Portable Stimuli over UVM using portable stimuli in HW verification flow

Efrat Shneydor, Cadence Design Systems, Israel (*efrat@cadence.com*) Slava Salnikov, Ben Gurion University & Texas Instruments, Israel (*slava.s@ti.com*) Liran Kosovizer, Texas Instruments, Israel (*lirank@ti.com*) Dr' Shlomo Greenberg, Ben Gurion University, Israel (shlomog@ee.bgu.ac.il)

cādence[®]

Agenda

- UVM challenges
- PSS solvability
- PSS to UVM flow
- Summary

Texas Instruments Wi-Fi router

- Multiple CPU cores, power domains & HW hierarchies
- Advanced verification environments, using Specman and UVM-e
 - -eight levels of reuse

accellera

Verification requirements, stimuli generation

- Capture rules of system behavior
- Achieve a robust, re-usable solution for system level test composition
- Changes of DUT should not require more than minimal modifications of the TB

Δ

Each scenario is well defined

Sequences libraries

CONFERENCE AND EXHIBITION

EUROP

Interdependence of sub-modules

- Sequence should contain synchronization aids
- Multi-channels sequences

Device shall not enter low power mode before notifying router with a dedicated packet sequence Device shall not send a sleep mode request from any power state but 'idle'

Difficulty

Agenda

- UVM challenges
- PSS solvability
- PSS to UVM flow
- Summary

Generating Scenarios Using PSS

Portable Stimuli actions

Generating Scenarios Using PSS

Agenda

- UVM challenges
- PSS solvability
- PSS to UVM flow
- Summary

PSS/UVM Partitioning – the hybrid model

- Perspec scenario provides high level test case backbone
- UVM sequencers handle signal level transactions

Driving the scenario, from PSS to e


```
action change_state {
    input prev : from state_var;
    output next : to state_var;
    cfg : cfg_s ;
    exec body {
        // Imported function
        send_next(cfg);
    };
};
```


PSS Model

From action to test /* Imported function forward declaration */ // add e instance handle as first argument extern int send_next(eStructHandle me_hndl, perspec_specman_if_cfg extern int wrapper__send_next(eStructHandle me_hndl,int param_0); action tx auth like change_state { /* Entry point for Perspec execution of thread t */ constraint prev.state == sup ap found; void sln_main(void) { constraint next.state == wait auth; perspec_init(); /* Code for scenario: ce_rx_bcn [1] on thread t */ constraint cfg.direction == TX; /* Code for action i0:ce_rx_bcn [4] on thread t declared a constraint cfg.transfer_kinds.size() /* Start action msg */ == 1; { constraint cfg.transfer kinds[0] wrapper__send_next(t_e_handle, 0); == AUTHENTICATION; }; 44 /* End action msg */ Perspec /* Code for action a0:ce_tx_auth [2] on thread t declared a **PSS Model** © s: sample_state [11] /* Start action msg */ Perspec { wrapper__send_next(t_e_handle, 1); tore false 0 A: A [14] 0 C: C [18] /* End action msg */ 0 B: B (15) 0 D: D (19) } } @export fli c() send_next(cfg: perspec_specman_if_cfg_s) @sys.any is { !seq : vir_sequence; gen seg keeping { Create scenario, according to config struct .direction == cfg.direction; 11 ... }; seq.start_sequence(); wait @seq.ended; All fields not constrained here will be }; 2019 randomized, according to UVC constraints DESIGN AND VERIFICATION 100 7 H CONFERENCE AND EXHIBITION © Accellera Systems Initiative 20 UROP

The test flow extend sys { The simulator and Specman start running run() is also { start perspec main(); Specman calls the C main in run phase }; perspec main()@sys.any is { From now – C test controls the scenario raise objection(TEST_DONE); C t.pss main(); drop objection (TEST DONE); void pss main(void) { }; config(MODE 3A); }; send next(t e handle, 0); This code is created automatically by the tool /* ... In each test pss main() is different, acc based on generated actions

Altering the *e*-C synchronization

Agenda

- UVM challenges
- PSS solvability
- PSS to UVM flow
- Summary

Yet to be added

- Seamless regression invocation
 - Vmanager integration, Perspec regression abilities
- Enhance Debug abilities
- Sync UVM test phases with Perspec scenarios
- Perspec/Specman migration to validation platforms (embedded C code)
- Full coverage closure using Perspec WIFI simulator

PSS model

Network State machine

- Inputs, Outputs
- Rules of coexistence
- e API to test platform
 - Platform specific implementation

Summary

- Few weeks ramp up period, hundreds of tests created
 - What usually takes several months
- Model is easily updated to new needs
 - Concept shift makes integration not intuitive
 - Perspec C Specman API impairs seamless integration
 - Need to adjust debugging techniques

Bottom line: TI decided to expand the usage of Perspec over UVM

2019

DESIGN AND VER

© Accellera Systems Initiative

Questions?