# add_power_state PDTOP –domain -state {TOP1 –logic_expr {C1 && C2} } 

#--------------------------------------------------------------- 

 

 



 

 

PDTOP PDA C1 C2 

TOP1 A1 1 1 

 

#--------------------------------------------------------------- 

add_power_state PDA –domain –update -state {A1 –logic_expr {!C2} } 

# The above is equivalent to 

# add_power_state PDA –domain –update -state {A1 –logic_expr {C1 && !C2} } 

 

# And it causes a ripple effect on PDTOP 

# add_power_state PDTOP –domain \ 

# -state {TOP1 –logic_expr {C1 && C2 && !C2} } ; # <= contradiction 

#--------------------------------------------------------------- 

 

The last add_power_state command cases the contradiction and is error case. Such erroneous scenarios can be 

easily identified and presented to user with the approach of converting power states to PSTs. Here the row1 needs to 

be updated with the new value of C2. However as the new value is not inaccordance with the previous value, tool 

will give out error message. 
 

PDTOP PDA C1 
C2 

TOP1 A1 1 
1 (old value) 
0 (new value) -- error 

 

VIII. Guidelines for modeling power states with add_power_state 

UPF command add_power_state which is used to define power states on supply sets and power domains is an 

extremely flexible and powerful command. It allows usage of boolean operators in supply and logic expression to 

define the relationship between two objects. Using random Boolean operators like xor, xnor in power state 

definitions can result in power state definitions that are difficult to understand, difficult to debug, and even difficult 

for tools to analyze. Below are some of the guidelines which should be followed which will help the verification 

tools to convert power state definitions to PSTs thereby allowing static analysis and debugging of power state 

definitions. For a more comprehensive list of guidelines, please refer to [3]. 

 

 -logic_expr in power state definition of power domains should refer to control signals, power states of 

supply sets of this power domain and the power states of its descendants power domains.  

 Avoid use of -supply_expr in power state definitions of power domains.  

 -logic_expr in power state definition of supply sets should refer to control signals 

 -supply_expr in power state definition of supply sets should refer to its supply functions 

 In supply_expr and –logic_expr, try limiting the use of Boolean operators to “&&” and ==”. Avoid use 

of “||” operator in –logic_expr as it can introduce don’t care in power state table. Also avoid use of “!=” 

in -supply_expr. This brings uncertainity in the voltage and sate values of supply functions. 

 

IX. Conclusion 

To specify the power modes, power states are now defined on supply sets & power domains using UPF 

add_power_state command. As this UPF command provides lot of flexibility and power, it often results in 

potentially complex and difficult to understand power intent specifications. With PST’s, the static analysis and 

debugging of design was a fairly straight forward process. However the static analysis & debugging is not intuitive 

with power state definitions involving supply and logic nets. In this paper, we first highlighted the power aware 

verification challenges involved for a design having power states defined using add_power_state command. 

Additionally, we demonstrated how the process of static analysis can be eased up if power states are converted and 

interpreted as PSTs. The paper also includes guidelines to define power state definitions following which can help 

ease the verification process.  
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