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Abstract- The methodology and standards for modeling stimulus generation and tracking functional coverage are 

currently not easily ported between the various verification environments that are used during the development of a 

SoC. The use of constrained random stimulus is mostly confined to SystemVerilog testbenches or hybrid 

environments such as mixed SystemC / SystemVerilog. While methodologies such as the SystemC Verification 

Library (SCV) do allow for randomization of stimulus and seed management, the limitations and the performance 

have been disappointing, and so they have not been widely adopted. The real issues though are the effort required to 

maintain independent stimulus models and the lack of random stability between those models. 

There is therefore a growing interest in having a stimulus modeling capability that is independent of the language 

and methodology used. For example, when developing algorithms that will eventually be synthesized in a High-

Level Synthesis (HLS) flow, a common desire is to fully verify the functionality in a pure C environment but with 

advanced capabilities like constrained random stimulus and functional coverage metrics included. Ideally the same 

stimulus model can then be re-used within a SystemVerilog testbench to validate the RTL output of the synthesis 

flow. Furthermore, if random stability can be achieved across the languages and testbench environments then the 

results from each model can be compared easily and problems found in one environment can be debugged on any or 

all of the available design models. 

This paper describes a methodology based around a graph-based stimulus modeling language which can provide 

all of these capabilities. The same model can be used to generate repeatable stimulus in a pure C or SystemC 

simulation environment, in a SystemVerilog UVM testbench or any other environment, such as hardware emulation, 

that can be driven from transaction level stimulus generated on a connected host. The graph based model consists of 

a combination of rules that resemble a Backaus-Naur form and SystemVerilog-like algebraic constraints. The model 

can originate from many sources, including extraction from a System Verilog UVM sequence item, or generation 

from a high-level synthesis tool that has analyzed the design under test. This model can be compiled into a binary 

form that can drive repeatable constrained-random stimulus, controlled by common seeds, into any environment that 

has a C/C++ application-programming interface (API). 

In addition, by extending the modeling capability of algebraic constraints typically used within a SystemVerilog 

randomize-able class object with the rule language syntax, more complex verification scenarios can be described in 

the graph-based model compared to, for example, a SystemVerilog sequence item, without compromising the plug-

and-play nature or reusability of that model. 

I.   INTRODUCTION 

With the capabilities of mixed language simulation, and the availability of libraries dedicated to inter-language or 

inter-methodology adaptation/translation, it may seem that common stimulus models could already be made 

available in most environments. This may be true in theory, but connecting, for example, a SystemVerilog 

constrained random stimulus model to an abstract algorithmic model in C or C++ brings an unfamiliar language and 

possibly performance issues into that domain. Other options like manual or automated translation of a stimulus 

model from one language to another bring their own issues in the areas of maintenance overhead and debugging 

issues in the translated models. 

At the same time, those domains now need to upgrade their verification methodology with the capabilities of a 

SystemVerilog UVM based environment in order to keep up with the growing complexity. The reasons are identical 

to those that drove the evolution of constrained-random, coverage-driven environments for SystemVerilog, i.e. 

primarily the need for automation in the generation of stimulus, when directed test generation can no longer keep up. 



II. ALGORITHM VERIFICATION IN C/C++ 

A pure C-based verification environment is traditionally used for checking the algorithm performance and for 

comparing floating vs. fixed point models. The algorithm’s relative performance due to varying design parameters 

and other trade-offs can be determined in this early architecture phase without the need to re-verify them in RTL, 

providing that equivalence between the original C and subsequent RTL implementations can be established. This is 

done either formally or by functionally simulating both models using the same stimulus, or a mixture of both. 

Historically, functional coverage in algorithm model verification has been mainly limited to code coverage, and 

some use of assertions, but more complex models involving concurrent combinational and sequential processes 

introduce a lot of cross product space that code coverage alone isn’t able to distinguish. This is leading organizations 

that rely on fully verifying these models in C-based environments to look for SystemVerilog style functional 

coverage modeling, i.e. covergroups with coverpoints and crosses, and advanced automated stimulus generation to 

target them. 

III. EXAMPLE OF A PORTABLE STIMULUS MODEL 

The term ‘portable stimulus’ was chosen by a recently formed Accellera Proposed Working Group (PWG) that 

was tasked with determining whether a new standard for stimulus modeling should be formed and to identify what 

its requirements should be. The Portable Stimulus working group will commence in March, with the main 

requirements being that the model should be both self-contained and independent of any existing languages. 

The development of stimulus modeling alternatives to traditional SystemVerilog or ‘e’ constrained random has 

been ongoing for a while with some graph-based approaches already in use in many verification groups in all areas 

of the globe. As the use of such techniques grows, the lack of a standard in this space starts to become more of a 

concern. 

This paper will reference a graph-based stimulus modeling language as an example of the type of capabilities that 

such a portable stimulus model might be expected to have, and show how it fits into a broader verification 

methodology that is also portable across languages and environments. 

Graph-based stimulus modeling is not new, with a long history of use in software verification and at least a 

decade of use in hardware verification. The graph in this case is a declarative description of legal stimulus scenarios, 

which is independent of any particular hardware verification language or environment. The textual description of the 

graph is based on rules that resemble a Backaus-Naur form, which declares how elements of the scenario can legally 

be combined into a sequence. Fig. 1 shows a simple example of such a set of rules. 

 

 

Figure 1. Rule example 

The rules are hierarchical and contain three basic constructs: sequences, choices, and loops. 

A graphical view generated from these rules gives a clearer indication of the intent. Fig. 2 shows the graphical 

form of this same example, with the interface ‘do_trans’ expanded to show its internal rule graph. 

 

 



 

Figure 2. Example graph view 

This simple example demonstrates what is meant by graph-based stimulus, and how this differs from a traditional 

UVM sequence/sequence item approach, which uses procedural code to define the scenario. The graph-based 

approach extends stimulus automation capabilities beyond generation of legal combinations of numerical quantities, 

to also include legal sequences of operations. The graph is therefore a description from which multiple legal 

scenarios can be determined. 

The portability of this description arises from the ability for the nodes in the graph to be independent of any 

language or environment, but to contain all the necessary information for a language or environment specific 

implementation to be unambiguously derivable from them. 

To be a viable alternative to SystemVerilog constrained random stimulus, the simple rule syntax must also 

incorporate the declaration of numerical quantities and algebraic constraints that define the legal combinations. The 

constraints in the case of the graph though can extend to encompass relationships between elements of concurrent or 

sequential transactions. Within a typical state-of-the-art UVM testbench environment, for example, the graph 

effectively becomes a source from which multiple virtual sequences can be generated. In that case, the numerical 

quantities and nodes within the graph become the fields of sequence items and the calls to the sequence item API 

respectively. Fig. 3 shows an example of a graph that defines one or more scenarios. 



 

Figure 3. Example of a scenario graph 

This example graph declares its scenario to be either an ethernet control frame followed by a data frame, or, 

alternatively, an ethernet control frame followed by an ipv4 frame. The inverted blue trapezoids represent new 

constraints that become active depending on the path taken, which create new dependencies on the transaction to 

follow. The brown rectangles are containers for the individual fields of each data structure, which map to fields of a 

sequence item in UVM. The green nodes are action nodes that represent calls to the sequence item API.When 

targeted at an abstract C testbench, those same quantities and nodes become class data members and appropriate 

function calls for that environment that reference them. The next section will show this in more detail using a real 

example. 

IV. PORTABLE STIMULUS APPLIED TO A HLS FLOW 

The growing use of High-level Synthesis (HLS) is one of the factors driving the need for a more advanced 

verification methodology in a pure C based verification environment, and also underscores the value of a reusable 

stimulus model that can also be applied to downstream verification. 

A typical HLS flow starts with an algorithm implemented in C or C++ as the input to a high level synthesis tool 

and also as the Device-Under-Test (DUT) for verification. Along with one or many RTL implementation options, 

HLS tools can theoretically synthesize a stimulus model based on its analysis of the algorithm, and perhaps even 

infer some suitable verification goals & even specific coverage targets. 

This is best explained by a simple example. Fig. 4 shows a C implementation for a FIR Filter with Loadable 

Coefficients. 



 

Figure 4. FIR filter function with loadable coefficients 

Some numerical quantities that might form part of a stimulus model for this Device Under Test (DUT) are easily 

inferred from this code – they are the input arguments to the fir_filter_ld function: inp, coeffs (an array), addr and ld. 

The data types used would need to be translated into a more general form for the model to be portable. 

A typical C testbench for this example might randomize or hard code values passed as the arguments using 

available functions such as rand(), and perhaps using a while or for loop to produce sequences of input arguments. If 

we re-arrange this testbench to conform to something closer to a UVM-like architecture, the arguments would be 

collected into a class or struct, analogous to a UVM sequence item, and the code that takes those class/struct 

members and calls the function with their values becomes the analog of the agent / bus functional model (BFM). 

Fig. 5 shows an example of such a stimulus class, in this case auto-generated from the C function in Fig. 4. 

 

Figure 5. Stimulus Class Example 

Organizing the C testbench in this fashion makes it easier for a common stimulus model to be used in the initial 

pure C simulation environment, and then later, when the RTL is available, to be re-used in a UVM or other 

SystemVerilog testbench that includes that RTL and also uses a class or struct of similarly named fields. In both 

cases, the portable stimulus model is used to populate the field values within the context of a scenario that might, for 



example, perform some necessary initialization and then loop through a series of constrained sets of inputs to the 

function. The series of inputs produced might simply be targeted to achieve some cross coverage goal of the input 

space, and / or might setup scenarios that relate subsequent sets of these values, analogous to SystemVerilog 

transition coverage. Fig. 6 shows the stimulus model, which was also generated from the original C implementation. 

 

Figure 6. Graph Stimulus Model for the Fir Filter Example 

For the coverage goals that the stimulus model targets, these can either be inferred by the HLS tool as mentioned 

before, or manually determined by the verification engineer, who may also be the developer of the algorithm at this 

abstraction level. 

For this FIR filter function we could infer, for example, a cover point on “ld” and on a range of “inp” and on the 

cross of these to form the SystemVerilog style ‘covergroup’. Internal to the function we could also put an assertion 

on “temp” to check if it goes out of range or wrap/clip occurs. 

The implementation of the coverage model in a pure C environment is possible through the use of the Unified 

Coverage Interoperability Standard (UCIS) API calls, the detailed code for which could be generated by the HLS 

tool, if it inferred the coverage goals, or generated through some friendlier user interface or convenience API as part 

of the verification process and toolset. 

Stepping back a little from the details, we can see that we have most of the elements required for a constrained 

random, coverage-driven flow, all implementable in a pure C simulation environment. 

The portable stimulus model itself is abstract enough to either be translated into any HVL language, or for higher-

value stimulus generation tools to be linked into the C environment with their own C/C++ API. One implementation 

of such a tool provides a single API call to the stimulus model that replaces the SystemVerilog item.randomize() call 

with its own analogous function, method or task call for each of the environments and languages that it supports. 

The common UCIS coverage model allows coverage results to be collected, analyzed and merged alongside similar 

coverage from a traditional SV/UVM toolset. 

Returning to the FIR filter stimulus model in Fig. 6, in the tool flow used in this example, there is an interface 

defined which operates on an instance of the stimulus class, called ‘fill_fir_filter_ld_stimulus’. This interface has an 

implementation in C++/SystemC, and in SystemVerilog. The stimulus class in Fig. 5 is easily also defined as a 

SystemVerilog sequence item, as in Fig. 7 below, keeping the variable names consistent. 



 

Figure 7. SystemVerilog Sequence Item 

The original verification of the C implementation is performed in a C++ testbench, wrapped in SystemC. 

Eventually, the synthesized RTL is instanced in a UVM testbench. If we compare an excerpt from each of these two 

testbenches, as in Fig. 8 & Fig. 9 below, we can see the interface method or task being called in both cases, passing 

a handle to an instance of the class or its analogous sequence item. 

 

Figure 8. C++ Testbench Excerpt ‘while’ Loop 

 

Figure 9. SystemVerilog Testbench Excerpt Sequence Body Task 

The benefit in this example may seem trivial, but if we consider a more typical situation, such as the transaction 

level object that models a complex bus protocol with dozens of variables and a large number of complex constraints, 

the value of moving all of that into an independent form is clearer. In this example tool flow the language dependent 

object just needs to contain the fields, and those are easily derived. The portable stimulus model contains the 

constraints and as shown, can be called from any language to provide a legal set of values for the next transaction. 

V. RESULTS CHECKING & DEBUGGING 

For the results checking, i.e. score-boarding, this will typically be done in the pure C environment via the use of 

another golden reference model, perhaps a Matlab model that is linked into the simulation. Leveraging this 

downstream requires us to consider other possible benefits that might be derived from an independent stimulus 

model. 

If the technology used in stimulus generation can also provide random stability across these environments then 

this allows the results produced in the C simulation to be used as a reference when validating the functionality of the 

RTL version of the DUT. If performance considerations limit the relative amount of stimulus that we can apply to 

the lower level models, then the coverage targeted in the C domain would be a superset of what is expected to be 

achieved downstream. This suggests a methodology where the functional coverage for the C model is built in a 

layered way, with perhaps fewer bins, or crosses of fewer variables being included in the metrics that must be 

achieved at both levels. This is quite appropriate though for our intent of using this lower-level ‘re-verification’ in 

conjunction with formal techniques as a means to establish equivalence between the initial C algorithm and the 

synthesized RTL, as mentioned earlier in section II. 

 For debugging issues, any random-stability provided can also allow a problem found in one domain to potentially 

be debugged in the other, using the ability to replay the same stimulus sequence in each case using a seed 

mechanism or something similar. 



If both domains also use the common UCIS standard and tools that support it for coverage collection and analysis, 

then a continuous verification management flow can also be maintained. 

VI. RECAPPING THE PROPOSED HLS VERIFICATION FLOW 

Fig. 10 below shows the flow that is enabled by incorporating these elements into a coherent methodology. 

 

Figure 10. Flow diagram 

To recap the capabilities, and the level of automation, that could be enabled by such a flow, this could include: 

a) Generation of stimulus model and initial coverage goals from HLS tool’s analysis 

b) Re-usable stimulus and reference results across model abstractions and verification languages 

c) Common, merge-able coverage results across model abstractions and environments 

VII. SCALABILITY TO OTHER VERIFICATION ENVIRONMENTS 

It is not enough to merely serve one flow with these methodology and model changes, so we must test this against 

others potential applications. Use of emulation is another area where finding common stimulus models between 

different domains can be a challenge. Again, SV/UVM solves the problem for simulation, and in some cases, 

testbench acceleration with links from UVM to a hardware box is a feasible option. In other cases the performance 

requirements or interface limitations dictate that a fast C-based stimulus model is needed, so our portable stimulus 

model may again be used here, with similar benefits, i.e. re-use a single stimulus model in both domains, and then 

again debug in either domain using random stability if available. 

VIII. CONCLUSION - LOOKING TO THE FUTURE 

The key advantage of this approach is reusability of the stimulus model across multiple representations of the 

same design. The design verification (DV) engineer can now focus on achieving architectural verification goals at 

higher levels of abstraction, and then take the same stimulus model to verify implementation details at the 

appropriate lower level, while proving the functional equivalency between design abstractions. 

Furthermore, metric driven verification concepts, established and proven in the RTL domain, are extended to 

electronic system level (ESL) providing higher confidence in the design and greatly improving verification 

productivity. 

The stimulus model itself can be fully verified at the ESL level and the DV engineer does not need to re-write or 

translate multiple stimulus models for the test benches used at the lower abstraction level. The ESL stimulus model 



can be further refined by a DV engineer for any lower abstraction level specifics, especially related to closure on 

functional coverage metrics that are not practical or possible to verify at ESL. 

This additional opportunity for re-use, helped of course by standardization through Accellera, of the portable 

stimulus model description will improve the overall DV flow and increase overall project productivity, targeting the 

verification part that is increasingly becoming the bottleneck for large contemporary designs. 

It also has the possibility to bridge two teams, those working at ESL and the implementers, who currently speak 

different languages, with a formalized stimulus model and a coherent view of functional coverage. 


