Power Aware CDC Verification of Dynamic Frequency and Voltage Scaling (DVFS) Artifacts

Mark Handover, Mentor Graphics Corporation Jonathan Lovett, Mentor Graphics Corporation Kurt Takara, Mentor Graphics Corporation

Power Management is Critical Today

- Driving for finer process technology
 - Smaller, lighter products
 - Longer battery life
 - More functionality
- Dynamic power
 - Signal switching consumes energy
 - Was the major contributor to power consumption
- Static power
 - Static leakage can consume 50% of power!
 - Now the major concern for power optimization
- Government and industry regulation

SOC Power Management Techniques

- Leakage Power Reduction is Key in Low-Power Design
- Chief Aspects of Power Management
 - Power Shut-off
 - Isolation
 - Retention
 - Corruption
 - Multiple Voltages
 - Level shifters
- UPF (Unified Power Format)
 - Define Power Management independent of design

IEEE 1801 Unified Power Format (UPF)

© 2013 ARM Ltd

CDC Paths without UPF

- Power control logic unconnected in RTL
- CDC analysis on RTL will not verify power control logic
 - RTL functional paths only

CDC Paths with UPF

- UPF specifies Power Artefacts
 - specifies power domains, isolation strategies etc.
- Addition of UPF may add new CDC paths

Dynamic Frequency and Voltage Scaling

- Frequency and Voltage interdependence
 - Max operating frequency dependent on voltage
 - Reducing frequency allows voltage & power reduction
- Small voltage reductions = large power savings
 - Energy consumption proportional to supply voltage Processor E α V²*

* Burd, T. D. and Brodersen, R. W. Energy efficient CMOS microprocessor design. HICSS 1995.

Voltage Domain Crossing (VDC)

- DVFS domains create asynchronous clock groups
- Identify crossings between synchronous paths on different voltage domains

© Accellera Systems Initiative

DESIGN AND VERIE

Impact of Low Power CDC Issues

- Missed CDC paths will ...
 - Reduce product reliability
 - Cause intermittent failures
- Gate-level CDC analysis
 - Extremely noisy & time consuming
- Debug of Low Power CDC issues cause ...
 - Many debug man-hours of intermittent issues
 - Silicon vs. RTL inconsistencies
 - Difficulty of correlating silicon failures to RTL simulation
 - Difficult of verifying fixes to intermittent issues

Low Power CDC Verification Challenges

UPF Support Requirements for CDC Analysis

- Infer power cells in RTL
 - Isolation
 - Retention
 - Level shifters
- Infer voltage supply network
 - Power network
 - Power switches

Power Aware CDC Requirement

Verify interaction between power network and RTL
UPF specifies power domains, placement of isolation cells

Power Aware CDC Analysis

- Annotated design netlist contains power network
- CDC analysis on RTL + power network

Isolation Enable Missing Synchronizer

- Blocks B1 & B2 are in clock clk1
- iso_en comes from block B3 in clock domain clk2
- Violation for the new CDC path B3->B2

Isolation Cell Combo Logic before Synchronizer

- Block B1 is synchronized via B3/B4
- Isolation cell is placed at input to synchronizer
- Violation for the new CDC path B1->B3

Power Aware Retention Crossing

- Retention cell adds paths to save and restore pins
- New CDC violation B1=>B2

DESIGN AND VERI

Voltage Domain Crossing

- Identify CDC paths that start or end on DVFS voltage domains
- New CDC violation B1=>B2

Specify Supply Set create_supply_set PRIMARY1 create_supply_set PRIMARY2

Declare primary power and ground nets for the power domains associate_supply_set PRIMARY1 -handle **PD_TX**.primary associate_supply_set PRIMARY2 -handle **PD_RX**.primary

Power Aware CDC with Questa CDC

Power Aware CDC Analysis

- CDC-PA verifies structural CDC paths
 - Power Management functionality verified by simulation/formal
- Identify Power Aware CDC paths
- Detect Power Aware CDC scenarios
 - Isolation enable violation
 - Combinational logic violation
 - Retention cell save/restore violation
- Detect Voltage Domain Crossing schemes
 - Identify all VDC paths
 - Check for VDC synchronizations & violations

© Accellera Systems Initiative

Power Aware CDC Flow

Power Aware CDC Reporting & Debug

• Report new voltage domain clock groups

🔅 Clocks :====================================					ВX	🛄 Details			
* Group	Signal Expression	n Register Bit	s Latch Bits	Power Doma	ain	Name: i3.clk	0		
						Group: 11.CLK Type: PowerInferred			
Primary Port Inferred (0)						Register Bits: 4			
Black Box Inferred (0)						Latch Bits: 0 Power Domain: PD I3			
Undriven Inferred (0)						Source Clock : clk			
Gated Mux Inferred (0)						Driving Clock : clk Tx Voltage Group Name	: top.VDD HIGH[2:0]		
Gated Combo Inferred (0)						Rx Voltage Group Name	: top.VDD_HIGH_1[2:0]		
Power Inferred (2)									
🖨 🚽 🍯 i1.clk (1)		4	0						
	i1.cl			PD_I1					
_	i3.cl			PD_13 2.6	5 Powe	er (2)			
🖨 🍯 i2.clk (1)		2	0						
	i2.cl			PD_12 Gro	oup	0(2 Register Bi	its, 0 Latch Bits)		
Other Inferred (0)						·			
	- CDC Paliay (Shacke with	CDC Satur	ll.	.CLK	(Power Domain : F	PD_II) - PD_I3)		
		лескз 🗶 🌠 🦷	CDC Setup o						
Filters in use: 0	<no context=""></no>			Gro	oup	1(1 Register Bi	its, 0 Latch Bits)		
					i2.clk (Power Domain : PD_I2)				

DESIGN AND VE

Power Aware CDC Reporting & Debug

- Report power domain-specific CDC issues
 - Differentiate logic in different power domains

DESIGN AND VERIFICATION

CONFERENCE AND EXHIBITION

Power Aware CDC Reporting & Debug

- Debug via power domain-specific GUI
 - Visualize power domains and power elements
 - Visualize voltage domain-specific clocks and crossings

Power Domains

Retention Cell

Application of Low Power CDC Verification

	Clocks	Power Domains	Voltage Domains	Asynchronous Clocks	Isolation Cells	Retention Registers	VDC Paths
CPU Core	1	6	6	6	438	134690	4893
Subsystem 1	10	4	4	26	439	0	8404
Subsystem 2	10	5	2	7	142	0	10610

- Potential CDC issues from Isolation and retention cells
- Large number of VDC paths
 - DVFS creates multiple async clocks in a single clock design block
 - Requires verification to ensure reliability

Conclusion

- Low Power issues are missed by traditional CDC methods
- Low Power design introduces
 - New asynchronous clock domains
 - New CDC & VDC paths

© Accellera Systems Initiative

- Use Questa Power Aware CDC solution to
 - Improve low power design reliability
 - Avoid low power CDC failures in silicon

Questions

