

1

Performance modeling and timing verification for

DRAM memory subsystems
DRAFT PAPER v1

Thomas Schuster, Peter Prüller, Christian Sauer

Cadence Design Systems GmbH, Munich, Germany (thomschu @ cadence.com)

Abstract - Contemporary System-on-Chips (SoCs) comprise multiple processing elements, such as CPUs, DSPs and

custom accelerators. All these components are competing for shared resources, most of all memory bandwidth. It is

undisputed that orchestrating the memory accesses in a modern SoC is one of the biggest challenges today. Due to the

high complexity designers often resort to emulation using dedicated hardware for identifying bandwidth and latency

issues. An alternative is the use of abstract models trading a certain amount of accuracy for a substantial gain in

simulation performance. The latter has many obvious advantages, especially in the early stages of system exploration,

but is often not applicable, because the required simulation-IPs are not available and development would take too much

time. We can address this issue by providing a framework for the modeling of DRAM memory subsystems for

performance exploration, based on SystemC and the Approximately-Timed (AT) coding style of TLM2.0. The models

provide the same programming interface and a significant subset of the features of a widely used industrial memory

controller RTL IP. Users may explore various command re-ordering strategies, different internal fifo layouts, port

arbitration and more.

In a case study instances of the simulation model targeting LPDDR4 have been compared against the RTL reference.

We can achieve a speedup of 100x in full load simulation. The tolerated timing deviation, in terms of simulated time

and average latency, is in a pessimistic corridor of 0 – 15%. We present our modeling approach, verification

environment, and achieved results.

Keywords—SystemC, TLM, Approximately-timed, DDR, DRAM, Memory controller

I. INTRODUCTION / RELATED WORK

Today Dynamic Random Access Memory (DRAM) is part of almost every SoC package. Since the introduction

in the late 1990s many generations and flavors of this cheap high capacity memory have been successfully brought

to market. Latest addition to the family are DDR4 and its low-power sibling LPDDR4. Structure and interfaces of

DRAM have become an industry standard maintained by the Joint Electron Device Engineering Council (JEDEC)

[1]. DRAM performance is crucial to modern systems, because it is usually shared amongst different processing

elements like CPUs, DSPs, or custom accelerators. Moreover, it often constitutes the lowest level of the volatile

memory hierarchy, below first and secondary caches, hence being responsible for the worst-case memory access

latency. Latency of DRAMs natively is higher and throughput is lower compared to on-chip RAMs. Additional

complications for system designers are caused by the rather complex internal state of DRAMs, which makes

access performance highly traffic dependent. Usually the memory is spread over multiple ranks (chip selects) that

connect to the chip through common address and data busses. Each rank consists of multiple memory banks, each

of which holds a grid of memory rows and columns. Accesses to a certain memory location must be partitioned

into bursts of a constant length and need to be prepped by exactly timed memory control commands (e.g.

precharge, activate). More details about DRAM memory architecture and memory access timing can be found in

[2].

The importance of estimating and optimizing memory timing has sparked numerous research activities. Many of

them focus on on-chip cache optimization, ignoring DRAM timing, or assigning a static penalty per access. In [3]

Cheung et. al presents a method where memory accesses in an MPSoC are identified at software compilation time,

and statically annotated onto SystemC models. An approach for the automatic construction of timing models for

DRAM controllers using statistical measurement from an RTL reference is presented in [4]. Although very

promising it remains unclear if statistically or neural learning techniques can be efficiently applied for modeling

advanced DRAM controllers with complex internal state and extensive command reordering. Practical application

requires models to be reprogrammable, preferable without having to re-train, and a proof-of-correctness within a

parameter corridor that cannot be easily obtained using statistic methods. Opposite to statistical timed models

resides the direct translation of an RTL memory controller into a C/C++ simulation model, using tools like ARM’s

Cycle Model Studio (former Carbon) [5]. Such models offer the desired verification coverage, but are only slightly

faster the RTL simulation, hence of limited use for system-level exploration.

2

Efficient exploration of memory access timing requires reliable models with guaranteed correctness within a

defined parameter range. Correctness should be defined as a corridor of tolerated error concerning metrics like

simulated time / throughput and latency. Ideally this error corridor should be in the pessimistic range, so that

predicted performance is never above the actual performance of the reference design. The tolerated error corridor

allows for a certain amount of abstraction in the behavior that can be used to speed up simulation.

II. APPLICATION

We advocate an approach mixing explicit modeling of algorithms and abstraction similar to [6]. Our

implementation is based on SystemC, consequently follows the approximately-timed (AT) coding style proposed

by TLM 2.0 [7], and is therefore more widely applicable (e.g. Virtual Prototypes). The TLM is generated from a

generic template, which can be retargeted for multiple DRAM types. Until now we have applied our flow to

LPDDR2, DDR3, DDR4, and LPDDR4. Internal command and data processing are represented by a data flow

model built on SystemC ports and exports. External interfaces are extended TLM2.0 compliant sockets that allow

for independent read/write channels and data interleaving as required for AXI. To our best knowledge no

comparable design exists. In this work we will focus on the chosen modeling approach, and the verification

environment including selected performance metrics and measurement.

A. Modeling Approach

A block diagram of the SystemC data flow architecture is shown in Figure 1. The design is partitioned into the

register control interface that can be automatically generated from an IP-XACT or RDL description, and the

generic core, which can be parametrized using a Configuration, Control and Inspection (CCI) interface [8].

Condensed lists of hardware and software controllable features are given in Table 1 and Table 2.

The generic core of the model (class ddr) contains the data path of the controller with all its subcomponents.

Most of these subcomponents are C++ traits, allowing features and algorithms to be conveniently added, replaced,

or modified. In the following we describe the flow of a transaction through the system touching all relevant bases.

Figure 1 - TLM data flow

1) TLM interface / busport

The path of a transaction through the controller’s core starts at one of the mem_in_p[N] TLM target sockets.

Each socket is handled by a private bus port class (busportX). The interface is fully TLM2 compliant, but for

3

best performance initiators need to provide additional information in form of ‘ignorable’ payload extensions.

Amongst these extensions are AXI ID, burst information (length, width, type), priority (AXI QoS), cacheability,

exclusiveness, explicit precharge request, and various debug fields (e.g. global id, time stamps). Another payload

extension enables the generation of split responses, allowing the controller to extend the TLM2 base protocol by

two additional phases signaling begin and end of read data splits. The granularity of these splits is limited to

memory burst boundaries, which are translated into AXI bursts of the selected streaming width. To further reflect

the nature of AXI, the model allows the user to go beyond standard by accepting reads and writes on a single

socket in parallel. This way independent channels can be simulated without loosing backward compatibility and

standard compliance. Next to handling the TLM protocol, the busport class generates one or multiple dataflow

tokens for each incoming transaction (begin_req). Token objects are collected and reused in a memory pool.

The number of generated tokens depends on the size of the burst, and the capacity of the port data holding queues.

A token contains a pointer to the originating transaction, and various decoded information, such as row-bank-

column address, number of memory bursts, command priority, and more. The bus port is ready to accept the next

transaction of the same type after the last token associated with the current transaction has been accepted into the

core (end_req). The core will then call back the bus port whenever a response (or a split response) is ready. In

case of read operations, begin_resp is sent at the estimated time of the first beat of read data available on the

AXI read data channel. In a split response scenario begin_resp moves to the first beat of the last split to keep

the base protocol intact. Write response generation is programmable. Bufferable write responses are generated

after write data acceptance, co-bufferable responses after multi-port arbitration, and non-bufferable responses after

final memory command execution.

Table 1 - Selected HW parameters (CCI)

Parameter Description Runtime Parameter Description Runtime

clock_ps core clock rate Yes portX_clock_ps port X clock rate Yes

def_freq_set default frequency set No high_speed mem-to-core clock ratio Yes

num_ports number of bus ports No cq_depth depth of command queue No

chip_selects number of chip selects No sel_depth depth of selection window No

banks_per_chip banks per chip select No other fifos various other fifos / queue depths No

datapath_width width of datapath in bits No other analysis on/off various instrumentations Yes

priority_width width of priority field No other timing various timing correction and tuning Yes

Table 2 - Selected SW programmable features

Bitfields Description Bitfields Description

row/bank/col diff define layout of address map placement_en enable placement logic

max col/row/cs layout of address map in_order_accept control ooo command selection

irq stat/mask/ack interrupt control various reorder controls priority, grouping & splitting schemes

out-of-range oor signaling (addr, src id, type, ..) various coherency ctrl address, source id, port id, cmd type

age_count cmd age counter control various port arbiter ctrl port bdw limits and monitors, fixed prio,…

Bstlen burst length various DRAM timings TRP, TRCD, TCCD, CASLAT, .. (> 50)

2) Multi-port arbitration

Each busport pushes accepted command tokens into a colored array of fifos (cmdfifoX). The multi-port arbiter

is driven by an sc_thread (port_pull), pulling commands from those fifos, at the rate of the controller clock.

On each pull request bandwidth monitor (bw_mon) and priority scheduler (prio_sched) decide which port and

command to prioritize. Port priorities can be programmed as fixed, giving one port a higher priority than another,

or mapped on a command-by-command basis to the AXI QoS extension. Independently of priority the bandwidth

monitor may skip ports if their bandwidth limits are reached. To avoid active idle threads port_pull is put to

sleep whenever the input fifos deplete. Wakeup is implemented using a SystemC sc_event_or_list.

3) Token split

After port arbitration the port_pull thread pushes the command tokens into the command splitting stage. Main

purpose of this component is the expansion of read-modify-write sequences, which is needed for memories

without write masking. Additionally, checks on memory boundaries are carried out that might also cause a

command to split. All required extra commands are clones of the original command token, hence also reference

the same originating TLM transaction. A unique sequence ID is used to sustain the command order. An ongoing

command split stalls the previous pipeline stages, namely puts the multi-port arbiter on hold. Tokens are pushed

out towards the command queue (ddr_cq) with minimum distance of one cycle delay.

4

4) Command queue

Most industrial relevant DDR memory controllers feature an internal command queue [9] [10]. The queue is used

to deduct the optimal command execution order based on memory state and command priority. The modeled

controller uses out-of-order command insertion and out-of-order command selection to establish this optimum.

All reordering rules, such as bank splitting, read/write grouping, write-to-read splitting, page grouping, or chip

select grouping, can be enabled/disabled by software. These algorithms must be modeled very detailed. In our

work we found only little room for abstraction at this point. Even with great care deviations may occur, because

multiple unsynchronized threads are working on the same shared data structure. Our TLM implements the

reordering queue as a C++ std::list optimized for fast insertion and removal of elements. As mentioned, new

upstream commands are pushed in from the command splitting stage. Command selection/execution and memory

preparation are driven by thread cq_pull. If the command queue is not empty, this thread triggers with an interval

of two clock cycle (for lpddr4), and otherwise goes to sleep. On each activation the queue checks if one of the

commands within the selection window is ready to execute by comparison against timestamps calculated during

memory preparation. Multiple memory bursts may be associated with each command token. A command token

remains in the queue until the last of its bursts has been committed. Therefore, ddr commands (e.g. cas2) and

memory bursts for different user commands may be interleaved at the memory interface. Resource allocation is

also handle on a burst-by-burst basis. A read burst can only be requested if the read data fifos of the core have

enough space to accommodate at least one burst of data. In a similar way write requests need to be able to allocate

sufficient space in the core write data fifo to be allowed to run. If no user command has a burst that is ready to go,

memory preparation tries to schedule bank open (activate) and bank closing (precharge) commands for all tokens

within a programmable bank prep window. Auto-refresh and command aging are implemented in infrequently

running sc_methods.

5) DDR mem delay

For each committed ddr read or write command a clone of the respective user command is forwarded to the

ddr_mem_delay stage, which will take care of write delay and read round-trip delay. Both delays are internally

calculated as sums of software programmable parameters (caslat, wrlat), and configurable PHY latency. Payload

event queues are used for synchronization. For each arriving burst the internal queues are offloaded/deallocated.

Moreover, it will be decided whether a callback to the bus port for response generation is required or not. The

latter depends on command type, sequence ID (first or last burst of transaction), and response type.

Most of the mentioned components are instrumented for analysis and broadcast their data over a TLM analysis

socket implemented on top-level. Generation of analysis information is controlled per block via CCI. Analysis

logs for the ddr memory interface, and the axi tlm interface are shown in Figure 2.

Figure 2 - Analysis logs for memory and axi tlm interface

6) Functional Memory

Delay estimation is solely done by the controller TLM. The DDR memory is an untimed TLM simulation memory

that must be bound to socket mem_out_p. Different memory types can be explored by loading appropriate delay

information into the register bank. Clock rates, PHY delays, and other relevant timings are configured via CCI.

The model detects changes on these parameters to keep all access delays up to date.

5

Verification Environment and Accuracy Measurement

The presented TLM aims for the architecture exploration use case. Therefore, validation of functional correctness

and timing are needed. For the first we use a set of self-checking tests focusing on: datapath operations, exclusive

access, interrupt generation / out-of-range detection, reset behavior, register bank, placement, and port arbitration.

Some of these tests contain sequences of random test patterns, but most of them are explicitly stressing features

and corner cases (directed). This approach is currently deemed sufficient. Upgrade to a full coverage driven flow

is in progress. Timing verification on the other hand is far more complicated. The approximately-timed nature of

the design under test (DUT), and the necessary abstractions at the bus interfaces make a comparison on a

transaction-by-transaction basis against the RTL reference impractical. The TLM intends to predict the behavior

of the RTL for various traffic scenarios within a defined configuration space, thereby trading a certain amount of

accuracy for simulation speed. Hence, verification metrics must be arithmetic means or extreme values within a

time interval (min/max), rather than one-to-one pass/fail conditions. For the start we decided to focus on the

overall runtime of a test, as well as minimum/average/maximum latency for read and write operations within a

full test. For the near future we are planning to extend this approach towards smaller timing windows.

Our verification setup is shown in Figure 3. It is used for both: functional and timing verification. Simulation

model and RTL reference are alternatively bound to the same SystemC test bench. The test bench configures and

programs both designs from the same input. DUT data sockets are directly bound using an sc_vector of sockets.

The RTL reference is connected through AHB and AXI Verification IPs (VIP) in TLM-to-RTL transactor mode.

Figure 3 - Verification setup

III. RESULTS

Performance of the model was verified in multiple software and hardware configurations. Software configurations

being programmable features, such as timing and command reordering options, and hardware configuration being

queue sizes, data widths and memory layouts. Our test deck comprises almost 500 constructed patterns sweeping

explicit traffic properties, accompanied by a lower number of random tests, and real-life traffic from a CPU

recorded on RTL. Figure 4 illustrates the measured error in simulated time (equivalent to throughput) for a subset

of tests (rows) and configurations (columns). Results are given as deviation in % from the RTL reference. Most

of the test cases lay within the desired pessimistic prediction corridor (0-15% slower than RTL). Usually, random

or real-life traffic tests achieve significantly higher accuracy than constructed tests, which often contain repetitive

patterns that cause small deviations to accumulate.

6

Figure 4 – Error in simulated time for tests in %

Exemplary results for latency measurement are shown in Figure 5. The plot shows the latency per transaction in

bus clock cycles for random traffic from three ports. The transaction latency rapidly increases soon after

simulation start. Reasons are: 1) the high number of concurrent requests from the ports, and 2) the random nature

of the traffic giving the model only little room for optimization (high number of bank activations required). Hence,

for the given test case, the internal queues quickly stall the data path, as can be seen in Figure 6 on the example

of the command reordering queue. Another observation that can be made here is the effect of the auto-refresh,

which blocks access to memory in regular intervals. The refreshes add additional latency causing worst case

response delays of up to 600 cycles.

Figure 5 - Latency per transaction

7

Figure 6 - Fill level trace of command reordering queue

CONCLUSION

We presented a framework for performance modeling of state-of-the-art memory controllers targeting various

flavors of DRAM such as DDR3/4, and LPDDR3/4 using SystemC and TLM2.0. The design is based on a data

flow concept. It facilitates carefully selected TLM extensions to adapt to advanced multi-channel bus protocols

and at the same time remain standard compliant. The models are equipped with software interfaces equivalent to

their RTL references and can be parametrized using an interface for Configuration, Control and Inspection.

Functional verification and timing verification was done in TLM/RTL co-simulation, using a TLM test bench and

appropriate TLM-to-RTL transactors. Timing accuracy in terms of simulated time (throughput) and average

transaction latency for most of our tests is within a pessimistic corridor of 0-15% (TLM slower than RTL). The

TLM simulates approximately 100x faster than the RTL design. This speed up and the analysis instrumentation

of relevant design components greatly helps identifying architectural bottlenecks, saving a lot of time compared

to waveform-based analysis and debug at RTL.

8

REFERENCES

[1] JEDEC, „Joint Electron Device Engineering Council,“ 2018. [Online]. Available: www.jedec.org.

[2] J. Bruce, S. W. Ng und D. T. Wang, Memory Systems, Cache, DRAM, Disk, Burlington: Morgan

Kaufmann, 2008.

[3] E. Cheung, H. Hsieh und F. Balarin, „Memory subsystem simulation in software TLM/T models,“ in Asia

and South Pacific Design Automation Conference, Yokohama, 2009.

[4] V. Todorov, D. Mueller-Gritschneder, H. Reinig und U. Schlichtmann, „Automated construction of a

cycle-approximate transaction level model of a memory controller,“ Design, Automation & Test in Europe

Conference & Exhibition (DATE), pp. 1066-1071, 2012.

[5] ARM Inc., „User Manual Carbon Model Studio 8.1,“ 2016. [Online]. Available: infocenter.arm.com.

[6] A. Hansson, N. Agarwal, A. Kolli, T. Wenisch and A. N. Udipi, "Simulating DRAM controllers for future

system architecture exploration," in IEEE International Symposium on Performance Analysis of Systems

and Software (ISPASS), Monterey, 2014.

[7] accellera systems initiative, „SystemC/TLM2.0,“ 2018. [Online]. Available:

www.accellera.org/downloads/standards/systemc.

[8] Accellera, „CCI draft standard - Requirement specification for configuration interfaces,“ December 2009.

[Online]. Available: http://accellera.org/images/downloads/drafts-review/configuration_requirements-

091218.pdf.

[9] S. Biswas und H. Chen, „Reordering in the memory controller“. US Patent US8510521B2, 16 09 2010.

[10] S. Shrader, W. Bishop und A. Matta, „Method and apparatus for multi-port memory controller“. US

Patent US7054968B2, 16 09 2003.

