PCle Gen5 Validation—The Real World

Yuan Chen – Applications Engineer
Agenda

• What are challenges with PCIe validation?

• HAPS-100 – New Generation Prototyping platform

• Case Study - 32 Gbps PCIe Gen 5 validation with HAPS-SX/HAPS-100 1F (VU19P)

• Fast validation bring-up: Speed adaptors for HAPS
HAPS Portfolio to Serve All Markets
Industry’s Fastest Prototyping Solution

HAPS-SX
- Range of FPGAs
- HAPS HW products

HAPS-80
- Largest ecosystem worldwide
- Integrated prototyping solution

HAPS-100
- Adopted by Market Leaders
- Advancing prototyping leadership
Challenges with PCIe Gen 5 Validation

- 32GT/s data rate and double link bandwidth from 64GB/s to 128GB/s

- Additional challenges with the PHY design
 - For prototyping validation an external PHY card is needed
 - Special requirements for connectors, cables, clocking, jitter and routing

- Xilinx UltraScale+ with VU19P does not support a PCIe Gen5 PHY
 - Special testing of the FPGA to Achieve 32GT/s
HAPS-100 1FPGA
Industry’s highest performance prototyping system

Addresses Key Challenges in Prototyping

<table>
<thead>
<tr>
<th>Fastest Single FPGA Desktop System</th>
<th>Rich Connectivity for Daughercards</th>
</tr>
</thead>
<tbody>
<tr>
<td>Multiple speed-grades; Highest possible transceiver speeds</td>
<td>25 HT3 connectors (24 HPIO, 1 HDIO); 6 Quads transceiver connectors (MGB2A); Compatible with HT3 and MGB daughter cards</td>
</tr>
<tr>
<td>Ideal for high-performance IP such as PCIe, USB</td>
<td>Flexible Interfaces</td>
</tr>
<tr>
<td></td>
<td>One QSFP host connection and one USB3 host connection; Built-in Micror38 and UART interfaces; 46 clock outputs and 46 clock inputs; 18 clocks on the user-FPGA</td>
</tr>
<tr>
<td></td>
<td>IP Debug Flow feeding into Verdi</td>
</tr>
<tr>
<td></td>
<td>Built-In 8 GB DDR4 memory for Debug</td>
</tr>
</tbody>
</table>

New-generation Prototyping Architecture

<table>
<thead>
<tr>
<th>Advancing Prototyping Technology Leadership</th>
</tr>
</thead>
<tbody>
<tr>
<td>Supports HAPS Daughterboard Ecosystem</td>
</tr>
</tbody>
</table>

Supports HAPS Daughterboard Ecosystem

Advancing Prototyping Technology Leadership

Flexible Interfaces

- One QSFP host connection and one USB3 host connection;
- Built-in Micror38 and UART interfaces;
- 4*6 clock outputs and 4*6 clock inputs;
- 18 clocks on the user-FPGA;
HAPS-100 4F
Advancing Prototyping Technology Leadership

Comparing against previous generation
HAPS-80

- **Performance**
 - 1.5x performance
 - 50% more FPGA IO
 - MGTDM: 10+ MHz at 1024:1 ratio

- **Capacity**
 - 1.6x Capacity increase
 - Scales to large setups, up to 64+ cascading
 - Multi User Mode

- **Debug**
 - 4x performance and 4x increased sample depth
 - Improved performance for multi-FPGA Global State Visibility

- **Clocks**
 - 48 global clocks (24 PLL-Generated, 24 via Clk-In Ports)

- **Host Interfaces**
 - Up to 10x increase in host interface bandwidth
 - Two QSFP & one USB3 interface vs one USB2
 - Support for UMRBus3
 - High flexibility for Clocking, Debug, Host Interface
HAPS-100
Prototyping SW for High Performance

<table>
<thead>
<tr>
<th>HAPS-100 Capabilities</th>
<th>HAPS-100 Prototyping SW</th>
</tr>
</thead>
<tbody>
<tr>
<td>Front-end compile</td>
<td>Unified Compile with VCS</td>
</tr>
<tr>
<td>Partitioning</td>
<td>Automated, architecture aware</td>
</tr>
<tr>
<td>Memories</td>
<td>Automatically inferred</td>
</tr>
<tr>
<td>Incremental compile</td>
<td>Distributed</td>
</tr>
<tr>
<td>Debug signal capture</td>
<td>On-chip memory, Deep Trace Buffers, Global State Visibility</td>
</tr>
<tr>
<td>Waveform debug</td>
<td>Unified debug with Verdi</td>
</tr>
<tr>
<td>Hybrid</td>
<td>Supported</td>
</tr>
<tr>
<td>Gated clock conversion</td>
<td>Supported</td>
</tr>
<tr>
<td>DesignWare Foundation IP</td>
<td>Supported</td>
</tr>
<tr>
<td>Cross Module References</td>
<td>Supported</td>
</tr>
<tr>
<td>Power validation (UPF)</td>
<td>Supported</td>
</tr>
<tr>
<td>FPGA P&R</td>
<td>Customized Xilinx Vivado included</td>
</tr>
</tbody>
</table>
HAPS-100 Provides High Performance

- Xilinx VU19P FPGA
- Multiple speed-grades
- 25 HT3 Connectors
- 2 Host Ports: 1xUSB3, 1xQSFP28
- 6 Quad Transceivers (MGB2)
- 8 GByte Debug Buffer
- Mictor38 connector
- Proven, Reliable High-Speed Cables
- Improved Cable Connectors against bent pins
- Build-in Diagnostics
- 4 Ports, 24 Clock Inputs
- 4 Ports, 24 Clock Outputs
- Desktop / Benchtop friendly architecture

USB-to-JTAG / UART
USB-to-Quad UART
HAPS Gateway
Maximizing HAPS ROI Through Resource Management

Enables access from Web browser and Python scripts

HAPS Lab Engineers
• Ease hardware bring-up via interactive setup validation

HAPS Prototypers
• Reduce support effort by delivering fully packaged prototypes

HAPS End Users
• Use prototypes fully scripted or from convenience of a web browser

Infrastructure Managers
• Plugs into IT (Jenkins, GitLab, LDAP, Database Server, Certificates)

Decision Makers
• Report utilization for investment planning
Case Study: PCIe Gen 5 – 32 Gbps
HAPS-SX VU19P PCIe Gen5 IP
PCIe Gen 5 Prototyping Project

• Hardware Platform
 • HAPS-SX VU19P 32G with specially qualified VU19P
 • FPGA qualified by Xilinx for 32Gbps GTY line rate
 • Limited PCIe Gen 5 prototyping feasible using RTL soft IP
 • HAPS Connect Partner (HCP) interface boards for PCIe Gen 5 EP and RC
 • Support side band signals and GT reference clock
 • Tested for data rate of 32Gbps

• Synopsys RTL Soft IP packages
 • Transceiver test utility for GT link quality tests and hardware tuning
 • GT-IP to assist PCIe Gen 5 PHY and MAC implementation
 • GTY reset sequence, control and configuration, and
 • 128/130 encoding, data frame alignment, etc.
HAPS-SX VU19P 32Gbps for PCIe Gen 5
PCIe Gen 5 Link-up using Synopsys GTIP
HAPS-SX VU19P 32Gbps PCIe Gen5
Synopsys GTIP with Customer PHY IC and PCIe Gen 5 MAC

For Concept Illustration Only
Not real setup due to customer project confidentiality
HAPS-SX VU19P Daughter Board Support

Juno Adaptor

SMF MIPI Video

DDR4_HT3

FMC Test

8-L PCIe Gen 4 EP
Fast Validation Bring-up: Speed Adaptors for HAPS
Speed Adaptor-2 (SA2)
In-circuit connection to Real-world devices

Real-World Devices

Speed Adaptor 2

Real-World I/O

ZeBu

DUT

HAPS

Speed Adaptors bridge the speed between a fast physical interface and the DUT running in ZeBu or HAPS, without compromising protocol functionality

Speed Adaptor 2: Server Friendly small form factor, Ease of Use, Continuity from ZeBu to HAPS
PCIe SA2 Integration

Tasks Performed

- Integrate RTL to facilitate HAPS-100 VU19P deployment
- Integrate RTL to instantiate the hooks for the DUT to communicate with SA2
- Verified and simulation clean FPGA RTL
- Verified by using prototypes in the lab
HAPS Protocol Interface Solutions
Ecosystem offering comprehensive portfolio of HAPS Extension Cards

- Protocol Interface Extension cards are essential in 90% prototyping setups
- 85+ Protocol Interface implementations supported
- Daughter board and services for HAPS systems
 - Complimentary portfolios
 - Customization
- Leverage daughter boards from leading industry vendors
- Reduce project risk
- Save prototype development costs and resources

HAPS Connect Ecosystem Enables Cost, Time and Resource Flexibility for HAPS customers
Verification Continuum Flow
Unified Compile, Unified Debug, Unified Protocol Support

Unified Compile with VCS
- Common language parser across simulation, emulation, prototyping, formal and debug
- SystemVerilog assertion (SVA) support via trigger conditions and waveforms
- Reuse VCS setups

Unified Debug with Verdi
- Common debug data base and use modes
- Continuum debug flows between engines

Unified Protocol Support
- Industry’s largest portfolio of VIP, Transactors, Speed Adaptors, Daughtercards and
- IP Prototyping Kits (IPK)
 - All DesignWare IP is validated on HAPS
Summary

- PCIe Gen5 protocol with 32 GTs Data rate, superior bandwidth, and special PHY and connector design introduced validation challenges for prototypers.

- HAPS-100 VU19P 1F and HAPS-SX VU19P are the only Xilinx qualified prototyping solution in the market for PCIe Gen5 validation at 32Gbps line rate.

- HAPS-100 VU19P 1F has the cascade capability, and can scale to big systems for PCIe Gen5 real world validation.

- Speed Adaptors and HAPS Extension Cards ecosystem enables HAPS users to implement over 85 protocol interfaces for using real world payloads.
Q&A
Thank You