
Portable Stimuli over UVM
using portable stimuli in HW verification flow

Efrat Shneydor, Cadence Design Systems, Israel (efrat@cadence.com)
Slava Salnikov, Ben Gurion University & Texas Instruments, Israel (slava.s@ti.com)

Liran Kosovizer, Texas Instruments, Israel (lirank@ti.com)
Dr’ Shlomo Greenberg, Ben Gurion University, Israel (shlomog@ee.bgu.ac.il)

Agenda
• UVM challenges
• PSS solvability
• PSS to UVM flow
• Summary

© Accellera Systems Initiative 2

3

Texas Instruments Wi-Fi router

•Multiple CPU cores, power domains & HW hierarchies
•Advanced verification environments, using Specman and UVM-e

–eight levels of reuse

SOC
complexity

clock &
power

domains

Multiple
CPUs /
cores

Configurab
ility

Error
injection

Communic
ation

protocols

External
interfaces

Verification requirements, stimuli generation

4

• Capture rules of system behavior
• Achieve a robust, re-usable solution for system level test composition
• Changes of DUT should not require more than minimal

modifications of the TB

DUT

WIFI Packet
sequence

I2C external
I/F sequence

Power
management

sequence

5

WIFI packet I2C external interfacePower management

Each scenario is well defined
Difficulty

6

WIFI packet I2C external interfacePower management

Sequences libraries
Difficulty

Power I2C

7

• Sequence should contain synchronization aids
• Multi-channels sequences

Interdependence of sub-modules
Difficulty

WIFI

I2C I/F

Power

Device shall not enter low
power mode before notifying
router with a dedicated packet
sequence
Device shall not send a sleep
mode request from any power
state but ‘idle’

8

How far can we stretch UVM?
Difficulty

WIFI

I2C I/F

Power

Delay SW reset requests until
end of I2C transaction
Device shall not initiate I2C
transaction from low power
mode

Agenda
• UVM challenges
• PSS solvability
• PSS to UVM flow
• Summary

© Accellera Systems Initiative 9

The PSS reuse solution

solve

gengen

Non platform
specific!

• Fully reusable
• One – time modelling

effort
• Invariant to internal

env changes

Platform specific API Platform specific API

Non platform
specific!

Generating Scenarios Using PSS

© Accellera Systems Initiative 11

Drag action/s Click ‘solve’ to create
concrete scenario.

Click ‘generate test’
to create code

Portable Stimuli actions

© Accellera Systems Initiative 12

Action

input

out-
put

action ce_tx_assoc_req {
input prev : from state_var;
output next : to state_var;

constraint prev.state == auth_unassoc;
constraint

action ce_rx_assoc_rsp {
input prev : from state_var;
output next : to state_var;

constraint ;
constraint next.state == connected_entry;

Generating Scenarios Using PSS

© Accellera Systems Initiative 13

Drag action/s Click ‘solve’ to create
concrete scenario.

Click ‘generate test’
to create code

II

PMUPMU
M]PIM]PI

INTCINTC
I2CI2C

Ref
model

Reg
model

Virtual sequences

UVC

UVC

Power
UVC

UVC

UVC

UVC
UVC

PSS over UVM

© Accellera Systems Initiative 14

C
C

C

Scenario generated by PSS

Tests run on top of UVM TB

UVM TB takes run time
decisions

Agenda
• UVM challenges
• PSS solvability
• PSS to UVM flow
• Summary

© Accellera Systems Initiative 15

• Perspec scenario provides high level test case backbone
• UVM sequencers handle signal – level transactions

16

PSS/UVM Partitioning – the hybrid model

API

UVC & DUT

UVC
PSS

Driving the scenario, from PSS to e
• Config struct passed information from PSS to UVM TB:

– PSS action defines the high level of what has to be sent
– Action body passes config struct to the e testbench
– e testbench executes the required transaction/s

© Accellera Systems Initiative 17

II
PM
U

PM
UM]P
I

M]P
I

INT
C

INT
CI2CI2C

Ref

model

Reg
model

Virtual sequences

UVC

UVC

Power
UVC

UVC

UVC

UVC
UVC

C
C

C

direction
kind, size

From action to test

© Accellera Systems Initiative 18

PSS Model

action change_state {
input prev : from state_var;
output next : to state_var;

cfg : cfg_s ;

exec body {
// Imported function
send_next(cfg);

};
};

From action to test

© Accellera Systems Initiative 19

PSS Model

action tx_auth like change_state {
constraint prev.state == sup_ap_found;
constraint next.state == wait_auth;

constraint cfg.direction == TX;
constraint cfg.transfer_kinds.size() == 1;
constraint cfg.transfer_kinds[0] ==

AUTHENTICATION;
};

The action conditions –
when can be executed,
and what the results are

The required scenario
exec body {

send_next(cfg);
};

From action to test

© Accellera Systems Initiative 20

PSS Model Perspec
Perspec

action tx_auth like change_state {
constraint prev.state == sup_ap_found;
constraint next.state == wait_auth;

constraint cfg.direction
== TX;

constraint cfg.transfer_kinds.size()
== 1;

constraint cfg.transfer_kinds[0]
== AUTHENTICATION;

};

Create scenario, according to config struct

All fields not constrained here will be
randomized, according to UVC constraints

The test flow

extend sys {
run() is also {

start perspec_main();
};

perspec_main()@sys.any is {
raise_objection(TEST_DONE);
t.pss_main();
drop_objection(TEST_DONE);

};
};

void pss_main(void) {
config(MODE_3A);
send_next(t_e_handle, 0);
/* …

e

C

The simulator and Specman start running

Specman calls the C main in run phase

From now – C test controls the scenario

This code is created automatically by the tool

In each test pss_main() is different,
based on generated actions

Altering the e-C synchronization

© Accellera Systems Initiative 22

extend sys {
run() is also {
start perspec_main();

};

perspec_main()@sys.any is {
raise_objection(TEST_DONE);
t.pss_main();
drop_objection(TEST_DONE);

};
}; Created

automatically

extend sys {
perspec_main()@sys.any is first {

var tf_mgr := tf_get_domain_mgr_of(CORE);
while TRUE {

wait @tf_mgr.new_phase_starting;
if tf_mgr.get_current_phase() ==

MAIN_TEST {
break;

};
///…

Created
manually

Start the test only after reach MAIN_TEST phase

e

e

Agenda
• UVM challenges
• PSS solvability
• PSS to UVM flow
• Summary

© Accellera Systems Initiative 23

Yet to be added
• Seamless regression invocation

• Vmanager integration, Perspec regression abilities

• Enhance Debug abilities
• Sync UVM test phases with Perspec scenarios
• Perspec/Specman migration to validation platforms (embedded C code)
• Full coverage closure using Perspec WIFI simulator

© Accellera Systems Initiative 24

© Accellera Systems Initiative 25

• PSS model
– Inputs, Outputs
– Rules of coexistence

• e API to test platform
– Platform specific

implementation

UVC & DUT

Summary

26

• Few weeks ramp up period, hundreds of tests created
• What usually takes several months

• Model is easily updated to new needs

• Concept shift makes integration not intuitive
• Perspec – C – Specman API impairs seamless integration
• Need to adjust debugging techniques

Bottom line: TI decided to expand the usage of Perspec over UVM

Questions?

© Accellera Systems Initiative 27

