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Introduction
• Power management is essential for

– Building Portable, lighter products
– Longer Battery life
– More features in the consumer applications

• Dynamic power
– Signal switching consumes power
– Major contributor to power consumption

• Static power
– Static leakage can consume significant 

power
– Major concern for power optimization
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Power Management Techniques
• The mandate to reduce system power consumption led to

the increasing use of low-power IC design techniques
• IC designers - use advanced power management

techniques to minimize static and dynamic power in the
SoCs
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SoC Power Aware Verification
• For Low Power SoC designs

with different power domains
and power modes, PA
Verification is a essential one
for verifying
– Power on Reset sequence
– Power down/Power up 

control sequence
– Isolation/Retention logic
– Level shifting logic
– Power Mode transitions
– Power switching logic
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Traditional Approach
• SoC Power Management logic is verified on PG connected

netlist

Drawbacks
• Too late in the verification flow
• Defect rectification consumes more time
• Netlist simulations are slow compared to RTL
• Hard to debug the issues at netlist level
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Power Intent based Approach
• SoC Power Management logic is verified using power intent

specification (e.g. UPF) on RTL

Pros
• Too early in the verification flow
• Power architecture related bugs can be caught earlier
• Easier to debug the issues at RTL level
Cons
• Creation of Power Intent specification file
• Tool dependency on Power Intent specification 

interpretation
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Power Aware Verification flow
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What is UPF?
• The Unified Power Format (UPF) is a IEEE 1801-2009

standard provides the concepts and notation required to
define the power management architecture for a design

• UPF specification can be used for power management
verification, during RTL/GLS simulation

• UPF file typically includes information about
– Power Domains
– Power state
– Isolation and Retention
– Level Shifting

• Most leading vendor tools support UPF and it is HDL
independent
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UPF Example

/*****Create Power domain*****/
create_power_domain SLP  -elements {u_slp}
create_power_domain STNDBY  -elements {u_stndby}

/**********Isolation***************/
set_isolation VCCD_sram_iso -domain VCCD_sw
-isolation_power_net vccd_sw -isolation_ground_net vssd
-elements {u_cpu_mem_top/sram_rdata[4] 

u_cpu_mem_top/sram_rdata[3]
u_cpu_mem_top/sram_rdata[2] 
u_cpu_mem_top/sram_rdata[1] 
u_cpu_mem_top/sram_rdata[0]}  

-clamp_value 0
set_isolation_control VCCD_sram_iso -domain VCCD_sw
-isolation_signal u_cpu_mem_top/sram_isolate
-isolation_sense high  -location self
map_isolation_cell VCCD_sram_iso -domain VCCD_sw
-lib_cells {scls_lp_inputiso0n_lp scls_lp_inputiso0p_lp2 }

/*************Level shifter*********/
set_level_shifter HV2LV_LS_RULE -domain VDDD_PD \
-applies_to outputs \
-location self \
-rule high_to_low \
-threshold 0
map_level_shifter_cell HV2LV_LS_RULE 
-domain VDDD_PD -lib_cells { scs8hvl_lsbufhv2lv_1 }

/******* Retention Strategy *******/
set_retention ret_stndby -domain STNDBY
-retention_power_net VDD_rail
-retention_ground_net VSS_rail

set_retention_control ret_stndby -domain STNDBY
-save_signal {save_cnt high} 
-restore_signal {restore_cnt high}

map_retention_cell ret_stndby -domain STNDBY
-lib_cell_type LIB_CELL_NAME

/***** Create Power state table****/
create_pst PST -supplies [list vddd vccd vccd_sw
vccdpslp vccstndby
u_cpu_mem_top/u_fm_32K/vpwri_fm
u_cpu_mem_top/u_fm_32K/vpwri_iref
u_cpu_mem_top/u_fm_32K/vpwri_vneg
u_cpu_mem_top/u_srom_0/vpwrv
u_cpu_mem_top/u_srom_1/vpwrv ]
add_pst_state active  -pst PST -state {vddd_state
vccd_active vccd_sw_active vccslp_active vccstndby_active}
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PA Test Bench Environment
Power Aware Test Bench
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Power Aware simulation result

• Waveform: Shows the active mode to low power mode
switching and low power mode to active mode switching
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Power Aware Verification planning
Power Management Bugs
• Control Bugs

– Power down/power up control sequence bugs
– Power state transition and sequencing bugs
– Failure to reset after power down/power up

• Partitioning Bugs
– Bugs due to incorrect implementation of system power modes
– Bugs due to Cyclic domain state interdependencies

• Power Bugs
– Bugs due to incorrectly structured power switching network
– Bugs due to incorrect powering of logic elements

• Structural Bugs
– Bugs due to missing Isolation cells/retention registers
– Bugs due to missing, incorrect or redundant level shifters
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Power Aware Verification planning 
Contd..
• The power aware verification plan should address all the

scenarios which can catch all the power management
related bugs

• Sample Scenarios
– Does the power controller sequence power down correctly?
– Are outputs isolated before power is switched?
– Are states retained before power is switched?
– Are outputs isolated to the correct state?
– Does the power controller sequence power up correctly?
– Is power restored before state retention registers restore their

states?
– Is power restored before isolation is removed?
– Do all outputs have known value before isolation is removed?
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Power Aware Verification planning 
Contd..
• Sample Scenarios

– Does the system wake up correctly using different wake-up sources
after being put in different low power modes?

– Does the system function correctly when some parts are powered
down?

– Does the system change power states correctly?
– Does the system recover back after Power On Reset is applied

randomly?
– Does the system recover back when external reset is applied after

power down/up?
– Are the system power modes implemented correctly?
– Do the state machines in different Power domains restore to states

that does not create deadlock in the design?
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Tips for Catching Bugs Faster
• Cover all the power mode transitions earlier in the

verification cycle
• Check all power mode failures by using assertions or by

using self checking logic in the test case
• Enable multiple low power mode wake-up sources

simultaneously and verify
• Route IP outputs to SoC IO pads in Low power mode if SoC

design supports this feature
• Check all the wake-up sources in low power modes
• Check Retention/Non-Retention logic in all the low power

modes
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Tips for Catching Bugs Faster 
Contd..
• In any power mode, remove the main power supplies

(vddd /vdda)
• Using this scenario, bugs related to power sequencing

issues can be caught earlier

• Add assertions using power ports to check the port values in
different power modes

• Add assertions for power mode transitions to find the mode
transition related bugs faster
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Tips for Catching Bugs Faster 
Contd..
• While serial/Parallel interface transactions are happening in

active mode, trigger the Low power mode entry/exit and
check that the active transactions are not aborted

• Check the low power mode entry and exit when SoC is
operating at Max, Min, and Mid range SYSCLK frequencies

• Add power mode transition timing related assertions
e.g. Active->Sleep (Min time: 1us, Max time: 3us)

• Add display statements about mode transitions and about
handshaking between the C-Test and SV-Test
e.g. ovm_report_info( get_type_name (),$psprintf("PASIM:
DEVICE is in ACTIVE mode"), OVM_NONE);
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Debugging Tips
Debug using RTL reference waveform
• ‘X’ propagation related issues and power-up, power-down

sequence related issues can be debugged using Functional
simulation waveform as reference

RTL Waveform

PA Waveform
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Debugging Tips Contd..
Back Tracing
• Back tracing feature can be used to debug ‘X’ propagation

issues and multiple driver issues

Driver Back tracing Result X Propagation Dataflow Diagram
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Debugging Tips Contd..
Use Waveform loadable format
• To make debugging easier save all the important power

supplies in the SoC as waveform loadable format
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Debugging Tips Contd..
Tool Issue debugging
• Sometimes tools may drive the clamp values incorrectly, due to which

‘X’ propagation can happen
– To justify whether that is a tool issue, forcibly drive the clamp value

to 0/1 from the test bench
• When the supply on-off issue is suspected as tool issue, run the same

test case on the PG connected GLS Netlist
Add Self checking Logic 
• Add self checking logic in each of the test cases to make sure about

proper power mode transitions
if (tst_pw_if.data[83:81] == 3'h1)

ovm_report_info(get_type_name(),$psprintf("PA_SIM: DEVICE is in ACTIVE Mode 
Still"), OVM_NONE);
else 

ovm_report_error(get_type_name(),$psprintf("PA_SIM: DEVICE is NOT in ACTIVE 
Mode"), OVM_NONE);
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Re-usability Tips
Re-use RTL Power related tests
• All RTL power related test cases can be re-used across PA

simulation by just compiling same test bench with UPF, and
PA related run-time options

Create Generic Scripts 
• Create generic scripts to convert the UPF given by the

design team to vendor tool specific format (if applicable)
• UPF and PA test cases can be re-used across different

derivative products using scripts
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Re-usability Tips Contd..
Avoid delays in Testcases
• Avoid delays while coding tests so that it can be re-used

across GLS/PA/derivative projects
• Instead of delays, use events so that test case can be

re-used across GLS/PA/derivative projects
task pa_active2dpslp_wdt_reset_ctest::run ();

super.run();
#4.5ms;
// Keep the chip in Low-power mode for some 

time.
ovm_report_info(get_type_name(),"The Chip 

entered into the Low-Power mode", 
OVM_LOW);

// Stops all the process by calling this global 
stop request.

global_stop_request();
endtask : run

task pa_active2dpslp_wdt_reset_ctest::run ();
super.run();
poll_active_mode.wait_trigger();
ovm_report_info(get_type_name(),“Chip 

entered active mode", OVM_NONE);
global_stop_request();

endtask : run
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Re-usability Tips Contd..
UPF re-usability
• If the full chip SoC UPF contains subsystem UPF, the same

subsystem UPF can be re-used for derivative projects
e.g. load_upf /soc/power/UPF/pasim/serial_interface.upf -scope
u_serial_top

Avoid C-Test for Ret/Non-Ret Verification
• Avoid using C tests for retention/non-retention register Read/Write

verification to increase randomization capability and re-usability
• Instead use SV tests for retention/non-retention register Read/Write

verification
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Conclusion
• Power intent based PA simulation is an efficient way for verifying

the power management scheme of a SoC
• It can be done at the very earlier stage of verification cycle on

RTL
• It gives faster simulation results with lesser debugging effort
• RTL level power related test cases can be re-used for PA

verification too
• The PA verification is used to find power sequencing/power

partitioning/power structure related bugs
• This UPF based PA verification can be done at Gate level also,

using a netlist with PG connections
• The PA simulation at Gate level helps to make a slightly stronger

verification for the SoC power scheme
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Questions?
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