
Pay Me Now or Pay Me Later
Exploring the Implementation and Analysis Cost Trade-Offs of Coverage Model Design

Paul Graykowski
Synopsys

Austin, Texas, United States
paulgray@synopsys.com

Andrew Piziali
Independent Consultant

Parker, Texas, United States
andy@piziali.dv.org

Abstract — In order to successfully verify a design, the scope and
details of the verification problem must be quantified and measured.
These are written during verification planning as the feature set of
the design. Each feature has associated attributes that may be
quantified with selected values and structurally arranged to reflect
its nature, thereby defining its associated coverage model. The trade-
offs of designing, implementing and analyzing high-fidelity functional
coverage models are discussed.

Keywords — bug, functional coverage, coverage fidelity,
coverage model, functional verification

I. INTRODUCTION

In order to successfully verify a design, the scope and
details of the verification problem must be quantified and
measured. These are recorded during verification planning as
the feature set of the design. Each feature has associated
attributes that may be quantified with selected values and
structurally arranged to reflect its nature, thereby defining its
associated coverage model. The challenge facing the
verification engineer is balancing the conflicting requirements
of coverage model fidelity—how closely the model reflects the
actual behavioral space of the feature—and model size—the
number of points defining the model. Yet, the conflict is
counter-intuitive: the greater the model fidelity, the smaller the
coverage model and vice-versa! The problem is that a high
fidelity model requires more labor to design and implement
than a low fidelity model yet requires less back end analysis of
the resulting recorded data. On the other hand, a low fidelity
model may be designed and implemented with little effort but
its resultant large size and questionable approximate regions
require much more back-end analysis effort. Hence, we are
faced with the choice to pay our labor up-front or pay up later.

In this paper we explore this trade-off using the
OpenCores.org WISHBONE DMA controller[1] that compares
front-end loading the labor of the coverage aspect of
verification with back-end loading. The paper begins in
“Related Work” by examining earlier explorations of coverage
model design. We then give an overview of the DUV in “The
Design Under Verification” and describe the particular features
for which models are designed. This is followed by “High-
Fidelity Coverage Model Design,” the heart of the paper, where
the procedure for designing a high-fidelity coverage model that
precisely describes feature behavior and its trade-offs is
explained. The next section, “Coverage Data Analysis,”
addresses the analysis of data recorded by the coverage model

and the consequences of using low- and high-fidelity models.
Finally, our key points are captured in “Summary.”

II. RELATED WORK

This work builds upon a long history of coverage
measurement and analysis, driven by the need to determine
how well the DUV has been exercised by a constrained random
stimulus source. In [2] the use of a variety of coverage analysis
techniques, ranging from FSM state transition analysis to
sequence checking, are explained. [3] introduces the concept of
user-defined coverage, where the coverage model is separated
from the coverage tool. [4] discusses the costs and benefits of
observability-based coverage, where the effects of possible
errors may be observed at a DUV output. [5] discusses methods
for analyzing coverage holes, those defined regions of a
coverage model that have not been observed during verification
but are required for verification closure. [6] addresses the
complete process of defining coverage models, implementing
the models, populating the models by recording coverage data,
and analyzing verification progress. Finally, [7] addresses this
process within an ESL flow.

III. THE DESIGN UNDER VERIFICATION

The DUV we use to illustrate coverage model fidelity is the
OpenCores.org WISHBONE DMA controller. This core is able
to transfer data between two WISHBONE interfaces while also
behaving as a bridge, allowing masters on each interface to
directly access storage of slaves on the other interface. Each
interface shares a common clock. These are the primary
features of the controller:

• Up to 31 DMA channels
• 2, 4 or 8 priority levels
• Linked list descriptors support
• Circular buffer support
• FIFO buffer support
• Hardware handshake support

The core architecture is illustrated in Figure 1 on the following
page. The feature we use to illustrate coverage model trade-offs
is the DMA channel, in particular the transfer kinds and
associated address ranges.

IV. HIGH-FIDELITY COVERAGE MODEL DESIGN

The behavior of each feature of the DUV—input, output and
I/O behaviors—is specified in a declarative fashion by a
coverage model, an abstract representation of device behavior
composed of attributes and their relationships.[6] The precision
of the model, i.e. how closely it describes a particular device
behavior, is referred to as its fidelity. For example, a device
behavior may require 15 unique states. If a model reduces these
to eight states through abstraction, it would be a lower fidelity
model than one that defined all 15 states. We illustrate the
design of both a low-fidelity model and a high-fidelity model in
the following sections and compare their trade-offs. The use of
the models and analysis of data recorded for each model is
subsequently addressed.

Coverage model design proceeds through two stages: top
level design followed by detailed design. During top level
design, we identify the semantics of a model, the attributes of
the model, the values of those attributes, and the logical and
structural relationships among the attributes. Detailed design is
responsible for mapping the model into the verification
environment, such as determining what test bench variables or
DUV registers will be used as attribute sources.

A. Top Level Design
The first step of top level design is to write the coverage

model semantic description. What behavioral space is the
model intended to record? For example: “Record all DMA
transfer kinds for each address space.” This description serves
as an abstract functional specification for the coverage model.

The second step is identifying the attributes of the model
and their values. Each attribute contributes to or influences the
behavior of the modeled feature. For this example the attributes
are transfer kind and address. The attribute values are the valid
subset of all possible values specified by the semantic
description, in this case the named transfer kinds and address
ranges. The partitioning of the 32-bit address range is based
upon an expectation that end values (and their neighbors) in a
range are boundary conditions more susceptable to

implementation errors. This information is captured in a
coverage model design table, as illustrated in Figure 2.

The left column contains row headings: Attribute, Value,
Sampling Time and Correlation Time. Each remaining column
is associated with an attribute: Transfer Kind and Address. The
legal values for each attribute are specified in the Value row.
The time when the value of each attribute is to be recorded is
specified in the Sampling Time row: at the end of each driven
transaction. The time when the most recently sampled attribute
values are to be recorded as a set in a coverage database are
specified in the cell immediately to the right of “Correlation
Time.” In this case, the sampling times and correlation time are
the same. Each remaining cell in the correlation time row
specifies the particular attribute values to be recorded with the
other attribute values in the same row, defining the core of the
coverage model. In this coverage model we record all transfer
kinds (specified by the wildcard *) for each of five address

Attribute Transfer Kind Address

Value READ, WRITE,
BLK_RD,
BLK_WR, RMW

0000_0000…
FFFF_FFFF

Sampling Time transaction
completes

transaction
completes

Correlation
Time

transaction
completes

* 0000_0000
* 0000_0004
* 0000_0008…

FFFF_FFF4
* FFFF_FFF8
* FFFF_FFFC

Figure 2. DMA Transfers Low-Fidelity Coverage Model

Figure 1. DMA Controller Core Architecture

Attribute Transfer Kind Address

Value READ, WRITE,
BLK_RD,
BLK_WR, RMW

0000_0000…
FFFF_FFFF

Sampling Time transaction
completes

transaction
completes

Correlation
Time

transaction
completes

READ, WRITE

0000_0000
0000_0004…
FFFF_FFF8
FFFF_FFFC

BLK_RD,
BLK_WR

0000_0000
0000_0004…
7FFF_FFF8
7FFF_FFFC

RMW

8000_0000
8000_0004…
FFFF_FFF8
FFFF_FFFC

Figure 3. DMA Transfers High Fidelity Coverage Model

ranges. This completes the detailed design of a low-fidelity
model.

Closer inspection of the DUV specification reveals
restrictions on the address ranges available to each of the
transfer kinds. Although reads and writes between the two
WISHBONE interfaces may use any modulo-4 address, block
reads and writes—transfers to and from a single interface—are
only performed in the lower half of the address space. A DMA
transfer is ignored if specified in the upper half of the address
range. Furthermore, atomic read-modify-writes are only
defined for the upper half of the address space. Again, a read-
modify-write transfer is otherwise ignored. Hence, we revise
the semantic description for the new model to: “Record each
DMA transfer kind with its corresponding address space.” This
leads to a higher fidelity version of the coverage model,
captured in Figure 3 above.

B. Detailed Design
Having completed the top level design, detailed design

must map the top-level design of the coverage model into the
verification environment. Three questions must be answered
when mapping the model:

• What must be sampled for the attribute values?

• Where in the verification environment should we
sample?

• When should the data be sampled and correlated?

We first consider the detailed design of the low-fidelity model
of Figure 2. With regard to the what question, we are designing
a matrix coverage model[6] that captures the different
WISHBONE transfer kinds and the address ranges exercised.

To answer where and when to sample, a more detailed
explanation of the verification environment is necessary. The
environment for the WISHBONE DMA is implemented in
SystemVerilog using the VMM architecture.[8] Referencing
Figure 4, within the environment is a scenario generator that
generates WISHBONE transactions of type wb_cycle. Each
transaction—a transfer in the parlance of the WISHBONE
specification—defines the parameters used by the driver to
execute a bus transaction. The wb_cycle is injected into a
channel (like a FIFO using inter-process communication) that is
routed to a vmm_xactor extension implementing the
WISHBONE master driver. Once the master detects a new
transaction in the channel, it creates a copy and drives it as a
bus transaction. As soon as the transaction completes, the
master subjects the transaction to a post_cycle callback. This
callback is a hook for user code—in our case coverage
recording code—to execute using the most recently transmitted
transaction. The callback receives a copy of the wb_cycle that
is used to record this coverage data. After the callback
completes, it is finally removed from the channel using a
destructive read and the master repeats the cycle.

We have available the transaction itself, wb_cycle, that
contains the transfer kind and the address of the transaction,
addr. A copy of this transaction is received as soon as it
finishes being driven on the bus. Hence, we can define a class,
wb_master_cb_cov, that implements the callback extension
to record the coverage data.

As noted earlier, for every transaction that is generated and
driven on the bus we need to know the kind of transfer—
READ, WRITE, BLK_RD, BLK_WR or RMW—and its
associated address range—0000_0000, 0000_0004,
0000_0008:FFFF_FFF4, FFFF_FFF8 or FFFF_FFFC. This is
the implementation of the low-fidelity coverage model:
class wb_master_cb_cov extends wb_master_
callbacks;

wb_cycle cycle;
covergroup master_cov;

option.per_instance = 1;
c_kind: coverpoint cycle.kind {

bins s_READ = {wb_cycle::READ};
bins s_WRITE = {wb_cycle::WRITE};
bins s_BLK_RD = {wb_cycle::BLK_RD};
bins s_BLK_WR = {wb_cycle::BLK_WR};
bins s_BLK_RMW = {wb_cycle::RMW};

}
addr: coverpoint cycle.addr[31:0] {

bins s_LO_00 = {[32’h0000_0000]};
bins s_LO_04 = {[32’h0000_0004]};
bins s_MID = {[32’h0000_0008:
 32’hFFFF_FFF4]};
bins s_HI_F8 = {[32’hFFFF_FFF8]};
bins s_HI_FC = {[32’hFFFF_FFFC]};

}
rwXaddr: cross c_kind, addr;

endgroup
extern function new();
extern virtual task post_cycle(wb_master

xactor, wb_cycle cycle); ...
endclass:wb_master_cb_cov

Since this is a callback class, the method post_cycle() is
called at the appropriate time. We implement this method,
manually updating the coverage data, providing a transaction
kind and address sample for every new transaction driven on
the wishbone interface:
task post_cycle(wb_master cycle, wb_cycle
cycle);

// Downcast from vmm_data to wb_cycle
$cast(this.cycle, cycle);
// Manually trigger a coverage update with
// the current wb_cycle

Figure 4. Coverage Model Detailed Design Architecture

Scenario
Generator

Master
(driver)

WISHBONE Interface

Coverage

master_cov.sample();
endtask:post_cycle

Implementing the correlation time for this model is
straightforward because the transaction is sampled at the time
the transmission completes, with both the transaction kind and
address available.

C. Coverage Model Design Trade-Offs
In this section we compare the trade-offs of designing,

implementing, using and analyzing a high-fidelity coverage
model with the same for a lower fidelity model. The design of a
high-fidelity model generally requires more effort than that of a
lower fidelity model because more information is required.
Moreover, precisely describing device behavior for a feature is
more difficult. Consider the initial low-fidelity model of Figure
2. The five transfer kinds supported by the DMA controller
were identified, along with their 32-bit address. Without any
further analysis, we could quickly partition the address space
into five ranges using intuition and experience, specifying a full
permutation of the resultant values. This model structure is
known as a matrix model[6] and is implemented using cross
coverage. The coverage space size is 25 points (5 transfer
kinds x 5 address ranges).

Contrast this with the high-fidelity model of Figure 3.
Again, we identified the five transfer kinds but more time spent
analyzing the specification revealed that some addresses are
ignored for some transfer kinds. Isolating the boundary
addresses in each range from the rest of the address space
yields a coverage space of only 15 points ({READ, WRITE} x
(3 address ranges) + {BLK_RD, BLK_WR} x (3 address
ranges) + {RMW} x (3 address ranges)), structured as a
hierarchical model.[6] In general, the design of a high-fidelity
model requires three to four times as much time as a low-
fidelity model.

As previously illustrated, implementing the coverage model
for the low-fidelity model is straightforward because a
common address range is considered valid for all transfer
kinds, yielding a matrix model easily implemented using
SystemVerilog cross coverage. However, there are trade-offs
with using such a simplified model. First, we are recording
coverage for many address ranges that are ignored for their
transfer kinds. This unnecessarily inflates the denominator of

the coverage ratio points observed
points required

, making it more costly to

achieve full coverage. Our decision to model the full address
range for each transfer kind resulted in 25 coverage points
(Figure 2). Eliminating the ignored address ranges leaves only
15 remaining points. Simulating with 100 initial seeds, the
maximum coverage achieved for the low-fidelity model was
60% 15

25
. This is the maximum possible because the

generation constraints prevented generating ignored
transactions. A careful comparison of generation constraints to
the input coverage model design would have revealed this
inconsistency. Moreover, the opportunity certainly exists for
the verification environment tool chain to detect such
inconsistencies.

To address this deficiency, we derived the higher-fidelity
model of Figure 3 and implemented it as follows:

addr: coverpoint cycle.addr[32:0] {
bins s_rw_lo = {0} iff

(cycle.kind==wb_cycle::READ ||
 cycle.kind==wb_cycle::WRITE);

bins s_rw_mid = {[32'h0000_0004:
 32'hFFFF_FFF8]} iff

(cycle.kind==wb_cycle::READ ||
 cycle.kind==wb_cycle::WRITE);

bins s_rw_hi = {32'hFFFF_FFFC} iff
(cycle.kind==wb_cycle::READ ||
 cycle.kind==wb_cycle::WRITE);

bins s_blk_lo = {32'h0000_0000} iff
(cycle.kind==wb_cycle::BLK_RD ||
 cycle.kind==wb_cycle::BLK_WR);

bins s_blk_mid = {[32'h0000_0004:
 32'h7FFF_FFF8]} iff

(cycle.kind==wb_cycle::BLK_RD ||
 cycle.kind==wb_cycle::BLK_WR);

bins s_blk_hi = {32'h7FFF_FFFC} iff
(cycle.kind==wb_cycle::BLK_RD ||
 cycle.kind==wb_cycle::BLK_WR);

bins s_rmw_lo = {32'h8000_0000} iff
(cycle.kind==wb_cycle::RMW);

bins s_rmw_mid = {[32'h8000_0004:
 32'hFFFF_FFF8]} iff

(cycle.kind==wb_cycle::RMW);
bins s_rmw_hi = {32'hFFFF_FFFC} iff

(cycle.kind==wb_cycle::RMW);
}

rwXaddr: cross c_kind, addr {
// VCS option that disables auto-binning of
// cross bins
option.cross_auto_bin_max = 0;
bins s_cross_rlo = binsof(c_kind)

intersect {wb_cycle::READ} &&
binsof(addr.s_rw_lo);

bins s_cross_rmd = binsof(c_kind)
intersect {wb_cycle::READ} &&
binsof(addr.s_rw_mid);

bins s_cross_rhi = binsof(c_kind)
intersect {wb_cycle::READ} &&
binsof(addr.s_rw_hi);

bins s_cross_wlo = binsof(c_kind)
intersect {wb_cycle::WRITE} &&
binsof(addr.s_rw_lo);

bins s_cross_wmd = binsof(c_kind)
intersect {wb_cycle::WRITE} &&
binsof(addr.s_rw_mid);

bins s_cross_whi = binsof(c_kind)
intersect {wb_cycle::WRITE} &&
binsof(addr.s_rw_hi);

bins s_cross_bkrlo = binsof(c_kind)
intersect {wb_cycle::BLK_RD} &&
binsof(addr.s_blk_lo);

bins s_cross_bkrmd = binsof(c_kind)
intersect {wb_cycle::BLK_RD} &&
binsof(addr.s_blk_mid);

bins s_cross_bkrhi = binsof(c_kind)
intersect {wb_cycle::BLK_RD} &&
binsof(addr.s_blk_hi);

bins s_cross_bkwlo = binsof(c_kind)
intersect {wb_cycle::BLK_WR} &&
binsof(addr.s_blk_lo);

bins s_cross_bkwmd = binsof(c_kind)
intersect {wb_cycle::BLK_WR} &&
binsof(addr.s_blk_mid);

bins s_cross_bkwhi = binsof(c_kind)
intersect {wb_cycle::BLK_WR} &&
binsof(addr.s_blk_hi);

bins s_cross_rmwlo = binsof(c_kind)
intersect {wb_cycle::RMW} &&
binsof(addr.s_rmw_lo);

bins s_cross_rmwmd = binsof(c_kind)
intersect {wb_cycle::RMW} &&
binsof(addr.s_rmw_mid);

bins s_cross_rmwhi = binsof(c_kind)
intersect {wb_cycle::RMW} &&
binsof(addr.s_rmw_hi);

}

While much more thought and care went into designing and
implementing this model, it is much more accurate, describing
more precisely the valid coverage points. The high-fidelity
model has only 15 coverage points. While all 15 points are
reachable (i.e. generated by our generation constraints), we
found in using a regression similar to the low-fidelity model
(100 seeds) that we could not reach our goal of 100%. Analysis
of the results showed that the first s_cross_*lo and last
s_cross*hi bins for each of the transaction types were not
observed. This isn't surprising since we are generating a
random 32-bit value. The likelihood of generating a specific
value is one in four billion (232)! In this situation, the
generation constraints for the end values should be modified to
increase the probability of generating these corner cases.

The labor required to code and debug the high-fidelity
model was about two and a half times that of the low-fidelity
model. Although the time spent implementing the model was
minimal, the culprit was debugging. Since these are declarative
statements, debugging coverage groups presents some
challenges. For example, you cannot step through a coverage
group like procedural code. Fortunately, this model is quite
regular. Once a working template was implemented for one
combination of address ranges and transaction kind it was easy
to replicate for the other transaction kinds. This further
strengthens the argument that it takes more up-front effort to
design a high-fidelity model but that this time—and more—is
regained once regressions begin.

This brings us to comparing the use of a low-fidelity model
to a high-fidelity model in simulation. Looking at the
simulation results reveals the values of Table 1. One hundred
tests were executed using both the low- and high-fidelity
models. The aggregate coverage reached a maximum of 65.7%
after 31 tests on the low-fidelity model. As discovered through
more detailed specification analysis, the model was over-
simplified and had to be modified to remove unnecssary
values.

This redundancy analysis reduced the size of the coverage
space, enabling us to reach 90.9% coverage with only 17 runs.
However, the high-fidelity model introduces a more precise
model, eliminating the need for redundancy analysis.
Simulation achieved a maximum coverage of 65.5% after
running 56 tests. What does this imply in our simulation
environment?

Disk storage and simulation time differ for each project.
However, certain trends are common. A high-fidelity model
records the minimum number of coverage points required to
satisfy the specification. In a project with a large attribute
matrix, implemented with cross coverage, expect a small
increase in simulation time due to the requirement of additional
guards (conditional exclusions used to implement a hierarchical
coverage model using cross coverage). Guards require more
conditional checks within the model but this reduces the actual
number of bins and crosses stored. While more simulation time
may be required, less memory is typically used. Based on prior
experience, substituting a high-fidelity model for a low-fidelity
model may increase the time spent recording coverage (not
overall simulation time) 10-20% but the amount of memory
used by coverage data often falls as much as 25-35%.

Analysis is where the high-fidelity model offers the biggest
gain. Although a high-fidelity model front-end loads the
development process, the back-end is the big winner. Data is
recorded and may be immediately presented without further
analysis or massaging. This gain is further realized as multiple
regressions are run over the course of the project. The more
frequent the regressions, the more time we gain. For the
WISHBONE DMA controller, analysis time was reduced 90%
on the first run and essentially eliminated on subsequent runs.
We had only moderate confidence in the correctness of the
model during the first run but this turned to full confidence in
subsequent runs. We still needed to review results for each run
but the time spent on this incrementally fell.

With a low-fidelity model we can converge more quickly to
100% observed coverage. However, we introduce certain
inaccuracies that require a substantial amount of analysis time
—i.e. coverage data must be reviewed and justified before
being presented to the project team. In practice, analyzing the
results is time consuming and requires deep design knowledge.
Repeatedly performing this analysis for frequent regressions is
not advisable because of the potential for user errors and delay
in obtaining results.

The high-fidelity model, on the other hand, requires more
time up-front to architect and verify. However, this doesn’t
have to be repeated with each regression run, making it less
error prone and providing a faster turnaround. As for impact on
simulation time, the low-fidelity model provided “better”
results in fewer simulation runs but that time was easily lost
with repeated unreachability analysis. Disk space consumption
and runtime per test between the two models was not
significantly different (the high-fidelity model is slightly
larger). It is possible this difference would be magnified with a
larger high-fidelity model but the savings in back-end analysis
easily justifies this cost.

Model Maximum
Coverage

Number of
Tests

low-fidelity 65.7% 31

low-fidelity
(redundancy
removed)

90.9% 17

high-fidelity 65.5% 56

Table 1. Low- and High-Fidelity Coverage Results

V. COVERAGE DATA ANALYSIS

Having compared the trade-offs of using low- and high-
fidelity coverage models, in this section we address the use of
three techniques for analyzing coverage results—in particular
coverage holes—with an aim toward identifying the reasons for
missing coverage and how to fill it. These techniques are hole
aggregation, partitioning and projection.[5]

A. Hole Aggregation
In order to quickly determine why particular coverage

points have not been observed after extensive simulation,
identifying commonalities among the holes is required. Since
our low- and high-fidelity coverage models measure input
coverage—a record of stimulus applied to the DUV—a hole
may reveal a defect in either the generation or coverage aspects
of the verification environment. In Figure 5 we illustrate the
high-fidelity model as a matrix with excluded regions. The
black regions are observed coverage points; the white regions
are coverage holes; and the gray regions are outside the defined

space of the model (a consequence of illustrating a hierarchical
model as a matrix). For example, if we represent a coverage
hole as a tuple of attribute values, <attr A, attr B>, two
coverage holes in this figure—<RMW, 8000_0000> and
<RMW, FFFF_FFFC> may be coalesced into the single hole
<RMW, {8000_0000, FFFF_FFFC}>, revealing the common
attribute value of transfer kind, RMW, for the two addresses.

B. Partitioning
The second means of identifying the commonalities of

coverage holes is to find out how they are conceptually or
semantically similar. Lachish et al refer to this as partitioning.
For example, regarding the three holes <{BLK_RD,
BLK_WR}, 0000_0000> and <RMW, FFFF_FFFC>, we
might discover, while talking with the DUV architect, that
block transfers and atomic accesses to end regions of the full
address space are prohibited because of timing constraints. We
could group these points together into a single region for
analysis.

C. Projection
A coverage hole having one or more attributes never

observed may be rendered and subsequently analyzed as a
projection. Projection collapses one or more dimensions of a
coverage model in order to simplify it and expose common
hole values. For example, if we project the transfer kind
attribute, considering its five values identical, the coverage hole
described earlier in Section IV.C. may be represented as
<*, {0000_0000, FFFF_FFFC}>, where * represents all five
transfer kinds. When presented graphically as in Figure 5, it
becomes apparent we have not generated the address space end
points for any transfer kinds.

VI. SUMMARY

In this paper we stated a counter-intuitive postulate: There
is an inverse relationship between coverage model fidelity and
size. The primary trade-off between using low- and high-
fidelity models is that a low-fidelity model postpones most
labor to the end while a high-fidelity model demands it up-
front. After reviewing previous work and introducing the
design-under-verification, a WISHBONE DMA controller, we
described the procedure for designing a high-fidelity coverage
model. Top-level design requires a semantic description,
followed by attributes, their values and their relationships, all
captured in a coverage model design table. The refinement of
an initial low-fidelity model to a high-fidelity model was
illustrated. Detailed design requires answering the three Ws:
What? Where? and When? Once detailed design was complete,
the implementation of the low- and high-fidelity models using
SystemVerilog was illustrated. We addressed the trade-offs in
designing, implementing, using and analyzing low- and high-
fidelity models, reporting results for each. If resources are
available early in the project to design high-fidelity models, do
so! Otherwise, use low-fidelity models at the outset,
substituting high-fidelity models later on. Finally, three useful
techniques for analyzing coverage holes—aggregation,
partitioning and projection—were explained and demonstrated.

REFERENCES

[1] http://opencores.org/project/wb_dma, November 2010
[2] M. Kantrowitz, L. Noack, "I'm Done Simulating; Now What?

Verification Coverage Analysis and Correctness Checking of the
DECchip 21164 Alpha microprocessor," Design Automation
Conference, 1996

[3] R. Grinwald, E. Harel, M. Orgad, S. Ur, A. Ziv, “User Defined Coverage
— A Tool Supported Methodology for Design Verification,” Design
Automation Conference, 1998

[4] F. Fallah, S. Devadas, K. Keutzer, "OCCOM: Efficient Computation of
Observability-Based Code Coverage Metrics for Functional
Verification," Design Automation Conference, 1998

[5] O. Lachish, E. Marcus, S. Ur and A. Ziv, “Hole Analysis for Functional
Coverage Data,” Design Automation Conference, 2002

[6] A. Piziali, Functional Verification Coverage Measurement and Analysis,
Springer, 2004

[7] B. Bailey, G. Martin, A. Piziali, ESL Design and Verification, 2007,
reference chapter ten, “Post-Partitioning Verification”

[8] http://www.vmmcentral.org/, November 2010.

Transfer Kind
READ,
WRITE

BLK_RD,
BLK_WR

RMW

Address

0000_0000
0000_0004-
7FFF_FFF8
7FFF_FFFC
8000_0000
8000_0004-
FFFF_FFF8
FFFF_FFFC

Figure 5. Hole Aggregation

http://opencores.org/project/wb_dma
file:///C:/My%20Home%20Directory/doc/Conference/DVCon/2011/Pay%20Me%20Now%20or%20Pay%20Me%20Later/Paper/%5B1%5D%20http://www.vmmcentral.org/aboutus.html

