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ABSTRACT  
This paper discusses the experience of using plan and metric-driven 
verification on a recent mixed-signal integrated-circuit (IC) 
prototype at Medtronic. The design consists of digital and analog 
circuits which traditionally have been verified with unique tools and 
methodologies to perform simulation tests.  The approach for this IC, 
while relying on the unique capability of the tools for each design 
discipline, integrates the test environment for the digital and analog 
circuitry and adds a unique dimension to the testbench technology. 
The focus of this effort is to efficiently demonstrate functional 
confidence in the IC prior to fabrication.   
 
The primary goal, verifying functionality, is achieved by first 
planning for verification. This consists of analyzing requirements on 
the analog and digital circuit functionality and understanding the 
design architecture and interfaces.  In order to efficiently achieve full 
IC functionality within project means, a common test environment 
must be architected to accommodate the digital circuitry, analog 
circuitry, block connectivity, and full chip integration as a stand-
alone IC.  An additional outcome is verification component and 
behavioral model reuse at higher levels of integration. 
 
Metric driven verification, an advanced testbench simulation 
capability originally developed for digital circuitry, has been adapted 
for analog designs as well.  This methodology, along with integrated 
digital-analog simulation capability, is the technology for achieving 
the project objectives.  Metric-driven verification is a methodology 
for verification by which functional coverage for the device-under-
test (DUT) is defined and automatically assessed against the 
simulation runs. The coverage metrics may include structural 
measures such as code coverage in addition to functional coverage. 
Simulation completeness is defined when coverage goals are met 
while all simulations are passing. Stimulus for the DUT relies upon 
highly developed constrained-random generation, automating what 
used to be a tedious process of manual testing. Additionally, the 
metric-driven methodology is scalable to higher levels of integration 
because the stimulus and checking constructs have been separated in 
the testbench environment. Checkers are used that span across the 
Analog/Digital boundary, which has traditionally been a rich source 
of error. Historically, these checkers have been confined to the 
individual domains – analog and digital, making assumptions and 
approximations about the other domain 
 
The final IC level standalone environment serves to verify digital and 
analog block functionality, and end-to-end chip functionality.  The 

functional verification of the mixed signal IC prototype is 
approached as a complete component.  Advances in digital 
simulation have been further enhanced with analog support to allow 
for feature level chip verification.  The benefits are realized by using 
common testbench components and automated tests. 
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1.0 INTRODUCTION  
Implantable medical devices have strong requirements for 
correctness and reliability.  Thus, the functional verification process 
and comprehensive planning and metrics are relied on to accurately 
gauge verification progress and thoroughness. Medical ICs are 
almost universally mixed-signal in nature since they must interface 
with the analog world of the human body. 
 
Currently, many ICs are mixed signal in nature regardless of 
industry.  The methodology described in this paper provides a means 
to systematically perform functional verification on mixed signal ICs 
through simulation. 
 
2.0 VERIFICATION PROBLEM  
This project included designing and verifying a prototype mixed-
signal IC that was part of a larger system of components of which 
this IC was also a component of a system interface.  The goal of this 
project was to verify the complete IC functionality which included: 
end to end requirements, digital and analog integration, and higher 
levels of integration with external components.  This verification 



effort had to satisfy IC verification goals as well as be reusable at the 
system level of integration.  To achieve these goals, a verification 
process was adhered to which brought initial focus to planning.  The 
planning phase was a critical point in the verification effort because 
the verification scope and goals were identified and a solution was 
proposed and communicated to the broader team. 
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Figure 1 Mixed - Signal IC 

 

3.0 VERIFICATION PLANNING 
High level goals of achieving an environment, that was fully 
automatic and regressable as well as scalable for reuse at the system 
level, were stated from the outset. 
 
This planning stepped back from individual analog or digital blocks 
and viewed the completed system.  A hierarchical approach was 
taken where a leveling of verification was applied.  For example, the 
IC verification environment did not need to achieve what was 
accomplished at block level verification.  And likewise, the system 
verification did not need to repeat IC level verification. 
 

 
Figure 2 System with Mixed - Signal IC 

 
The requirements to be verified for the IC were focused on the 
interfaces and end-to-end functionality.  Internal interfaces were left 
to block level verification.  The verification planning began with a 
survey of all the efforts, block-IC-system, being applied.  Test 
coverage goals were defined for each interface, discipline, and 
functional requirements. 
 
Challenges to overcome during this phase included: developing a 
complete verification plan prior to implementing and running 
simulations, attaining feasibility that self checking methods on 
analog circuitry could be achieved prior to committing to the plan, 

developing a resource plan to commit to this effort which involved 
additional development of verification components, and finally 
reporting progress against milestones which used coverage reports 
versus the traditional simulation test count executed. 
 

4.0 VERIFICATION ENVIRONMENT 
The verification applied to this mixed-signal IC followed a metric 
driven verification methodology approach.  This paper doesn’t define 
the commonly used ‘metric driven verification’ methodology but 
rather how it is applied to mixed signal designs. 
 
Numerous complexities were addressed within this project: 
constrained random analog stimulus, analog self checking, analog 
coverage metrics, mixed electrical disciplines (SW, digital, analog), 
various analog and digital design representations, multiple simulation 
tools, multiple verification languages, behavioral modeling, and a 
high degree of automation. 
 
One aspect of the IC under test that will be used as a case study of 
analog self checking is the output pulse.  The mixed-signal IC 
produces an analog electrical waveform with the following attributes 
shown in Figure 3 below.  The input to the mixed-signal IC is a 
digital command that triggers the output waveform. 
 

 
Figure 3: Pace Pulse Waveform 1 

 

4.1 Overview 
The following figure illustrates a high level view of the verification 
environment.  Given the black-box approach, only the external IC 
interfaces are of particular interest.  The black-box approach is one 
attribute in attaining a scalable and reusable environment.  An 
immediate payback in this effort was the ability to test various 
configurations of the ‘device under test’.  For a given level of 
verification, black-box enforces verification against interface 
requirements and end-to-end requirements versus the implementation 
itself. 
 
The verification environment shown in Figure 4 is capable of 
providing stimulus on both the analog and digital interfaces as well 
as performing continuous monitoring of all interfaces in both the 
analog and digital domains. 
 
In continuing the case study, the ‘agent’ performs the initial device 
configuration and generates high level test sequences.  The 
sequences in digital form are played through the config and 
command ‘e verification components (eVC) bus functional models 
(bfm).  The eVC monitors collect all transactions, such as a pace 
command, and forward them to a predictor and scoreboard for 
checking.  The analog I/F eVC monitors the lead interface and 
collects all pace pulse waveforms for checking in the scoreboard.  
Thus end-to-end checking is achieved.  The agent is also responsible 



for generating the analog configuration and stimulus needed for 
simulation. 

 
Figure 4 Testbench Architecture 

 

4.2 Stimulus 
All stimulus controllability for the verification environment was 
controlled via the language constructs provided by the hardware 
verification language.  This includes both digital and analog 
parameters.  Individual simulations were controlled via test files with 
no graphical user interface (GUI) interaction.  The verification 
environment inherently varied all analog parameters with each new 
simulation run unless constrained by the test file.  All stimuli 
generated represented valid conditions thus the term ‘constrained 
random’.  The digital interfaces and parameters were exercised 
according eVC best practices and not discussed here.  The case study 
will focus here on achieving analog controllability as synchronized 
with the digital control. 
 
Types of analog parameters presenting a need for controllability 
were: resistance values, capacitance values, behavior model types 
(worstcase, nominal, bestcase), voltage supplies, bias currents, initial 
conditions, DUT topology (AMS-Schematic-LPE,etc).  With the 
capability to vary component values in a constrained random way, 
elements of worst case circuit analysis were achieved. 
 
The following code samples demonstrate one pathway, a static 
configuration setting, for deriving analog values and passing them 
into the environment.  Since some analog parameters are needed at 
compile time, a preprocessing step was executed to create a 
defparams file (explained further in section 5 ‘Integration’). 
 

struct mdt _voltage {
volt_current : real;
keep volt_current==1.116 or volt_current==1.2 or volt_current==1.204;
keep voltage_current_corner == MIN => volt_current == 1.116;
keep voltage_current_corner == NOM => volt_current == 1.2;
keep voltage_current_corner == MAX => volt_current == 1.204;
};

 
Figure 5 Data structure for varying a voltage supply 

 
Figure 6 Shows the e code used to process a structure shown in 
Figure 5 to create the alter module shown in Figure 7. 

for each in me.as_a(ACTIVE mdt_analog_parameters).voltages {
               msg_tmp = appendf("defparam analog_stim.%s = %e;",
                    it.inst.as_a(mdt_voltage_instant_t),
                    it.volt_current
                    );
                    lmsg_alter_vams.add(msg_tmp);
                msg_tmp = appendf("%s dc %e",it.inst.as_a(mdt_instant_t), it.volt_current);
                lmsg_param.add(msg_tmp);
        };
 msg_tmp = str_join(lmsg_param,"\n");
        outf("%s",msg_tmp);
        files.write(alter_vams_file, msg_tmp);  

Figure 6 Specman code to create alter file 
 

module alter;
defparam analog_stim.volt_current = 1.204000e+00;  
endmodule

 
Figure 7 Sample alter file 

 
AMS code to drive stimulus was embedded within the hardware 
verification language (HVL) code for additional flexibility.  This 
method enables the power of both languages to be used together. 
 

 
Figure 8 Embedded AMS code 2 

 
Areas to pay special attention to are introducing artificial effects into 
the simulation.  For example a current source that turns on cannot 
turn on instantaneously (creating infinite currents and voltages).  
Mitigating this concern requires building BFM like structures in the 
AMS domain to provide realistic stimulus.  Another example is 
dynamically changing an electrical component value which may lead 
to false results or convergence problems.  To mitigate this concern, 
some of the parameters were selected to be static and only changed 
or set at compile time. 
 
Modifying the device under test topology is covered in section 4.4.2. 
 

4.3 Checking 
The case study continues here with identifying pace waveforms 
automatically and reporting key attributes to the scoreboard for final 
checking. 
 
The self checking aspect of the analog electrical interfaces was the 
most challenging task in this verification effort.  Similarly to the 
stimulus section, the self checking of the digital interfaces is not 
described in this paper.  The prospect of identifying a waveform in 
the analog domain with all the pertinent attributes without prior 
knowledge (eVC monitor principle, monitor wasn’t triggered by 
stimulus to detect waveform) was indeed daunting.  Other challenges 
included how to partition the monitor across the AMS and e 
language domains, e.g. which language constructs to use for each 
monitor task.  To summarize, a problem was to be solved without an 
obvious solution. 
 
One question that is asked and must be answered is: Can self 
checking of analog interfaces be achieved?  This project answered 
that in the affirmative.  Another option is to manually inspect signals 
with the naked eye using a waveform viewer.  This project did make 



use of manual visual inspection to build confidence in the monitors.  
Nevertheless the motivations for verification components with self 
checking capability are addressed here.  Electrical signals with 
information in the frequency domain are difficult to analyze by 
visual inspection.  Another challenge associated with visual 
inspection manifests when signal content is only visual under 
specific zoom (time domain resolution) settings.  Once self checking 
monitors are in place and functioning, many more permutations of 
the simulation state space are realized.  The self checking lends itself 
directly to having a regression suite whereby design changes can be 
resimulated quickly. 
 
The first step in articulating a solution was to understand with clarity 
the requirements on the interface (there is potential to overlook this 
step if verification discipline is not adhered to).  Secondly, analog 
interfaces inherently present themselves with noise (capacitive 
coupling).  An understanding of what constitutes acceptable noise 
must be developed as well.  Understanding of the noise 
characteristics is refined through actual running of simulations and 
dependent in part on the analog simulator configuration parameters. 
 
The second step in deriving a solution was to form abstraction layers 
in describing the analog interface, Figure 9.  This method enabled a 
modular solution with each layer not having to concern itself with 
details from the other layers. 
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Waveform Attributes:
Pulse width, Amplitude, etc

Signal Abstraction

e,
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Figure 9 Interface Layering 

 
One point to note is the higher layers span more time and details.  
The hardware verification languages are equipped to process 
information and perform analysis at these levels. 
 
The following diagram illustrates how the processing is modularized 
and decoupled from each layer. 
 

 
Figure 10 Modularized Monitor Structure 

 

4.3.1 Raw Electrical Measurements 
We now investigate the direct forms of observability used, 
particularly on the analog interface.  Signals emanating from the 

DUT analog interfaces are of interest.  There are multiple means to 
query electrical activity from the analog portion of the DUT.  The 
first method shown below in Figure 11 utilizes the verification 
language constructs to read voltages directly. 
 

Real Number Support
    keep port_x_voltage.hdl_path() == “ams_path.var_x";
    keep port_x_voltage.analog() == TRUE;
    sig_voltage : real;
    …
    sig_voltage = p_smp.port_x_voltage$;  

Figure 11 Directly sample analog voltage 
 
Another useful technique was the use of the AMS language built-in 
‘cross’ function.  This function triggers an event when a signal 
passes a programmed threshold.  The verification environment can 
use this event to trigger a process or method as shown in Figure 12. 
 

 
Figure 12 Cross Function 

 
A third form with many derivatives is through the use of DSP 
(digital signal processing).  Discretizers and filters placed in the 
AMS layer of the testbench monitor can reduce signal traffic 
between the simulator and verification environment.  Nyquist rates 
apply when using the discretizer so correct sampling frequencies 
must be calculated.  The filters serve to reduce noise sensitivity as 
simulators can be very precise.  These methods are used in 
conjunction with the first method described in Figure 11. 
 
To summarize the ‘Raw Electrical Measurements’ section, most 
language constructs used were in the AMS layer of the testbench as 
shown below. 
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Figure 13 Discipline – Language Testbench Architecture 
 
 

4.3.2 Signal Entities 
By leveraging the list data type and list methods, many of the signal 
entity values are easily calculated.  Many of the ‘Raw Electrical 



Measurements’ were used in tandem to derive the calculated values.  
The vantage point the ‘Signal Entity’ level provides is the ability to 
view electrical signals from different perspectives and resolutions.  
For example, during critical measurement windows, a high resolution 
signal measurement (or low resolution signal) may be preferred to 
determine precisely the context of the signal. 
 
The challenges offered in this domain center around understanding 
the noise floor and how to interpret signals that have been filtered. 
 

4.3.3 Waveform Attributes 
This layer of the monitor is comprised of multiple types of 
components.  Finding a balance between real time processing and 
post processing can be shifting and dependent on the maturity of the 
algorithms used.  Typical elements used here are state machines, post 
processing of lists, frequency analysis, power analysis, etc. 
 
Typical continuous time functions are realized by processing lists of 
data in a discrete context. 
 
This layer is responsible for ultimately creating the scoreboard data 
item and hence one challenge is defining precisely the scope and 
content of the scoreboard data item.  For example, all the parameters 
in Figure 3 would be fields in the scoreboard data item. 
 

4.3.4 Checking Summary 
By carefully layering the monitor, the reuse potential increases by 
enabling the monitor via parameter settings to process simulation 
output from either simulated design capture or simulated behavioral 
models.  In order to efficiently develop a monitor, one should make 
use of a debug environment where simulation run time is not 
dependent on the design.  In other words, the debug environment is 
capable of executing one or two orders of magnitude faster. 
 

4.4 Test Coverage 
Test coverage is equal in importance as stimulus and checking in that 
it measures objectively what features have been tested and under 
what conditions for each specific DUT topology. 
 
4.4.1 Coverage Reports 
 
  For this project, the coverage of the analog metrics was achieved by 
using discretized values.  Rather than recording a continuous 
spectrum of values for a resistor value, three buckets were created for 
the minimum, nominal, and maximum values.  For the amplitude of 
the pace pulse, a corresponding bucket was created for each digitally 
programmed value.  Time values were rounded to the nearest 
pertinent unit. 
 
Coverage definition, construct generation and closure had relatively 
few barriers in execution.  Coverage was collected and monitored in 
the e language.  Analog values were covered in the following 
manner.  The same data structure that was used for the analog 
stimulus in the precompile step was also instanced in the verification 
environment during run time.  During the precompile step an alter 
file with defparams is created along with a text equivalent file.  At 
run time, the text equivalent file was read in, Figure 19, and the 
values were populated into the analog structure.  Thus a seamless 
mechanism was used to pass all pertinent analog data into the 
verification environment.  Shown below are a few sample snapshots 
of coverage reports. 
 
The following figure shows coverage for a specific supply voltage. 

 
Figure 14 Voltage coverage metrics 
 
The figure below shows which corners were executed for a specific 
Spectre model. 

 
Figure 15 Spectre model corner coverage 
 
The next coverage report shows amplitudes that were observed on 
the output.  For the amplitude report, values were normalized and do 
not reflect absolute values. 
 

 
Figure 16 Amplitude coverage report 
 
As can be observed from the three reports above, definition of the 
naming, buckets, and values is defined by the user and project. 
 

4.4.2 Device Under Test Topology 
The device under test topology had multiple realizations comprised 
of verilog RTL – schematic design capture, behavioral models, 
Spectre models, Gate level netlists, and LPE annotation.  Results of 
the verification planning selected a specific set of these combinations 
for realizing test coverage.  Which specific model representation to 
use, was a functional of the requirements under consideration.  For 
example, behavioral models of the analog circuitry provided for 
more extensive coverage of the digital interface requirements. 

 
Figure 17 Device Under Test Configurations 



 
A total of four different topologies were chosen for test coverage.  
As already mentioned, the verification planning strategically selected 
which topology was to be used to fulfill test coverage for a set of 
requirements.  Behavioral model validation is not addressed in this 
paper. 
 
In achieving automation, the netlist for each topology was 
automatically generated and treated as a separate configuration.  
Hierarchical configuration files for the testbench and the device 
under test were utilized to achieve maximum reuse and seamless 
transition of device topology into a common testbench environment.  
Unique Specman configuration files enabled accurate handling of 
constraints to all agents and eVCs within the environment as shown 
in the figure below. 
 

 
Figure 18 DUT topology constraints 

 
Extremely useful was the generation of coverage reports based on 
DUT topology.  This provided a mechanism to review exactly what 
test coverage was achieved for each DUT topology.  The use of 
‘Scopes’ within the executable verification plan enabled this 
automation. 
 

5.0 INTEGRATION 
This section focuses on how to keep all the languages, disciplines 
and tools synchronized to achieve a seamless compilation, 
elaboration, and simulation.  The goal was to achieve a single point 
of controllability and observability, e.g. the ‘e’ verification 
environment, and thereby ease the processing of input test constraints 
as well as the generation of coverage data.  Because certain analog 
parameters are required prior to the Specman test phase, a 
preprocessing step was performed which preserved the seed for the 
subsequent simulation. 
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Figure 19 Discipline Integration 

 
 
 
 
 

6.0 RESULTS  
By using Emanager to launch parallel jobs 24x7, over 3000 mixed-
signal simulations were run with pass/fail results.  The coverage 
reporting mechanism within Emanager enabled thorough coverage 
analysis and closure. 
 
Integrating the tools for simulating all languages e-verilog-AMS-
Spectre simultaneously was accomplished via the ‘irun’ command 
from the Cadence Incisive Enterprise Simulator (IES). 
 
Emanager vsif files enabled batch regression of all DUT topologies 
against a selected set of test files. 
 
Many challenges have been noted throughout this paper.  Additional 
items of interest are convergence and analog simulator settings.  
Convergence issues are inherent in the analog simulator solver (new 
concept for digital simulations) if initial conditions or artificial 
effects are introduced into the simulation.  The analog simulators 
have many parameters controlling the simulation execution which 
can directly affect the result of the simulation. 
 
Moving the analog/mixed-signal simulations to a high degree of 
automation required controlling stimulus from the HVL and not 
relying on a GUI. 
 
Clocks crossing into analog domain and back into the verilog RTL 
must remain logical otherwise a transition fro 0 > 1 will result in 0 > 
X > 1 which may trigger two posedge clock events. 
 
A playback method was created to save DUT analog output 
waveforms from a previous simulation and replay them to the 
verification environment in subsequent runs.  This method enabled 
expeditious development of the verification components without 
having to endure longer run time overhead of simulating the ‘device 
under test’. 
 
Topology reports from within the simulator are especially useful in 
determining current sources and sinks in the cases where there 
appears to be ‘extra’ or ‘missing’ current on a node. 
 

7.0 VERIFICATION REUSE  
By following the eRM methodology and imposing verification 
discipline, the verification environment created for the DUT in 
Figure 1, was completely reused in the system shown in Figure 2.  
The verification environment for Figure 2 utilized the system CPU to 
run software test sequences exercising the ‘Mixed-Signal IC. 
 

8.0 CONCLUSION  
Advanced verification methods commonly applied on digital designs 
are capable of being applied in the mixed signal and analog domain.  
The mixed signal and analog verification space stand to benefit by 
applying self checking constrained random techniques.  Having a 
robust verification environment that bridges analog and digital brings 
the two disciplines together earlier in the design process.  Finally, the 
verification effort must bridge domains and not be limited to design 
disciplines. 
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