IIIIIIIIIIIIIIIIIIIIII

NNNNNNNNNNNNNNNNNNNNNNN

Portable Stimulus Models for
C/System(C, UVM and
Emulation

Mike Andrews, Mentor Graphics
Boris Hristov, Ciena




IIIIIIIIIIIIIIIIIIIIII

NNNNNNNNNNNNNNNNNNNNNNN

Why Portable Stimulus

* Re-writing the stimulus model for multiple
environments is a big challenge

* Non SV options for constrained random have not
been satisfactory

— E.g. SCV had too many limitations

* In 2014, Accellera Proposed Standard Working
Group approved formation of a new standard

* Primary standard requirements:
— Self-contained
— Independent of any specific language (SV/SC)

3/17/2015 Mike Andrews, Mentor Graphics 2



| 2015

DESIGN AND VERIFICATION™

DV

NNNNNNNNNNNNNNNNNNNNNNN

Portable Stimulus Features

* Abstracted rule-based (declarative) description of
legal stimulus scenarios

— Blend of Backus-Naur Form and algebraic constraints

* Able to be mapped to any specific verification
environment:

— SystemVerilog UVM LIS UL (el
is a “context-free
— SystemC SCV / CRAVE grammar”
— Software driven verification
— Post-silicon validation Note: These are features of an

existing portable stimulus
application, not the TBD Standard

|
3/17/2015 Mike Andrews, Mentor Graphics &




| 2015

DESIGN AND VERIFICATION™

DV

CONFERENCE AND EXHIBITION

Portable Stimulus Example

* Uses existing graph-based rule language
rule_graph simple_protocol { |

import "decls.rseg"; Interfaces here
action init, do idle; indicate data
| transfer to or from
trans tro; the testbench
interface do_tra
input state vars currState; Repeats can be
interface gefstate(state vars); inside the sequence
simple_protocol = init repeat { / nested if desired
get state(curr_state)
(LT {curr_state.intf == ready} do trans(tr@)) | ‘Iis
(Lf {curr_state.intf == busy} do 1dle) S~ choice
) b operator

3/17/2015 Mike Andrews, Mentor Graphics 4



| 2015

DESIGN AND VERIFICATION™

DV

CONFERENCE AND EXHIBITION

simple_protocol

get_state(curr_state)

curr_state.intf == ready

do_trans(tr0)

Example as a Graph

do_trans(tro0)

do_trans(tr0).begin

curr_state.intf == busy

Takes the idea of randomizing
variables and broadens it to
“can do either Xor Y”

write=1

0. 11

read

“~tr0.addr{65536]

0..65535

dr[r.=.5535] R
0..65535 "tr0.data[256]

0..255

b J

do_trans(trO).end

3/17/2015 Mike Andrews, Mentor Graphics




2015

DESIGN AND VERIFICATION™

DV

CONFERENCE AND EXHIBITION

Sequential Dependencies

 Uses instances and
constraints on

instance fields x

* Generates a simple
scenario of:

— write to random
address

— then read from

rule_graph write_read test _seq {
import "decls.rseg";
action 1init;

interface do_trans(trans);
> trans tr@, trl;

N

}

onstraint do_write read c {
tro.dir == write;
tri.dir == read;
tro.addr == trl.addr;

write_read test_seq = init repeat {
do trans(tr@) do _trans(trl)
¥

same address

|
Mike Andrews, Mentor Graphics

3/17/2015




IIIIIIIIIIIIIIIIIIIIII

NNNNNNNNNNNNNNNNNNNNNNN

HLS Flow Application 1

* Growth in high-level synthesis drives need for
advanced verification methodology for C/C++ (ESL)

— Random stimulus generation
— Functional coverage collection

* The stimulus model is developed at system
architecture stage

— More functional verification earlier in design cycle
— Re-usable at implementation-level

 Common stimulus model is a communication bridge

-
3/17/2015 Mike Andrews, Mentor Graphics 7



| 2015

DESIGN AND VERIFICATION™

DV

CONFERENCE AND EXHIBITION

HLS Flow Application 2

* Methodology requires:
— Alignment of stimulus architecture
— E.g. input variables collected into a class

class fir filter ld stimulus

{

public: // data (one class member per DUT function argument)
ac_int<8, true > 1inp;
ac_int<8, true > coeffs[8];
ac int<3, false > addr; Analogous to

bool 1d; SystemVerilog UVM
Sequence ltem

public: // interface
fir filter ld stimulus() {}

|
3/17/2015 Mike Andrews, Mentor Graphics 8



| 2015

DESIGN AND VERIFICATION™

DV

CONFERENCE AND EXHIBITION

HLS Flow Application 3

* Methodology requires:
— SystemC analog to class.randomize()

— E.g. using interface to the stimulus graph to populate
stimulus class fields

// call graph to obtain next values
fir filter ld gen-=ifc fill fir filter 1d stimulus(&stimulus};

// Call C++ design
fir filter ld(&stimulus.inp, stimulus.coeffs, &stimulus.addr,
&stimulus.ld, &output);

|
3/17/2015 Mike Andrews, Mentor Graphics 9



IIIIIIIIIIIIIIIIIIIIII

NNNNNNNNNNNNNNNNNNNNNNN

New Flow Possibilities

e Same stimulus model can drive:
— Abstract ESL model
— SystemVerilog UVM simulation
— Fast interface to emulation / other hardware acc.

* What if a solver could provide random stability?
— Portable stimulus produces same scenarios
— Determined by a seed independent of language

— Problems found in one domain can be debugged in
any other...

|
3/17/2015 Mike Andrews, Mentor Graphics 10



| 2015

DESIGN AND VERIFICATION™

DV

NNNNNNNNNNNNNNNNNNNNNNN

Summary

* Portable stimulus model provides:
— Enhanced power in verification scenario description

— Another opportunity for re-use of significant coding
iInvestment

— Eases project bottleneck by allowing more functional
verification at abstract level

|
3/17/2015 Mike Andrews, Mentor Graphics 11



