Overcoming barriers in Power Aware Simulation

Mohit Jain Amit Singh J.S.S.S.Bharath Amit Srivastava Bharti Jain

J.S.S.S.Bharath

ST Microelectronics

Mentor Graphics

Agenda

- Introduction
- Typical PA Simulation using UPF
- Barriers in PA Simulation
- Traditional approaches and their limitations
- Power Aware Models
 - Power Management Interface
 - Power Management Behavior
- Examples
 - Analog Macros
 - Macros with internal Switching
 - Voltage Regulators
- Conclusion

Introduction

Today's SoCs are

- Incredibly Complex
- Sophisticated power management for highly power efficient design
- integrate variety of hard macros
- on-chip power sources
- various analog IPs

They Must

- Verify the power management
 - early in the design flow

DESIGN AND VERI

CONFERENCE AND EXHIBITION

Power Aware Design and Verification

- Different Systems have different power management
- Power Gating
 - Isolation
 - Retention
- Multi-Voltage
 - Level Shifting
- Body Bias
 - Forward Bias
 - Reverse Bias
- Dynamic Voltage & Frequency Scaling
- UPF provides commands which can express the power management

IEEE 1801: Unified Power Format

- RTL is augmented with a UPF specification
 - To define the power architecture for a given implementation
- RTL + UPF drives implementation tools
 - Synthesis, place & route, etc.
- RTL + UPF also drives power-aware verification
 - Ensures that verification matches implementation

Barriers in PA Simulation

- Incomplete verification models for hard macros
 - Lack of power management information
- Variety of IPs with different power management
- Burden in switching from non-PA to PA modes
- Trade-off between accuracy and speed

DESIGN AND

Traditional Approaches & their Limitations

- Simulation models without power management behavior
 - incomplete design behavior of hard IPs
 - loss of simulation accuracy
- Simulation models with power management behavior
 - the extra supplies pose problems in integration process at RTL as the supplies are not present in regular non-pa simulations, deferring the use till post-layout netlist phase
 - inability of HDL to capture crucial power management information like power states, voltage information results in loss of significant details required for effective power aware verification

Analog Models

- Most accurate representation of the hard IP
- Generally written in Spice and hence depend on Spice simulations
- Extremely slow and hence limit the verification capability

Power Aware Models

- Enables Power Aware Simulation for Hard Macros
- Components of PA Model
 - Power Management interface
 - Power Management Behavior
- Power Management Interface
 - Liberty attributes
 - UPF commands
- Power Management Behavior
 - Power aware HDL
 - Derived from explicit power pin model

Power Management interface

- Provides information about power management at IP interface
- Typically captured in UPF or Liberty
- Used during integration of IP
- PM interface consists of
 - Supply information
 - Related supplies
 - Power states
 - Interface protection cells

Power Management Interface UPF

Create Power Model Boundary

```
begin power model hardMacro
Create Top level power domain and define supplies
     create power domain pd hardIP \
       -include scope \
       -supply { backup ssh } \
       -supply { primary }
Define related supplies
     set port attributes
       -driver supply set
       -receiver supply set
Define power states
     add power state PD HardIP \
       -state ON { \
         -logic expr { \
           PD HardIP.primary == ON \
         }\
       }
Interface protection cells
     set isolation PD HardIP \
       -applies to outputs
Complete the Power Model Boundary
     end power model
```


Power Management Interface Liberty

Supply pins defined as pg_pin in liberty model

```
pg_pin(VDD) {
    pg_type : primary_power;
    voltage_name : PWR;
}
pg_pin(VSS) {
    pg_type : primary_ground;
    voltage_name : GND;
}
```

Define related supplies

```
pin(IN) {
    direction : input;
    related_power_pin : VDD;
    related_ground_pin : VSS;
    ...
}
Interface protection cells
    pin (SP) {
        direction : input;
        is_isolated : true;
        isolation_enable_condition : "en";
        related_power_pin : VDD;
        related_ground_pin : VSS;
    ......
```


}

Power Management behavior

- The power management behavior is captured in HDL descriptions
- Non-PA Behavioral Model
 - The non-pa behavioral model doesn't have any sensitivity to power changes
 - The power behavior is taken from related supply information to corrupt the boundary pins, which is approximate
 - Can only reflect basic power management capabilities without any retention capability. (cannot be used for IP's with complex power behavior)

Allpins Model

- have the power pins at the port level.
- The effect of the supplies on the outputs programmed.
- These are traditional power aware HDL models that are used at Gate level or a later stage when netlist contains full connection of supplies.

Power Management behavior

PA Behavioral Model

- The power behavior is visible when the UPF connections are made.
- The PA behavioral model has the following characteristics
 - The power pins are not present in the portlist.
 - The input power supplies are declared as registers and are initialized to their definitive logical values.
 - If the IP has any output supplies, they are declared as registers / wires and contain the functional intent in them.
- Generally a PA behavioral model is derived from an allpins model by removing the supplies from the port level and declaring them as reg / wire.

Simulation of Power Aware Models

- Integration involves
 - Design integration
 - Instantiation of Behavioral Model (similar to non-PA)
 - UPF integration
 - Connection of UPF supply nets to pg_pins present on Liberty Model
- Tools can automatically combine the two components to generate PA Model
 - Power Management interface
 - Power Management behavior
- The combined version of PA model is used during simulation to provide accurate behavior
- The Power Management Behavior component can be easily reused in non-PA simulation

Examples

Analog Macros

- Mixed signal IP's have multi-power rails
- The power behavior can be taken from
 - Liberty
 - PA HDL model

Figure : A typical analog macro with some analog and digital part together and interacting in one IP interface

Case I: Non PA HDL and Liberty

- Behavioral Model is not power aware
- PA behavior given by liberty
 - power_down_function

Figure : Simulation with non-power aware behavioral model, with power intent taken from liberty

Simulation Results : Non PA HDL and liberty

Limitation: Actual design behavior is not captured in the simulation

Case II: PA HDL and Liberty

DESIGN AND V

Simulation Results : PA HDL and liberty

Actual design behavior is observed in this case

© Accellera Systems Initiative

Macros with Internal Switching

- Some of the IP's have a power switch embedded inside the IP boundary for powering off some of the logic.
 - For a granular control of the power supplied to these IP's.
 - Internally switched supply could be shared outside the IP
- The switches needs to be synchronous for valid operation

Figure 7: A Macro with an embedded power switch

PM Interface and Behavior for internally switchable macro

DESIGN AND

Simulation Results: Synchronization Error

Figure 10: Example depicting a scenario in which the switches are not synchronized for which the tool logs a synchronization error

• The above snapshot depicts the case in which the controls to both the switches (internal and external) are out of sync, the simulator issues a warning indicating that a UPF net is driven by multiples sources with different states. When the switches are synchronous the UPF net will be driven to a desired state

DESIGN AND VERIFICA

CONFERENCE AND EXHIBITION

Voltage Regulators

- A voltage regulator generates a regulated and monitored supply with proper voltage level and drive capability.
 - Typically consists of a control block and an analog switch.
- The regulated supplies of a voltage regulator are typically driven by analog switch (with the control of the switch governed by the regulator), with their presence inside / outside the IP boundary.

DESIGN AND VERI

The regulated supply can be bypassed by an external source.

PM Interface and Behavior for Voltage Regulator

Simulation Results : Voltage Regulator

Startup Time

- The simulation snapshot shows two cases:
 - When the regulator is in regulation mode
 - When the regulator is in Bypass mode
- There could be another scenario in which the ballast is inside the IP interface, the results will be similar

Conclusion

- PA Models enable accurate PA-simulations
- Complex issues are caught early at RTL design phase
- PA Models are incomplete in terms of understanding voltage values
- Future homes on Voltage Aware Models

© Accellera Systems Initiative

the more accurate means of reflecting design behavior

Thank You

Questions

