

Power estimation – what to expect what not to expect

Prakash Parikh Aquantia Inc.

Background

- Aquantia Privately held company
- Delivers High Speed Ethernet connectivity solutions for large-scale Data Centers and Cloud computing
- Power estimation techniques were successfully used for various chips at Terantics/PLX/Aquantia

Why power estimation ?

- Selection of optimum architecture
- Hardware versus Software implementation
- Process node selection
- Voltage selection for the design
- Clock gating decisions
- Power gating decisions
- Package design

Why power estimation ? - continue

- Low power key feature of 10G-BaseT chip
- Accurate and efficient power estimation key for low power
- Explore different abstraction levels (Behavioral, RTL and Gate) for power estimation to study tradeoffs

Power estimates and accuracy tradeoffs

Vector v/s Vectorless simulation

- Vectorless simulation
 - Early estimates
 - No simulation activity file
 - Assumes toggle activity
 - Less accurate
- Vectored simulation
 - Late in the design cycle
 - Actual simulation activity file
 - More accurate

Activity file generation flow Capture and Playback

- Verilog RTL DUT + SV UVM testbench
- RTL sim and capture DUT Inputs/Outputs
- Verilog Gatel Level Netlist DUT + SV UVM testbench
- Gate Level Sim with SDF annotation with Inputs from RTL sim
- Activity file from Gate Level sim with correct activity period

Capture playback vs Traditional method for activity file generation

- Traditional Method
 - Same testbench, replace RTL with Gate netlist
 - Difficult to debug
- Capture playback method
 - Does not require full chip testbench
 - Faster
 - Clock phasing, etc cannot be modelled

Power estimation – Different scenarios

- Compare different EDA tools results
- Can I rely on Vectorless sim ?
- Which blocks to power gate ?
- Which blocks to clock gate ?
- Select optimum architecture
- Select process node 40nm 28 nm
- Select voltage for process node
- Select capacitance value for package design

Power comparison – Different EDA tools results match !!

TRUE LEAKAGE				
DSP Block 40nm	Static	Dynamic	Total	
РТРХ	152.33	545.4	697.73	
EPS	154.7	572.2	726.9	Results within 7-8 %
PowerTheater	151.29	535.3	686.75	

Vectorless sim - Is it accurate?

VECTORLESS SIM	TRUE LEAKAGE CORENER			
DSP Block 40nm - 0.88V, 125C	Static	Dynamic	Total	
internal reg power	44.25	201.5	246	
internal latch power	0	0.02	0.02	
memory power	5.3	32.55	37.85	
other internal power	152.5	635	785	Accurato
clock power	7.85	16.25	48.22	Accurate
Total power	209.9	885.32	1092.97	
			X	
DSP Block 28 nm - 0.935V, 125C	Static	Dynamic	Total	Inaccurate
internal reg power	7.65	199.5	207 /	
internal latch power	0.05	0.95	1	
memory power	1.23	28,54	29.88	Relative
other internal power	18.6	453	471.5	comparison
clock power	1.33	12.75	14.1	
Total Power	28.86	694.84	723.48	

Vectored simulation

VECTORED SIM	TRUE L			
DSP Block 40nm - 0.88V, 125C	Static	Dynamic	Total	
internal reg power	33.95	183.5	217.5	
memory power	39.4	55	94.5	
other internal power	77.5	288.5	366	
clock power	0.44	8.3	8.75	
Total power	151.29	535.3	686.75	
				Accurate
DSP Block 28 nm 0.825V, 125C	Static	Dynamic	Total	
internal reg power	4.99	111.5	116.5	
memory power	5.91	33	38.91	
other internal power	13.9	227	241	
clock power	0.12	3.8	3.92	
Total Power	24.02	275.2	400 22	

Power gating, Clock gating decisions

Power	gating
candid	ate

VECTORLESS SIM	TRUE LEAKAGE CORENER			
DSP Block 40nm	Static	Total		
Sub block A	23.7	95.32	119.02	
Sub block B	18.42	70.4	88.82	
Sub block C	89	365.3	454.3	

VECTOR SIM	TRUE LEAKAGE CORENER				
DSP Block 40nm	Static Dynamic Tota				
FIR (Filter)	22.32	89.4	111.72		
FFT	60	180	240		
IIR (Filter)	30.4 100.2 130.6				

Clock gating candidate

Process node comparison

VECTORED SIM	TRUE L	TRUE LEAKAGE CORENER			
DSP Block 40nm - 0.88V, 125C	Static	Dynamic	Total		
internal reg power	33.95	183.5	217.5		
memory power	39.4	55	94.5		
other internal power	77.5	288.5	366		
clock power	0.44	8.3	8.75		
Total power	151.29	535.3	686.75		
					40nm
DSP Block 28 nm 0.825V, 125C	Static	Dynamic	Total		28nm
internal reg power	4.99	111.5	116.5		
memory power	5.91	33	38.91		
other internal power	13.9	227	241		
clock power	0.12	3.8	3.92		
Total Power	24.92	375.3	400.33		

Architecture Selection

Select signed magnitude format

TRUE Leakage Corner			
DSP Block 40nm	Static	Dynamic	Total
FIR (Filter) - 2's complement format	22.32	89.4	111.72
FIR (Filter) - signed magnitude format	20.4	62.4	82.8

Architecture Selection - continue

TRUE Leakage Corner			
DSP Block 40nm	Static	Dynamic	Total
FIR (Filter) - data - 14			
bits, coef - 10 bits	18.11	42.12	60.23
FIR (Filter) - data - 11			
bits, coef - 9 bits	12.08	30.23	42.31
Select lower			

precision

Voltage Selection

Stay with 0.85V Sacrifice 10% power Ease of timing closure

28nm Netlists	Power in mW			
True Lkg	Static	Dynamic	Total	
0.75V	84.3	250	335	
0.85V	76.9	294	371	
Diff (%)	-9.62	14.97	9.7	

- Power estimations for true leakage corner worst case power
- Power estimations for typical corner optimistic power

Summary

- Vectorless simulations faster early estimates but less accurate dynamic power
- Vectored simulations More accurate estimates but available late in the design cycle
- Actual power measured in lab correlates well with estimated power
- Useful data for power gating, clock gating, architecture tradeoffs, process node selection and package design decisions.
- Overall, it helped achieve our low power chip requirements