
Portable Stimulus Standard: 
The Promises and Pitfalls of Early Adoption

1

Mike Bartley, CEO, Test and Verification Solutions, UK 
(mike@testandverification.com)



Agenda
• Introduction
• What is the value of adopting a standard (as opposed to a proprietary) 

tool?
• Should I adopt a PSS technology early?
• Selecting an appropriate PSS tool
• Adopting “future” specification enhancements?
• Tool selection process
• Conclusion
• Acknowledgments

2



Introduction
• Portable Test and Stimulus Standard
• What is it?

– A language for capturing test scenarios and verification logic in an abstract, 
implementation-agnostic way, which can then be applied on multiple platforms 
and testbench implementations

• Tool Solutions
• Adoption strategies!

3



PSS: An Example

4

System with 
• a four channel DMA engine that 

can move data between 
memory blocks, 

• three UART devices that are 
DMA enabled (i.e. the DMA can 
copy information in and out of 
their queue), 

• and a testbench that can 
initialize memory buffers using a 
backdoor access mechanism

Note: there are 2 input formats
• a domain specific language (DSL);
• C++
Our example uses DSL



PSS Example ctd: Objective & Challenges
• Objective:

– To create scenarios to stress this system in multiple ways

• Challenges (not exhaustive)
– A DMA channel must be available for the task
– Coordinate writes and reads with the loading of the specific UART queue
– The DMA is not copying uninitialized memory (to enable checking)

• Solution today
– Is often a directed approach

5



PSS Example ctd: Actions & Dependencies

6

UART (device) is going to have read and write actions 
• The write action reads a data stream (input) 

• and locks the UART device using a PSS resource. 
• The action outputs a data stream 

• and locks the UART as well

DMA (device) and actions
• mem2mem_xfer action locks one of the 

DMA channels not the entire device. 
• mem2queue action reads from the 

memory and streams to the UART
• Inputs and output have randomized 

attributes

DMA (device) and actions
• mem2mem_xfer action locks one of the DMA 

channels not the entire device. 
• mem2queue action reads from the memory 

and streams to the UART
• Inputs and output have randomized attributes

UART (device) is going to have read and write 
actions 
• The write action reads a data stream (input) 

• and locks the UART device using a PSS 
resource. 

• The action outputs a data stream 
• and locks the UART as well



PSS Example ctd: An Example Scenario

7

A PSS compliant tool can complete this 
scenario request by:
• Inserting appropriate memory initialization.
• Select two UART devices to handle UART 

write and UART read in parallel.
• Select available DMA channels to feed the 

write action and copy data from the queue 
to memory in case of a UART read

• Both DMA constraints and any scenario 
constraints (for example, in this case we 
may ask for a scenario with a buffer size 
smaller than 10) are resolved to provide a 
legal consistent scenario

NOTE: the PSS model is not connected to a specific implementation 



PSS Example ctd: Concrete Implementation

8

Connecting abstract environment to 
specific C routines or SV sequences

• The user specifies the uart 
device needs to be initialized 

• The “read_in” action is 
implemented by the “uart_read” 
C runtime

• The text within the triple-quotes 
is templatized code that will be 
embedded into the test. 

• A “mustache” notation allows 
embedding randomized 
attributes (“uart_id” in this 
example) into the generated 
test. 



PSS Example ctd: Generated Code

9

• Once a PSS solution determines the scheduling of the actions it 
places the right exec in the right location in the file and replaces 
all the randomized attributes with their randomized value



Getting up to speed on PSS
• Read the official PSS LRM and tutorial(s)
• Check the various available case studies
• Identify examples that (combined) cover the full extent of PSS
• You might also consider the use of external consultants who have PSS 

knowledge and PSS (or just technology) adoption experience

10



Notes on coverage and checking
• Coverage

– PSS provides support for coverage “coverspec” 
– Generate both gen-time and run-time coverage

• Checking
– express properties that are checked throughout execution
– There are no specific language constructs built into PSS to facilitate checking 
– external foreign-language code (reference models, checkers) to compute 

expected results during stimulus generation or in run-time

11



The Power of a Standard
• Advantages

– enable competition
– lead to economies of scale
– allow innovation (?)
– User investment decisions

In EDA

12

Advantages Disadvantages

multi-perspective removes creativity and innovation
• users and tool vendors compromise

Multi-vendor support

Staffing implications force people to change their methods 

Industry solution Compliance forces unnecessary syntax & actions impacts productivity



The Impact of a Standard: UVM
• Accellera approved version 1.0 of UVM on February 21, 2011

– UVM adoption from about 7% in 2010 to about 85% in 2016 
– VIP & tools (development and availability)
– Recruitment decisions 
– Hiring contract resources 
– Investment decisions

• Will PSS standardization have a 
similar impact?

13



Should I adopt a PSS technology early?
• Lessons from UVM

– PSS standardization will drive adoption
– Perception of proprietary features will impact adoption

• Benefits?
– Learn the PSS principles and concepts sooner 
– Get the benefits earlier
– Create verification assets that can be leveraged over longer life-times 
– Drive the standard and industry solution in their preferred direction
– Early adopters thus became a major asset to their companies

14



Selecting an appropriate PSS tool
• 3 PSS tools on the market at the time of writing. In alphabetical order:

– Breker; Cadence; Mentor, a Siemens Business

• Adopting “future” specification enhancements?
– Future refactoring or re-write?
– Vendors may claim to support “future” requirements in PSS v1.0
– While PSS will progress, users should not expect radical changes. 
– Talk to multiple vendors &/or independent PSS experts for a more rounded view
– Joining Accellera for advanced information (and steer the standard direction?)

15



Tool selection process
• We recommend a 4-stage selection approach 

1. Review the PSS LRM, examples, Accellera tutorials, and recommended usage 
2. Define the evaluation criteria, taking into account 

1. The PSS LRM
2. Your expected use models

3. Short list (via a quick eval) against the main evaluation criteria (2 tools?) 
4. Perform a detailed evaluation of the short list against the evaluation criteria

16



Defining the evaluation criteria
• What are my needs?

– Can this need be supported and implemented by existing PSS technology?

• What extensions to consider?
• Vendor selection criteria

17

• PSS deployment capabilities for specific 
environments such as UVM, SoC, etc.

• Reuse of existing verification infrastructure

• Coverage modelling and closure • Tool ecosystem
• Debug • Automation
• Availability of extensions • Training resources
• License model • Field support
• Environment support • Top down or bottom up methodology support



What tests or questions can be asked while 
evaluating the short-listed technologies?

• The practical deployment test: 
– Can the tool be easily applied into the various environments in use?

• The migration test – there are two migration routes to consider
– Migration of existing infrastructure
– Migration of PSS infrastructure

• The automation test
– Check that the automation provided in the tool is on top of the standard and not 

a bypass on the standard

• The “real design” test

18



Selecting the right PSS input format
• Text vs GUI scenario specification
• DSL vs C++

– DSL should be more succinct than C++
– There is still a learning curve for PSS/C++
– PSS/DSL can bind to gen-time libraries pretty much like PSS/C++
– DSL error messages are readable vs. gcc C++ error messages
– External sources (spreadsheets, XMLs) should be easier to integrate in PSS/C++
– Computation as part of solving/code generation should be easier in PSS/C++
– In general, DSL is easier for C or SV users while PSS/C++ if better for C++ users

19



Conclusion

• Accellera standardization of PSS is likely to accelerate adoption
• Currently three vendors to select from: 
• Early adopters can gain benefits
• But should be aware of the potential pitfalls 
• This paper has identified both 

– a process 
– and criteria for valuation for selecting the right technology.

• Thanks to contributions from Cadence, Breker and Mentor Graphics

20


	Portable Stimulus Standard: �The Promises and Pitfalls of Early Adoption
	Agenda
	Introduction
	PSS: An Example
	PSS Example ctd: Objective & Challenges
	PSS Example ctd: Actions & Dependencies
	PSS Example ctd: An Example Scenario
	PSS Example ctd: Concrete Implementation
	PSS Example ctd: Generated Code
	Getting up to speed on PSS
	Notes on coverage and checking
	The Power of a Standard
	The Impact of a Standard: UVM
	Should I adopt a PSS technology early?
	Selecting an appropriate PSS tool
	Tool selection process
	Defining the evaluation criteria
	What tests or questions can be asked while evaluating the short-listed technologies?
	Selecting the right PSS input format
	Conclusion

