
Plan & Metric Driven Mixed-Signal

Verification for Medical Devices

Gregg Sarkinen

Medtronic, Inc.
8200 Coral Sea Street

Mounds View, MN 55112
(1) 763.526.1923

gregg.t.sarkinen@medtronic.com

ABSTRACT
This paper discusses the experience of using plan and metric-driven
verification on a recent mixed-signal integrated-circuit (IC)
prototype at Medtronic. The design consists of digital and analog
circuits which traditionally have been verified with unique tools and
methodologies to perform simulation tests. The approach for this IC,
while relying on the unique capability of the tools for each design
discipline, integrates the test environment for the digital and analog
circuitry and adds a unique dimension to the testbench technology.
The focus of this effort is to efficiently demonstrate functional
confidence in the IC prior to fabrication.

The primary goal, verifying functionality, is achieved by first
planning for verification. This consists of analyzing requirements on
the analog and digital circuit functionality and understanding the
design architecture and interfaces. In order to efficiently achieve full
IC functionality within project means, a common test environment
must be architected to accommodate the digital circuitry, analog
circuitry, block connectivity, and full chip integration as a stand-
alone IC. An additional outcome is verification component and
behavioral model reuse at higher levels of integration.

Metric driven verification, an advanced testbench simulation
capability originally developed for digital circuitry, has been adapted
for analog designs as well. This methodology, along with integrated
digital-analog simulation capability, is the technology for achieving
the project objectives. Metric-driven verification is a methodology
for verification by which functional coverage for the device-under-
test (DUT) is defined and automatically assessed against the
simulation runs. The coverage metrics may include structural
measures such as code coverage in addition to functional coverage.
Simulation completeness is defined when coverage goals are met
while all simulations are passing. Stimulus for the DUT relies upon
highly developed constrained-random generation, automating what
used to be a tedious process of manual testing. Additionally, the
metric-driven methodology is scalable to higher levels of integration
because the stimulus and checking constructs have been separated in
the testbench environment. Checkers are used that span across the
Analog/Digital boundary, which has traditionally been a rich source
of error. Historically, these checkers have been confined to the
individual domains – analog and digital, making assumptions and
approximations about the other domain

The final IC level standalone environment serves to verify digital and
analog block functionality, and end-to-end chip functionality. The

functional verification of the mixed signal IC prototype is
approached as a complete component. Advances in digital
simulation have been further enhanced with analog support to allow
for feature level chip verification. The benefits are realized by using
common testbench components and automated tests.

Categories and Subject Descriptors
A.0 [General]: Conference Proceedings.
B.4.4 [Input/Output and Data Communications]: Performance
Analysis and Design Aids – Simulation, Verification, Worst Case
Analysis.
B.5.2 [Register-Transfer-Level Implementation]: Design Aids –
Simulation, Verification.
B.7.2 [Integrated Circuits]: Design Aids – Simulation, Verification.

General Terms
Algorithms, Measurement, Languages, Verification.

Keywords
Metric Driven, Coverage Driven, Constrained Random, Mixed
Signal, High Level Verification, Advanced Verification, Specman,
AMS.

1.0 INTRODUCTION
Implantable medical devices have strong requirements for
correctness and reliability. Thus, the functional verification process
and comprehensive planning and metrics are relied on to accurately
gauge verification progress and thoroughness. Medical ICs are
almost universally mixed-signal in nature since they must interface
with the analog world of the human body.

Currently, many ICs are mixed signal in nature regardless of
industry. The methodology described in this paper provides a means
to systematically perform functional verification on mixed signal ICs
through simulation.

2.0 VERIFICATION PROBLEM
This project included designing and verifying a prototype mixed-
signal IC that was part of a larger system of components of which
this IC was also a component of a system interface. The goal of this
project was to verify the complete IC functionality which included:
end to end requirements, digital and analog integration, and higher
levels of integration with external components. This verification

effort had to satisfy IC verification goals as well as be reusable at the
system level of integration. To achieve these goals, a verification
process was adhered to which brought initial focus to planning. The
planning phase was a critical point in the verification effort because
the verification scope and goals were identified and a solution was
proposed and communicated to the broader team.

Mixed Signal IC
command I/O

Digital

config I/O

 analog I/O

Analog

V-I Bias

D/A

Figure 1 Mixed - Signal IC

3.0 VERIFICATION PLANNING
High level goals of achieving an environment, that was fully
automatic and regressable as well as scalable for reuse at the system
level, were stated from the outset.

This planning stepped back from individual analog or digital blocks
and viewed the completed system. A hierarchical approach was
taken where a leveling of verification was applied. For example, the
IC verification environment did not need to achieve what was
accomplished at block level verification. And likewise, the system
verification did not need to repeat IC level verification.

Figure 2 System with Mixed - Signal IC

The requirements to be verified for the IC were focused on the
interfaces and end-to-end functionality. Internal interfaces were left
to block level verification. The verification planning began with a
survey of all the efforts, block-IC-system, being applied. Test
coverage goals were defined for each interface, discipline, and
functional requirements.

Challenges to overcome during this phase included: developing a
complete verification plan prior to implementing and running
simulations, attaining feasibility that self checking methods on
analog circuitry could be achieved prior to committing to the plan,

developing a resource plan to commit to this effort which involved
additional development of verification components, and finally
reporting progress against milestones which used coverage reports
versus the traditional simulation test count executed.

4.0 VERIFICATION ENVIRONMENT
The verification applied to this mixed-signal IC followed a metric
driven verification methodology approach. This paper doesn’t define
the commonly used ‘metric driven verification’ methodology but
rather how it is applied to mixed signal designs.

Numerous complexities were addressed within this project:
constrained random analog stimulus, analog self checking, analog
coverage metrics, mixed electrical disciplines (SW, digital, analog),
various analog and digital design representations, multiple simulation
tools, multiple verification languages, behavioral modeling, and a
high degree of automation.

One aspect of the IC under test that will be used as a case study of
analog self checking is the output pulse. The mixed-signal IC
produces an analog electrical waveform with the following attributes
shown in Figure 3 below. The input to the mixed-signal IC is a
digital command that triggers the output waveform.

Figure 3: Pace Pulse Waveform 1

4.1 Overview
The following figure illustrates a high level view of the verification
environment. Given the black-box approach, only the external IC
interfaces are of particular interest. The black-box approach is one
attribute in attaining a scalable and reusable environment. An
immediate payback in this effort was the ability to test various
configurations of the ‘device under test’. For a given level of
verification, black-box enforces verification against interface
requirements and end-to-end requirements versus the implementation
itself.

The verification environment shown in Figure 4 is capable of
providing stimulus on both the analog and digital interfaces as well
as performing continuous monitoring of all interfaces in both the
analog and digital domains.

In continuing the case study, the ‘agent’ performs the initial device
configuration and generates high level test sequences. The
sequences in digital form are played through the config and
command ‘e verification components (eVC) bus functional models
(bfm). The eVC monitors collect all transactions, such as a pace
command, and forward them to a predictor and scoreboard for
checking. The analog I/F eVC monitors the lead interface and
collects all pace pulse waveforms for checking in the scoreboard.
Thus end-to-end checking is achieved. The agent is also responsible

for generating the analog configuration and stimulus needed for
simulation.

Figure 4 Testbench Architecture

4.2 Stimulus
All stimulus controllability for the verification environment was
controlled via the language constructs provided by the hardware
verification language. This includes both digital and analog
parameters. Individual simulations were controlled via test files with
no graphical user interface (GUI) interaction. The verification
environment inherently varied all analog parameters with each new
simulation run unless constrained by the test file. All stimuli
generated represented valid conditions thus the term ‘constrained
random’. The digital interfaces and parameters were exercised
according eVC best practices and not discussed here. The case study
will focus here on achieving analog controllability as synchronized
with the digital control.

Types of analog parameters presenting a need for controllability
were: resistance values, capacitance values, behavior model types
(worstcase, nominal, bestcase), voltage supplies, bias currents, initial
conditions, DUT topology (AMS-Schematic-LPE,etc). With the
capability to vary component values in a constrained random way,
elements of worst case circuit analysis were achieved.

The following code samples demonstrate one pathway, a static
configuration setting, for deriving analog values and passing them
into the environment. Since some analog parameters are needed at
compile time, a preprocessing step was executed to create a
defparams file (explained further in section 5 ‘Integration’).

struct mdt _voltage {
volt_current : real;
keep volt_current==1.116 or volt_current==1.2 or volt_current==1.204;
keep voltage_current_corner == MIN => volt_current == 1.116;
keep voltage_current_corner == NOM => volt_current == 1.2;
keep voltage_current_corner == MAX => volt_current == 1.204;
};

Figure 5 Data structure for varying a voltage supply

Figure 6 Shows the e code used to process a structure shown in
Figure 5 to create the alter module shown in Figure 7.

for each in me.as_a(ACTIVE mdt_analog_parameters).voltages {
 msg_tmp = appendf("defparam analog_stim.%s = %e;",
 it.inst.as_a(mdt_voltage_instant_t),
 it.volt_current
);
 lmsg_alter_vams.add(msg_tmp);
 msg_tmp = appendf("%s dc %e",it.inst.as_a(mdt_instant_t), it.volt_current);
 lmsg_param.add(msg_tmp);
 };
 msg_tmp = str_join(lmsg_param,"\n");
 outf("%s",msg_tmp);
 files.write(alter_vams_file, msg_tmp);

Figure 6 Specman code to create alter file

module alter;
defparam analog_stim.volt_current = 1.204000e+00;
endmodule

Figure 7 Sample alter file

AMS code to drive stimulus was embedded within the hardware
verification language (HVL) code for additional flexibility. This
method enables the power of both languages to be used together.

Figure 8 Embedded AMS code 2

Areas to pay special attention to are introducing artificial effects into
the simulation. For example a current source that turns on cannot
turn on instantaneously (creating infinite currents and voltages).
Mitigating this concern requires building BFM like structures in the
AMS domain to provide realistic stimulus. Another example is
dynamically changing an electrical component value which may lead
to false results or convergence problems. To mitigate this concern,
some of the parameters were selected to be static and only changed
or set at compile time.

Modifying the device under test topology is covered in section 4.4.2.

4.3 Checking
The case study continues here with identifying pace waveforms
automatically and reporting key attributes to the scoreboard for final
checking.

The self checking aspect of the analog electrical interfaces was the
most challenging task in this verification effort. Similarly to the
stimulus section, the self checking of the digital interfaces is not
described in this paper. The prospect of identifying a waveform in
the analog domain with all the pertinent attributes without prior
knowledge (eVC monitor principle, monitor wasn’t triggered by
stimulus to detect waveform) was indeed daunting. Other challenges
included how to partition the monitor across the AMS and e
language domains, e.g. which language constructs to use for each
monitor task. To summarize, a problem was to be solved without an
obvious solution.

One question that is asked and must be answered is: Can self
checking of analog interfaces be achieved? This project answered
that in the affirmative. Another option is to manually inspect signals
with the naked eye using a waveform viewer. This project did make

use of manual visual inspection to build confidence in the monitors.
Nevertheless the motivations for verification components with self
checking capability are addressed here. Electrical signals with
information in the frequency domain are difficult to analyze by
visual inspection. Another challenge associated with visual
inspection manifests when signal content is only visual under
specific zoom (time domain resolution) settings. Once self checking
monitors are in place and functioning, many more permutations of
the simulation state space are realized. The self checking lends itself
directly to having a regression suite whereby design changes can be
resimulated quickly.

The first step in articulating a solution was to understand with clarity
the requirements on the interface (there is potential to overlook this
step if verification discipline is not adhered to). Secondly, analog
interfaces inherently present themselves with noise (capacitive
coupling). An understanding of what constitutes acceptable noise
must be developed as well. Understanding of the noise
characteristics is refined through actual running of simulations and
dependent in part on the analog simulator configuration parameters.

The second step in deriving a solution was to form abstraction layers
in describing the analog interface, Figure 9. This method enabled a
modular solution with each layer not having to concern itself with
details from the other layers.

Raw Electrical Measurements:
voltage,current,cross

Signal entities:
slope, edge, peak, max, min

Waveform Attributes:
Pulse width, Amplitude, etc

Signal Abstraction

e,
AMS

e

e

Language

Figure 9 Interface Layering

One point to note is the higher layers span more time and details.
The hardware verification languages are equipped to process
information and perform analysis at these levels.

The following diagram illustrates how the processing is modularized
and decoupled from each layer.

Figure 10 Modularized Monitor Structure

4.3.1 Raw Electrical Measurements
We now investigate the direct forms of observability used,
particularly on the analog interface. Signals emanating from the

DUT analog interfaces are of interest. There are multiple means to
query electrical activity from the analog portion of the DUT. The
first method shown below in Figure 11 utilizes the verification
language constructs to read voltages directly.

Real Number Support
 keep port_x_voltage.hdl_path() == “ams_path.var_x";
 keep port_x_voltage.analog() == TRUE;
 sig_voltage : real;
 …
 sig_voltage = p_smp.port_x_voltage$;

Figure 11 Directly sample analog voltage

Another useful technique was the use of the AMS language built-in
‘cross’ function. This function triggers an event when a signal
passes a programmed threshold. The verification environment can
use this event to trigger a process or method as shown in Figure 12.

Figure 12 Cross Function

A third form with many derivatives is through the use of DSP
(digital signal processing). Discretizers and filters placed in the
AMS layer of the testbench monitor can reduce signal traffic
between the simulator and verification environment. Nyquist rates
apply when using the discretizer so correct sampling frequencies
must be calculated. The filters serve to reduce noise sensitivity as
simulators can be very precise. These methods are used in
conjunction with the first method described in Figure 11.

To summarize the ‘Raw Electrical Measurements’ section, most
language constructs used were in the AMS layer of the testbench as
shown below.

Specman ‘e’

NCVerilog ‘verilog’

AMS ‘ams’

Analog Design

Digital Design

Test
Bench

DUT

BFM
Cross

Function
Discretizer

clocking

BFM
Algorithmic Control and

Data Processing Algorithms

Event

Figure 13 Discipline – Language Testbench Architecture

4.3.2 Signal Entities
By leveraging the list data type and list methods, many of the signal
entity values are easily calculated. Many of the ‘Raw Electrical

Measurements’ were used in tandem to derive the calculated values.
The vantage point the ‘Signal Entity’ level provides is the ability to
view electrical signals from different perspectives and resolutions.
For example, during critical measurement windows, a high resolution
signal measurement (or low resolution signal) may be preferred to
determine precisely the context of the signal.

The challenges offered in this domain center around understanding
the noise floor and how to interpret signals that have been filtered.

4.3.3 Waveform Attributes
This layer of the monitor is comprised of multiple types of
components. Finding a balance between real time processing and
post processing can be shifting and dependent on the maturity of the
algorithms used. Typical elements used here are state machines, post
processing of lists, frequency analysis, power analysis, etc.

Typical continuous time functions are realized by processing lists of
data in a discrete context.

This layer is responsible for ultimately creating the scoreboard data
item and hence one challenge is defining precisely the scope and
content of the scoreboard data item. For example, all the parameters
in Figure 3 would be fields in the scoreboard data item.

4.3.4 Checking Summary
By carefully layering the monitor, the reuse potential increases by
enabling the monitor via parameter settings to process simulation
output from either simulated design capture or simulated behavioral
models. In order to efficiently develop a monitor, one should make
use of a debug environment where simulation run time is not
dependent on the design. In other words, the debug environment is
capable of executing one or two orders of magnitude faster.

4.4 Test Coverage
Test coverage is equal in importance as stimulus and checking in that
it measures objectively what features have been tested and under
what conditions for each specific DUT topology.

4.4.1 Coverage Reports

 For this project, the coverage of the analog metrics was achieved by
using discretized values. Rather than recording a continuous
spectrum of values for a resistor value, three buckets were created for
the minimum, nominal, and maximum values. For the amplitude of
the pace pulse, a corresponding bucket was created for each digitally
programmed value. Time values were rounded to the nearest
pertinent unit.

Coverage definition, construct generation and closure had relatively
few barriers in execution. Coverage was collected and monitored in
the e language. Analog values were covered in the following
manner. The same data structure that was used for the analog
stimulus in the precompile step was also instanced in the verification
environment during run time. During the precompile step an alter
file with defparams is created along with a text equivalent file. At
run time, the text equivalent file was read in, Figure 19, and the
values were populated into the analog structure. Thus a seamless
mechanism was used to pass all pertinent analog data into the
verification environment. Shown below are a few sample snapshots
of coverage reports.

The following figure shows coverage for a specific supply voltage.

Figure 14 Voltage coverage metrics

The figure below shows which corners were executed for a specific
Spectre model.

Figure 15 Spectre model corner coverage

The next coverage report shows amplitudes that were observed on
the output. For the amplitude report, values were normalized and do
not reflect absolute values.

Figure 16 Amplitude coverage report

As can be observed from the three reports above, definition of the
naming, buckets, and values is defined by the user and project.

4.4.2 Device Under Test Topology
The device under test topology had multiple realizations comprised
of verilog RTL – schematic design capture, behavioral models,
Spectre models, Gate level netlists, and LPE annotation. Results of
the verification planning selected a specific set of these combinations
for realizing test coverage. Which specific model representation to
use, was a functional of the requirements under consideration. For
example, behavioral models of the analog circuitry provided for
more extensive coverage of the digital interface requirements.

Figure 17 Device Under Test Configurations

A total of four different topologies were chosen for test coverage.
As already mentioned, the verification planning strategically selected
which topology was to be used to fulfill test coverage for a set of
requirements. Behavioral model validation is not addressed in this
paper.

In achieving automation, the netlist for each topology was
automatically generated and treated as a separate configuration.
Hierarchical configuration files for the testbench and the device
under test were utilized to achieve maximum reuse and seamless
transition of device topology into a common testbench environment.
Unique Specman configuration files enabled accurate handling of
constraints to all agents and eVCs within the environment as shown
in the figure below.

Figure 18 DUT topology constraints

Extremely useful was the generation of coverage reports based on
DUT topology. This provided a mechanism to review exactly what
test coverage was achieved for each DUT topology. The use of
‘Scopes’ within the executable verification plan enabled this
automation.

5.0 INTEGRATION
This section focuses on how to keep all the languages, disciplines
and tools synchronized to achieve a seamless compilation,
elaboration, and simulation. The goal was to achieve a single point
of controllability and observability, e.g. the ‘e’ verification
environment, and thereby ease the processing of input test constraints
as well as the generation of coverage data. Because certain analog
parameters are required prior to the Specman test phase, a
preprocessing step was performed which preserved the seed for the
subsequent simulation.

Run script
Specman

Preprocessing
Analog

configuration

module alter;
 defparam analog_stim.vref = 1.20;
 defparam analog_stim.res_val = 500;
endmodule

Text equivalent
alter file
Read by
Specman

model scs file model vams file

irun

ecov waves log

Figure 19 Discipline Integration

6.0 RESULTS
By using Emanager to launch parallel jobs 24x7, over 3000 mixed-
signal simulations were run with pass/fail results. The coverage
reporting mechanism within Emanager enabled thorough coverage
analysis and closure.

Integrating the tools for simulating all languages e-verilog-AMS-
Spectre simultaneously was accomplished via the ‘irun’ command
from the Cadence Incisive Enterprise Simulator (IES).

Emanager vsif files enabled batch regression of all DUT topologies
against a selected set of test files.

Many challenges have been noted throughout this paper. Additional
items of interest are convergence and analog simulator settings.
Convergence issues are inherent in the analog simulator solver (new
concept for digital simulations) if initial conditions or artificial
effects are introduced into the simulation. The analog simulators
have many parameters controlling the simulation execution which
can directly affect the result of the simulation.

Moving the analog/mixed-signal simulations to a high degree of
automation required controlling stimulus from the HVL and not
relying on a GUI.

Clocks crossing into analog domain and back into the verilog RTL
must remain logical otherwise a transition fro 0 > 1 will result in 0 >
X > 1 which may trigger two posedge clock events.

A playback method was created to save DUT analog output
waveforms from a previous simulation and replay them to the
verification environment in subsequent runs. This method enabled
expeditious development of the verification components without
having to endure longer run time overhead of simulating the ‘device
under test’.

Topology reports from within the simulator are especially useful in
determining current sources and sinks in the cases where there
appears to be ‘extra’ or ‘missing’ current on a node.

7.0 VERIFICATION REUSE
By following the eRM methodology and imposing verification
discipline, the verification environment created for the DUT in
Figure 1, was completely reused in the system shown in Figure 2.
The verification environment for Figure 2 utilized the system CPU to
run software test sequences exercising the ‘Mixed-Signal IC.

8.0 CONCLUSION
Advanced verification methods commonly applied on digital designs
are capable of being applied in the mixed signal and analog domain.
The mixed signal and analog verification space stand to benefit by
applying self checking constrained random techniques. Having a
robust verification environment that bridges analog and digital brings
the two disciplines together earlier in the design process. Finally, the
verification effort must bridge domains and not be limited to design
disciplines.

9.0 REFERENCES
1. US Patent 5,782,880 Low Energy Pacing Pulse Waveform
2. Cadence IES Help documentation

