
Power Aware Verification Strategy for
SoCs

by
Boobalan Anantharaman Arunkumar Narayanamurthy
Design Engineer Staff Design Engineer Staff

Cypress Semiconductor technology India Pvt Ltd

Sponsored By:

2 of 27

AGENDA

• Introduction
• SoC Power Aware Verification
• Power Aware Verification Flow
• Power Aware Verification Planning
• Tips for Catching Bugs Faster
• Debugging Tips
• Re-Usability Tips
• Conclusion

Sponsored By:

3 of 27

Introduction
• Power management is essential for

– Building Portable, lighter products
– Longer Battery life
– More features in the consumer applications

• Dynamic power
– Signal switching consumes power
– Major contributor to power consumption

• Static power
– Static leakage can consume significant

power
– Major concern for power optimization

Sponsored By:

4 of 27

Power Management Techniques
• The mandate to reduce system power consumption led to

the increasing use of low-power IC design techniques
• IC designers - use advanced power management

techniques to minimize static and dynamic power in the
SoCs

0.9V1.0V

1.2V

Multi-Vdd (MV)

0.9V1.0V

1.2V

OFF

Power gating
(shut down)

0.9V1.0V

1.2V

RET

Power gating with
State Retention

0.9V1.0V

1.2V

0.6V

Low-VDD Standby

Sponsored By:

5 of 27

SoC Power Aware Verification
• For Low Power SoC designs

with different power domains
and power modes, PA
Verification is a essential one
for verifying
– Power on Reset sequence
– Power down/Power up

control sequence
– Isolation/Retention logic
– Level shifting logic
– Power Mode transitions
– Power switching logic

Low Power SoC

ALWAYS-ON DOMAIN

 1.2V

ON-OFF DOMAIN

 0.8V

POWER MANAGEMENT UNIT STANDBY DOMAIN

 0.6V

RESET CLOCK POWER
MANAGER

IO
BLOCK

SERIAL
INTERFACE

BLOCK
AHB CPU

DIGITAL
PERIPHERALS

ANALOG
PERIPHERALS

Sponsored By:

6 of 27

Traditional Approach
• SoC Power Management logic is verified on PG connected

netlist

Drawbacks
• Too late in the verification flow
• Defect rectification consumes more time
• Netlist simulations are slow compared to RTL
• Hard to debug the issues at netlist level

Sponsored By:

7 of 27

Power Intent based Approach
• SoC Power Management logic is verified using power intent

specification (e.g. UPF) on RTL

Pros
• Too early in the verification flow
• Power architecture related bugs can be caught earlier
• Easier to debug the issues at RTL level
Cons
• Creation of Power Intent specification file
• Tool dependency on Power Intent specification

interpretation

Sponsored By:

8 of 27

Power Aware Verification flow

TB

SIMULATION

ELABORATION

COMPILATION

POWER
INTENT
(UPF)

POWER
AWARE

LIBRARIES

POWER
MANAGEMENT

VERIFIED

PA VERIFICATION DONE

RTL

CHECK LOGS/WAVEFORMS/TESTS
STATUS

NO NO

YES

PA Verification flow uses

• RTL or Netlist
• Test bench
• Power Intent specification
• Power aware libraries

Sponsored By:

9 of 27

What is UPF?
• The Unified Power Format (UPF) is a IEEE 1801-2009

standard provides the concepts and notation required to
define the power management architecture for a design

• UPF specification can be used for power management
verification, during RTL/GLS simulation

• UPF file typically includes information about
– Power Domains
– Power state
– Isolation and Retention
– Level Shifting

• Most leading vendor tools support UPF and it is HDL
independent

Sponsored By:

10 of 27

UPF Example

/*****Create Power domain*****/
create_power_domain SLP -elements {u_slp}
create_power_domain STNDBY -elements {u_stndby}

/**********Isolation***************/
set_isolation VCCD_sram_iso -domain VCCD_sw
-isolation_power_net vccd_sw -isolation_ground_net vssd
-elements {u_cpu_mem_top/sram_rdata[4]

u_cpu_mem_top/sram_rdata[3]
u_cpu_mem_top/sram_rdata[2]
u_cpu_mem_top/sram_rdata[1]
u_cpu_mem_top/sram_rdata[0]}

-clamp_value 0
set_isolation_control VCCD_sram_iso -domain VCCD_sw
-isolation_signal u_cpu_mem_top/sram_isolate
-isolation_sense high -location self
map_isolation_cell VCCD_sram_iso -domain VCCD_sw
-lib_cells {scls_lp_inputiso0n_lp scls_lp_inputiso0p_lp2 }

/*************Level shifter*********/
set_level_shifter HV2LV_LS_RULE -domain VDDD_PD \
-applies_to outputs \
-location self \
-rule high_to_low \
-threshold 0
map_level_shifter_cell HV2LV_LS_RULE
-domain VDDD_PD -lib_cells { scs8hvl_lsbufhv2lv_1 }

/******* Retention Strategy *******/
set_retention ret_stndby -domain STNDBY
-retention_power_net VDD_rail
-retention_ground_net VSS_rail

set_retention_control ret_stndby -domain STNDBY
-save_signal {save_cnt high}
-restore_signal {restore_cnt high}

map_retention_cell ret_stndby -domain STNDBY
-lib_cell_type LIB_CELL_NAME

/***** Create Power state table****/
create_pst PST -supplies [list vddd vccd vccd_sw
vccdpslp vccstndby
u_cpu_mem_top/u_fm_32K/vpwri_fm
u_cpu_mem_top/u_fm_32K/vpwri_iref
u_cpu_mem_top/u_fm_32K/vpwri_vneg
u_cpu_mem_top/u_srom_0/vpwrv
u_cpu_mem_top/u_srom_1/vpwrv]
add_pst_state active -pst PST -state {vddd_state
vccd_active vccd_sw_active vccslp_active vccstndby_active}

Sponsored By:

11 of 27

PA Test Bench Environment
Power Aware Test Bench

Serial
Protocol

Agent

SoC

Reference model

C-Test

Reset
Agent

Register
model

 Agent1 Clock
Agent

Coverage
Model

Scoreboard

Serial Protocol
Agent AP

Agent1 AP

Reset Agent

SV-Test

UPF

Sponsored By:

12 of 27

Power Aware simulation result

• Waveform: Shows the active mode to low power mode
switching and low power mode to active mode switching

Sponsored By:

13 of 27

Power Aware Verification planning
Power Management Bugs
• Control Bugs

– Power down/power up control sequence bugs
– Power state transition and sequencing bugs
– Failure to reset after power down/power up

• Partitioning Bugs
– Bugs due to incorrect implementation of system power modes
– Bugs due to Cyclic domain state interdependencies

• Power Bugs
– Bugs due to incorrectly structured power switching network
– Bugs due to incorrect powering of logic elements

• Structural Bugs
– Bugs due to missing Isolation cells/retention registers
– Bugs due to missing, incorrect or redundant level shifters

Sponsored By:

14 of 27

Power Aware Verification planning
Contd..
• The power aware verification plan should address all the

scenarios which can catch all the power management
related bugs

• Sample Scenarios
– Does the power controller sequence power down correctly?
– Are outputs isolated before power is switched?
– Are states retained before power is switched?
– Are outputs isolated to the correct state?
– Does the power controller sequence power up correctly?
– Is power restored before state retention registers restore their

states?
– Is power restored before isolation is removed?
– Do all outputs have known value before isolation is removed?

Sponsored By:

15 of 27

Power Aware Verification planning
Contd..
• Sample Scenarios

– Does the system wake up correctly using different wake-up sources
after being put in different low power modes?

– Does the system function correctly when some parts are powered
down?

– Does the system change power states correctly?
– Does the system recover back after Power On Reset is applied

randomly?
– Does the system recover back when external reset is applied after

power down/up?
– Are the system power modes implemented correctly?
– Do the state machines in different Power domains restore to states

that does not create deadlock in the design?

Sponsored By:

16 of 27

Tips for Catching Bugs Faster
• Cover all the power mode transitions earlier in the

verification cycle
• Check all power mode failures by using assertions or by

using self checking logic in the test case
• Enable multiple low power mode wake-up sources

simultaneously and verify
• Route IP outputs to SoC IO pads in Low power mode if SoC

design supports this feature
• Check all the wake-up sources in low power modes
• Check Retention/Non-Retention logic in all the low power

modes

Sponsored By:

17 of 27

Tips for Catching Bugs Faster
Contd..
• In any power mode, remove the main power supplies

(vddd /vdda)
• Using this scenario, bugs related to power sequencing

issues can be caught earlier

• Add assertions using power ports to check the port values in
different power modes

• Add assertions for power mode transitions to find the mode
transition related bugs faster

Sponsored By:

18 of 27

Tips for Catching Bugs Faster
Contd..
• While serial/Parallel interface transactions are happening in

active mode, trigger the Low power mode entry/exit and
check that the active transactions are not aborted

• Check the low power mode entry and exit when SoC is
operating at Max, Min, and Mid range SYSCLK frequencies

• Add power mode transition timing related assertions
e.g. Active->Sleep (Min time: 1us, Max time: 3us)

• Add display statements about mode transitions and about
handshaking between the C-Test and SV-Test
e.g. ovm_report_info(get_type_name (),$psprintf("PASIM:
DEVICE is in ACTIVE mode"), OVM_NONE);

Sponsored By:

19 of 27

Debugging Tips
Debug using RTL reference waveform
• ‘X’ propagation related issues and power-up, power-down

sequence related issues can be debugged using Functional
simulation waveform as reference

RTL Waveform

PA Waveform

Sponsored By:

20 of 27

Debugging Tips Contd..
Back Tracing
• Back tracing feature can be used to debug ‘X’ propagation

issues and multiple driver issues

Driver Back tracing Result X Propagation Dataflow Diagram

Sponsored By:

21 of 27

Debugging Tips Contd..
Use Waveform loadable format
• To make debugging easier save all the important power

supplies in the SoC as waveform loadable format

Sponsored By:

22 of 27

Debugging Tips Contd..
Tool Issue debugging
• Sometimes tools may drive the clamp values incorrectly, due to which

‘X’ propagation can happen
– To justify whether that is a tool issue, forcibly drive the clamp value

to 0/1 from the test bench
• When the supply on-off issue is suspected as tool issue, run the same

test case on the PG connected GLS Netlist
Add Self checking Logic
• Add self checking logic in each of the test cases to make sure about

proper power mode transitions
if (tst_pw_if.data[83:81] == 3'h1)

ovm_report_info(get_type_name(),$psprintf("PA_SIM: DEVICE is in ACTIVE Mode
Still"), OVM_NONE);
else

ovm_report_error(get_type_name(),$psprintf("PA_SIM: DEVICE is NOT in ACTIVE
Mode"), OVM_NONE);

Sponsored By:

23 of 27

Re-usability Tips
Re-use RTL Power related tests
• All RTL power related test cases can be re-used across PA

simulation by just compiling same test bench with UPF, and
PA related run-time options

Create Generic Scripts
• Create generic scripts to convert the UPF given by the

design team to vendor tool specific format (if applicable)
• UPF and PA test cases can be re-used across different

derivative products using scripts

Sponsored By:

24 of 27

Re-usability Tips Contd..
Avoid delays in Testcases
• Avoid delays while coding tests so that it can be re-used

across GLS/PA/derivative projects
• Instead of delays, use events so that test case can be

re-used across GLS/PA/derivative projects
task pa_active2dpslp_wdt_reset_ctest::run ();

super.run();
#4.5ms;
// Keep the chip in Low-power mode for some

time.
ovm_report_info(get_type_name(),"The Chip

entered into the Low-Power mode",
OVM_LOW);

// Stops all the process by calling this global
stop request.

global_stop_request();
endtask : run

task pa_active2dpslp_wdt_reset_ctest::run ();
super.run();
poll_active_mode.wait_trigger();
ovm_report_info(get_type_name(),“Chip

entered active mode", OVM_NONE);
global_stop_request();

endtask : run

Sponsored By:

25 of 27

Re-usability Tips Contd..
UPF re-usability
• If the full chip SoC UPF contains subsystem UPF, the same

subsystem UPF can be re-used for derivative projects
e.g. load_upf /soc/power/UPF/pasim/serial_interface.upf -scope
u_serial_top

Avoid C-Test for Ret/Non-Ret Verification
• Avoid using C tests for retention/non-retention register Read/Write

verification to increase randomization capability and re-usability
• Instead use SV tests for retention/non-retention register Read/Write

verification

Sponsored By:

26 of 27

Conclusion
• Power intent based PA simulation is an efficient way for verifying

the power management scheme of a SoC
• It can be done at the very earlier stage of verification cycle on

RTL
• It gives faster simulation results with lesser debugging effort
• RTL level power related test cases can be re-used for PA

verification too
• The PA verification is used to find power sequencing/power

partitioning/power structure related bugs
• This UPF based PA verification can be done at Gate level also,

using a netlist with PG connections
• The PA simulation at Gate level helps to make a slightly stronger

verification for the SoC power scheme

Sponsored By:

27 of 27

Questions?

	Power Aware Verification Strategy for SoCs
	Agenda
	Introduction
	Power Management Techniques
	SoC Power Aware Verification
	Traditional Approach
	Power Intent based Approach
	Power Aware Verification flow
	What is UPF?
	UPF Example
	PA Test Bench Environment
	Power Aware simulation result
	Power Aware Verification planning
	Power Aware Verification planning Contd..
	Power Aware Verification planning Contd..
	Tips for Catching Bugs Faster
	Tips for Catching Bugs Faster Contd..
	Tips for Catching Bugs Faster Contd..
	Debugging Tips
	Debugging Tips Contd..
	Debugging Tips Contd..
	Debugging Tips Contd..
	Re-usability Tips
	Re-usability Tips Contd..
	Re-usability Tips Contd..
	Conclusion
	Questions?

