
Plugging the Holes: SystemC and VHDL Functional
Coverage Methodology

Pankaj Singh
Infineon Technologies

Pankaj.Singh@infineon.com

Gaurav Kumar Verma
Mentor Graphics

Gaurav-Kumar_Verma@mentor.com

ABSTRACT
Technology advances allows for the creation of larger and more
complex designs. This poses new challenges, including efforts to
balance verification completeness with minimization of overall
verification effort and cycle time.

It is practically impossible to enumerate all of the conditions and
states to do an exhaustive test. Therefore, it is imperative to use
well defined criteria to measure and check when the verification is
sufficiently complete and meets a reasonable quality threshold.
Code coverage is one measure of design quality. Another is
functional coverage, which is used to check that all important
aspects of the design are tested while perceiving the design from a
user or system point of view. The verification task for complex
designs is further confounded due to usage of multiple Hardware
Verification Languages (HVL’s) such as VHDL, SystemVerilog
and SystemC in a single design. While functional coverage is
provided in Vera, Specman and SystemVerilog; languages such as
VHDL and SystemC have neither an inherent support for
functional coverage nor a well defined methodology to facilitate
it. Addressing these two issues was the main motivation behind
our work.

This paper presents two unique solutions for facilitating functional
coverage in VHDL and SystemC. One approach is to use post-
simulation Value Change Dump (VCD) files to calculate
functional coverage. The other approach, which is applicable only
to SystemC, proposes extending the SystemC Verification Library
(SCV) to facilitate functional coverage calculation. A utility is
created based on the proposed VCD solution and validated against
sample testcases. Results of these experiments are also presented.

This paper starts with an introduction section that highlights the
gaps or non-availability of consistent standardized functional
coverage methodology for SystemC and VHDL based designs.
The second section covers the details of the proposed solutions
and is divided into two main sections: VCD-based coverage
methodology, which provides a generic language independent
coverage solution, and SystemC functional coverage solution,
which proposes a new set of extensions to the SystemC SCV
library that are not currently part of the OSCI-SCV API. The
conclusion summarizes results and highlights the benefits of
overcoming common HVL coverage limitations.

Keywords—

VCD: Value Change Dump

CIF: Coverage Input File

SCV: SystemC Verification Library

HVL: Hardware Verification Language

OSCI: Open SystemC Initiative

1. INTRODUCTION

Over the past decade coverage-driven verification has emerged as
a means to deal with increasing design complexity and ever more
constrained schedules. Functional coverage provides a reliable
measure for determining what each test run has accomplished and
reflects the status in terms of overall verification completeness.
HVL’s like SystemVerilog support key features for functional
coverage such as:

 coverage of (and cross coverage between) variables and
expressions

 automatic and user-defined coverage bins
 means to associate bins with sets of values, transitions, or

cross products
 filtering conditions at multiple levels
 events and sequences to automatically trigger coverage

sampling
 procedural activation and query of coverage
 optional directives to control and regulate coverage

However, these powerful features are unavailable to users of
HVL’s such as VHDL and SystemC. Coverage-driven verification
flows for these two languages are still plagued by challenges on
how to efficiently achieve coverage closure.

Several methodologies ([1], [2]) have been proposed to extend
functional coverage to SystemC and VHDL. One [2] uses a
SystemVerilog bind construct to bind a SystemVerilog module or
program block containing functional coverage collection
constructs inside a SystemC or VHDL region. This solution works
well, though the mixed-language bind construct is not yet
standardized. There is no Language reference manual (LRM) for
mixed-language interactions, which forces designers to follow use
models dictated by EDA tools. These use-models vary for each
EDA vendor, which leads to design customization depending on
which vendor's tool is in use. What works in one vendor’s tool is
not guaranteed to work exactly the same way in the other.
Moreover, using the SystemVerilog bind construct to extend
functional coverage to SystemC and VHDL introduces an extra
level of hierarchy in the design, which may not always be
desirable.

The next part of the introduction section describes the VCD file
format, which is useful in understanding the proposed language-
independent VCD-based functional coverage methodology.

Introduction to VCD

Value change dump (VCD) is an ASCII-based format for
dumping files generated by EDA simulation tools that capture
value changes on selected variables or signals in a simulation. The
simple compact structure of the VCD format has allowed its use
to become ubiquitous and to spread into other HVL domains.

Components of a VCD file
A VCD file comprises, in order: a header section with date,
simulator, and timescale information; a variable definition section;
and a value change section.

VCD keywords are marked by a leading $ and in general start a
section; sections are terminated by a $end keyword. Data in the
VCD file is case sensitive and broadly organized into four
sections:

1) Header Section: includes a timestamp, simulator version
number, and a timescale.

2) Variable Definition Section: contains scope information as
well as lists of signals instantiated in a given scope. Each variable
is assigned an arbitrary ASCII identifier for use in the value
change section.

3) Dump Var Section ($dumpvar): contains initial values of all
variables dumped.

4) Value Change Section: contains a series of time-ordered
value changes for the signals in a given simulation model.

2. LANGUAGE-INDEPENDENT FUNCTIONAL

COVERAGE MEASUREMENT IN HVLS

This is the implementation section which describes the details of
proposed coverage methodology based on language independent
VCD solution and extending functional coverage to SystemC
using SCV

2.1 Using VCD To Calculate Functional
Coverage

The VCD file is fundamentally a language-independent static
snapshot of all value changes in the simulation. This section
describes how to extend functional coverage to VHDL and
SystemC based on this powerful feature. High-level flows are
presented with flowcharts. Though it has been tested to work with
SystemC and VHDL through a series of experiments, the
proposed solution, which takes a VCD file and Coverage Input
File (CIF) as its inputs, can be extended to any existing HVL.

Coverage Input File
CIF defines coverage groups — struct members that contain a list
of data items for which data is collected over time. Once data
coverage items have been defined in a coverage group they can be
used to define special coverage group items called transition and
cross items. A scope is also defined as a pragma through the
$SCOPE keyword. The syntax of CIF is similar to that of
SystemVerilog language, which helps to reduce the overall

development effort, particularly since SystemVerilog parsers can
be re-used. A sample CIF is shown in Fig. 1 below.

Fig. 1 Sample Coverage Input File

A high-level overview of the proposed solution is shown is Fig. 2.

Fig. 2 High-Level Flow of VCD Based Coverage Calculation
Methodology

The Design Under Test (DUT), written in any HVL, is simulated
as usual in the verification environment. The generated VCD file
is stored and passed to the coverage calculation module, along
with the CIF. The core engine eventually generates the coverage
reports. If a different set of covergroups need to be defined, the
user can re-define and update the CIF file and re-use the same
VCD file to generate a new coverage report.

The algorithm developed works as a post process on the VCD;
hence it is not required to run the simulation again to generate a
different set of coverage reports. The same VCD file can be re-
used with the modified CIF to generate a different set of coverage
reports.

This methodology not only provides a language-independent
coverage solution but also saves a significant amount of time that
otherwise would be required due to multiple simulation re-runs to

VHDL/SC/SV

Simulator

VCD File CIF

VCD Parser CIF Parser

Core Engine

Coverage Report

COVERAGE CALCULATION MODULE

// $SCOPE=/main/
covergroup cg @ y;
 cover_point_y : coverpoint y {
 bins a = {0,1};
 bins b = {2,3};
 bins c = {4,5};
 bins d = {6,7};
}

endgroup

calculate the overall coverage.

The coverage calculation module described in this paper consists
of three main components.

A) CIF Parser: In addition to its primary task of getting
details of coverage groups, the CIF parser also populate a list of
variables and signals that must be monitored in the VCD. This is
particularly important because a VCD can contain lots of signals,
and monitoring all of them adds significant performance overhead
which may not be desirable.

A high-level flow of CIF parser details is shown in Fig. 3.

Fig. 3 CIF Parser Flow

The CIF parser retrieves the coverage item along with coverage
range of the variable. Each cover item is identified as cover points
and range as cover bins. The CIF parsing step involves collecting
cover points from the input CIF file and creating the hash data
structure. It captures bin information collected for each cover
point in separate hash table which is updated later.

B) VCD Parser: Once the list of all signals and variables that
are required to be monitored in the design is gathered by the CIF
parser, the VCD file is parsed to populate a database of value
changes.

A high-level flow of VCD parser is shown in Fig. 4.

Fig. 4 VCD Parser Flow

Parsing VCD file involves two separate operations which are
executed to gather coverage information from the simulation
dump. The first operation parses definition part of vcd file to
understand the variables. It captures the identifiers to create data
structure with related details such as variable name, range, size,

VCD

Read Variable
Definition

Process Dump Var Section

Store Variable in
Database for Monitoring

Is Var in
List?

More
Variable

Definitions?

END

YES

YES

NO

NO

Process Header

Value
Change on
Monitored

Var?

Read Value Change

Process Value
Change

More Value
Changes?

YES

NO

NO

YES

CIF

Read Covergroup

Read Coverpoint
Store cover item,

identify bins

Extract sigs and vars to
be monitored

More
coverpoints

?

More
covergroups

?

END

YES

YES

NO

NO

Read Parent Scope

type. The second parsing operation collects information related to
changing characteristics of the identifier retrieved during first
step. It fills the identifier data structure recorded during
simulation run.

C) Core Engine: The core engine keeps track of value change
updates coming from VCD, calculates coverage numbers based on
the coverage group definitions from the CIF, and generates
coverage reports. Fig. 5 illustrates the core engine flow.

Fig. 5 Core Engine Flow

The core engine takes data structure input from the above steps of
CIF and VCD parser flow. The core engine is the main module. It
loops through the required cover items taken from CIF file. For
each cover point, it identifies the type of coverage that is
requested and calculates the occurrences of values within the

limits of requested range of coverage point. It investigates each
range value of the coverage point and if this range falls within the
bin range it increments the respective bin’s hash table. Once the
tool captures all bin counters it calls the ReportGen module to
generate the total coverage report.

The ReportGen module retrieves all the bin information from
bin’s hash table and checks counter value of the each bin that is
being investigated. There will be at least one bin for each cover
point. The proposed utility considers default bin if there is no
explicit bin information provided in CIF. The coverage is
calculated based on the counter value of each bin. Complete
100% coverage is achieved for any cover point, if the counter
values of all the bins are filled. Total coverage is calculated by
considering all the cover point’s coverage value that is being
investigated by the tool

2.2 Extending Functional Coverage To
SystemC Using SCV

SystemC (IEEE Std. 1666™) is picking up as a standard to
describe complex SoCs. It allows the same language to be used
for early-stage and RTL-level design work, and also enables co-
simulation of modules described at different levels of abstraction,
including software. However, SystemC was not defined with
formal analysis in mind, a limitation that many in the verification
community are working to address.

This section proposes a new set of extensions to the SCV library
that are not currently part of the open OSCI-SCV API. These
extensions will extend functional coverage to SystemC designs,
with the help of SCV. A high level overview of the proposed set
of extensions is presented in Fig. 6a and Fig. 6b.

Fig. 6a Proposed set of SCV extensions to facilitate functional
coverage collection in SystemC

List of

scv_covergroup

List of scv_coverpoint

List of scv_crossbin

List of scv_covercross

List of scv_coverbin

scv_covergroup_scope

scv_coverpoint

 Name
 Number of bins
 SCV_COVEROBJECT_COMMON
 Utility functions to:

o Set the expression/variable being covered.
o Create a coverbin from a scv_expression.
o Conditionally ignore a coverpoint.
o Specify an illegal bin.

 List of scv_coverbin.

Start

Parse CIF

Parse VCD

Search coverbins & fill
appropriate Bins

Process Coverage
Types

Foreach value change

Next value
change

Foreach coverpoint

Next
coverpoint

Calculate coverage &
generate reports

End

Fig. 6b Proposed set of SCV extensions to facilitate functional
coverage collection in SystemC

The root of the proposed extensions data structure is the
scv_covergroup_scope object, which acts as a wrapper around the
list of scv_covergroups. It also contains critical scope information
like name, handle to scope’s parent and so on.

scv_covergroup contains lists of coverpoint and covercross, and
also the core routines defined as a part of the
SCV_COVEROBJECT_COMMON macro.

To help make the proposed extensions user-friendly for the
verification engineers, a set of macros has been introduced to
construct coverpoints, along with automatically setting the correct
file name and line number.

When the name of the coverpoint is same as the name of the
variable, these macros are defined as:

#define SCV_COVERPOINT_CTOR(x) x(#x,__FILE__,__LINE__)

#define SCV_COVERCROSS_CTOR(x) x(#x,__FILE__,__LINE__)

#define SCV_COVERGROUP_CTOR(x) x(#x,__FILE__,__LINE__)

Additional macros are provided to add flexibility by supporting
cases where the object name is not the same as its variable name:

#define SCV_COVERPOINT_CTOR2(x,y) x(y,__FILE__,__LINE__)

#define SCV_COVERCROSS_CTOR2(x,y) x(y,__FILE__,__LINE__)

#define SCV_COVERGROUP_CTOR2(x,y) x(y,__FILE__,__LINE__)

With support for a well-defined means of writing functional
coverage constructs in SystemC, the same SystemVerilog
functional coverage calculation engine of the simulator will work
for SystemC, as well.

3. RESULTS OF EXPERIMENTS

To validate the solution proposed in section II, a utility program
was developed and tested. This section presents the results of our
experiments.

Summarizing Experiments
40 testcases were created and tried through the utility. Following
is the distribution of testcases:

Fig. 7 Distribution of Testcases

For the purpose of validation of results, an equivalent testcase was
created for each testcase by binding the covergroup directly to the
design using the SystemVerilog bind construct. This modified
testcase was run through a popular mixed-language simulator to
generate functional coverage results, while the original testcase
was run through the developed utility. Results of both these runs
were compared to validate the utility.

In all 40 testcases, the results generated by the utility using the
post simulation VCD file were identical to the results of the
modified testcase run through the simulator.

Sample Testcase
To give a better insight into our experiments, this sub-section
discusses the simplest testcase as sample example.

Consider the following SystemVerilog module, main:

module main;

 bit [0:2] y;

 bit [0:2] values[$]= '{3,5,6};

 initial

 foreach(values[i])

 begin

 #2 y = values[i];

 end

endmodule

scv_covercross

 Name
 SCV_COVEROBJECT_COMMON
 Functions to add coverpoints to cross coverage.
 List of scv_crossbin

SCV_COVEROBJECT_COMMON

 Common set of utility functions to:
o Get name, kind
o Specify when to sample, start/stop sampling
o Specify condition that enables sampling
o Set coverage goal
o Get coverage at current point in simulation

This testcase was simulated for 8ns and the generated VCD file
was stored. This VCD file was fed to the utility together with the
CIF defined below:

// $SCOPE=/main/
covergroup cg @ y;

 cover_point_y : coverpoint y {

 bins a = {0,1};

 bins b = {2,3};

 bins c = {4,5};

 bins d = {6,7};

 }

endgroup

Fig. 8 Screenshot of generated sample coverage report

4. FUTURE WORK
While the prototype utility discussed in section III has been tested
to work on smaller testcases as a proof of concept, it’s
benchmarking and validation is yet to be done on larger real-
world designs. It will be interesting to see how its performance
compares to the simulator’s built-in engine for calculating
functional coverage in pure SystemVerilog designs.

Also, VCD being ASCII is very inefficient in terms of space. For
large-scale real designs, VCD may not be a viable format. It will
be interesting to see if WLF, or other similar formats, can be
helpful in overcoming this limitation of VCD.

5. CONCLUSION
Due to the increased design complexity and distinct benefits of
different languages, mixed language design is a reality. While
some languages have standardized well defined coverage
methodology, others suffer from limitations in measuring
coverage. This paper presented solutions for functional
verification coverage, specifically addressing how to implement a
complete coverage-driven verification approach using VHDL,
SystemC or other HVLs. The methodology proposed for VHDL
utilizes a similar coverage description concept as in
SystemVerilog; the addition is a new VCD-based approach. As
the VCD is language-independent, the proposed methodology can
be utilized for any HVL. The results for VHDL functional
coverage match those of the SystemVerilog approach on sample
design examples.

A set of extensions to the SCV library is also proposed to
facilitate calculation of functional coverage in SystemC. The
biggest factor preventing extending functional coverage to
SystemC is the lack of a way of specifying these constructs in the
language. With the proposed extensions, verification engineers
will be able to directly define their covergroups in SystemC itself,
and the native coverage engine of the simulator, which works for
SystemVerilog, can be reused for calculating functional coverage
of SystemC designs.

6. REFERENCES

[1] Alan Fitch and Doug Smith,”Functional Coverage without
SystemVerilog”, DVCon 2010.

[2] Gaurav Kumar Verma and Rudra Mukherjee, “Adding New
Dimensions to Verification IP Reuse”, DVCon 2009.

[3] Rich Edelmen, Mark Glassar, et al. “Inter Language
Function Calls between SystemC and SystemVerilog”,
DVCon 2007.

[4] Pankaj Singh and Gaurav Kumar Verma, “A Holistic View
of Mixed-Language IP Integration”, DVCon 2010.

[5] Rudra Mukherjee and Sachin Kakkar, “System Verilog –
VHDL Mixed Design Reuse Methodology”, DVCon 2006.

[6] Jing-yang Jou and Chien-nan Jimmy Liu, “Coverage
Analysis Techniques For HDL Design Validation”, 6th Asia
Pacific Conference on Chip Design Languages
(APCHDL'99)

[7] Chen-Yi Chang, “Functional Coverage Analysis for Circuit
Description in HDL”, Master Thesis, Department of
Electronics Engineering, National Chiao Tung University,
Taiwan, Jun. 1999.

[8] Chien-Nan Jimmy Liu, Chen-Yi Chang, et al. “A Novel
Approach for Functional Coverage Measurement in HDL”,
ISCAS 2000 - IEEE International Symposium on Circuits
and Systems, May 28-31, 2000, Geneva, Switzerland

Note:

* In this paper the term "coverage" represents functional coverage.

