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Abstract  —  In order to successfully verify a design, the scope and  
details of the verification problem must be quantified and measured.  
These are written during verification planning as the feature set of  
the  design.  Each  feature  has  associated  attributes  that  may  be  
quantified with selected values and structurally arranged to reflect  
its nature, thereby defining its associated coverage model. The trade-
offs of designing, implementing and analyzing high-fidelity functional  
coverage models are discussed.
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I.  INTRODUCTION

In  order  to  successfully  verify  a  design,  the  scope  and 
details  of  the  verification  problem  must  be  quantified  and 
measured. These are recorded during verification planning as 
the  feature  set  of  the  design.  Each  feature  has  associated 
attributes  that  may  be  quantified  with  selected  values  and 
structurally arranged to reflect its nature, thereby defining its 
associated  coverage  model.  The  challenge  facing  the 
verification engineer is balancing the conflicting requirements 
of coverage model fidelity—how closely the model reflects the 
actual  behavioral  space of the feature—and model  size—the 
number  of  points  defining  the  model.  Yet,  the  conflict  is 
counter-intuitive: the greater the model fidelity, the smaller the 
coverage  model  and  vice-versa!  The problem is  that  a  high 
fidelity model  requires  more  labor to  design  and implement 
than a low fidelity model yet requires less back end analysis of 
the resulting recorded data. On the other hand, a low fidelity 
model may be designed and implemented with little effort but 
its  resultant  large  size and questionable approximate regions 
require  much  more  back-end  analysis  effort.  Hence,  we  are 
faced with the choice to pay our labor up-front or pay up later.

In  this  paper  we  explore  this  trade-off  using  the 
OpenCores.org  WISHBONE DMA controller[1] that compares 
front-end  loading  the  labor  of  the  coverage  aspect  of 
verification  with  back-end  loading.  The  paper  begins  in 
“Related Work” by examining earlier explorations of coverage 
model design. We then give an overview of the DUV in “The 
Design Under Verification” and describe the particular features 
for  which models  are  designed.  This  is  followed by “High-
Fidelity Coverage Model Design,” the heart of the paper, where 
the procedure for designing a high-fidelity coverage model that 
precisely  describes  feature  behavior  and  its  trade-offs  is 
explained.  The  next  section,  “Coverage  Data  Analysis,” 
addresses the analysis of data recorded by the coverage model 

and the consequences of using low- and high-fidelity models. 
Finally, our key points are captured in “Summary.”

II. RELATED WORK

This  work  builds  upon  a  long  history  of  coverage 
measurement  and  analysis,  driven  by the  need  to  determine 
how well the DUV has been exercised by a constrained random 
stimulus source. In [2] the use of a variety of coverage analysis 
techniques,  ranging  from  FSM state  transition  analysis  to 
sequence checking, are explained. [3] introduces the concept of 
user-defined coverage, where the coverage model is separated 
from the coverage tool.  [4] discusses the costs and benefits of 
observability-based  coverage,  where  the  effects  of  possible 
errors may be observed at a DUV output. [5] discusses methods 
for  analyzing  coverage  holes,  those  defined  regions  of  a 
coverage model that have not been observed during verification 
but  are  required  for  verification  closure.  [6] addresses  the 
complete process of defining coverage models, implementing 
the models, populating the models by recording coverage data, 
and analyzing verification progress. Finally,  [7] addresses this 
process within an ESL flow.

III. THE DESIGN UNDER VERIFICATION

The DUV we use to illustrate coverage model fidelity is the 
OpenCores.org  WISHBONE DMA controller. This core is able 
to transfer data between two WISHBONE interfaces while also 
behaving as  a  bridge,  allowing masters  on each interface  to 
directly access storage of slaves on the other interface.  Each 
interface  shares  a  common  clock.  These  are  the  primary 
features of the controller:

• Up to 31 DMA channels
• 2, 4 or 8 priority levels
• Linked list descriptors support
• Circular buffer support
• FIFO buffer support
• Hardware handshake support

The core architecture is illustrated in Figure 1 on the following 
page. The feature we use to illustrate coverage model trade-offs 
is the DMA channel, in particular the transfer kinds and 
associated address ranges.



IV. HIGH-FIDELITY COVERAGE MODEL DESIGN

The behavior of each feature of the DUV—input, output and 
I/O  behaviors—is  specified  in  a  declarative  fashion  by  a 
coverage model, an abstract representation of device behavior 
composed of attributes and their relationships.[6] The precision 
of the model, i.e. how closely it describes a particular device 
behavior, is referred to as its fidelity.  For example, a device 
behavior may require 15 unique states. If a model reduces these 
to eight states through abstraction, it would be a lower fidelity 
model  than  one  that  defined  all  15 states.  We illustrate  the 
design of both a low-fidelity model and a high-fidelity model in 
the following sections and compare their trade-offs. The use of 
the models and analysis  of  data recorded  for  each  model  is 
subsequently addressed.

Coverage model design proceeds through two stages:  top 
level  design  followed  by  detailed  design.  During  top  level 
design, we identify the semantics of a model, the attributes of 
the model, the values of those attributes, and the logical  and 
structural relationships among the attributes. Detailed design is 
responsible  for  mapping  the  model  into  the  verification 
environment, such as determining what test bench variables or 
DUV registers will be used as attribute sources.

A. Top Level Design
The first step of top level design is to write the coverage 

model  semantic  description.  What  behavioral  space  is  the 
model  intended  to  record?  For  example:  “Record  all  DMA 
transfer kinds for each address space.” This description serves 
as an abstract functional specification for the coverage model.

The second step is identifying the attributes of the model 
and their values. Each attribute contributes to or influences the 
behavior of the modeled feature. For this example the attributes 
are transfer kind and address. The attribute values are the valid 
subset  of  all  possible  values  specified  by  the  semantic 
description, in this case the named transfer kinds and address 
ranges.  The partitioning of the 32-bit address range is based 
upon an expectation that end values (and their neighbors) in a 
range are  boundary  conditions  more  susceptable  to 

implementation errors. This information is captured in a 
coverage model design table, as illustrated in Figure 2.

The left  column contains row headings:  Attribute, Value, 
Sampling Time and Correlation Time. Each remaining column 
is associated with an attribute: Transfer Kind and Address. The 
legal values for each attribute are specified in the Value row. 
The time when the value of each attribute is to be recorded is 
specified in the Sampling Time row: at the end of each driven 
transaction. The time when the most recently sampled attribute 
values are to be recorded as a set in a coverage database are 
specified in the cell immediately to the right of “Correlation 
Time.” In this case, the sampling times and correlation time are 
the  same.  Each  remaining  cell  in  the  correlation  time  row 
specifies the particular attribute values to be recorded with the 
other attribute values in the same row, defining the core of the 
coverage model. In this coverage model we record all transfer 
kinds (specified by the wildcard *) for each  of five address 

Attribute Transfer Kind Address

Value READ, WRITE, 
BLK_RD, 
BLK_WR, RMW

0000_0000… 
FFFF_FFFF

Sampling Time transaction 
completes

transaction 
completes

Correlation 
Time

transaction 
completes

* 0000_0000
* 0000_0004
* 0000_0008… 

FFFF_FFF4
* FFFF_FFF8
* FFFF_FFFC

Figure 2. DMA Transfers Low-Fidelity Coverage Model

Figure 1. DMA Controller Core Architecture

Attribute Transfer Kind Address

Value READ, WRITE, 
BLK_RD, 
BLK_WR, RMW

0000_0000… 
FFFF_FFFF

Sampling Time transaction 
completes

transaction 
completes

Correlation 
Time

transaction 
completes

READ, WRITE

0000_0000
0000_0004… 
FFFF_FFF8
FFFF_FFFC

BLK_RD, 
BLK_WR 

0000_0000
0000_0004… 
7FFF_FFF8
7FFF_FFFC

RMW

8000_0000
8000_0004… 
FFFF_FFF8
FFFF_FFFC

Figure 3. DMA Transfers High Fidelity Coverage Model



ranges.  This  completes  the  detailed  design  of  a  low-fidelity 
model.

Closer  inspection  of  the  DUV specification  reveals 
restrictions  on  the  address  ranges  available  to  each  of  the 
transfer  kinds.  Although  reads  and  writes  between  the  two 
WISHBONE interfaces  may use any modulo-4 address,  block 
reads and writes—transfers to and from a single interface—are 
only performed in the lower half of the address space. A DMA 
transfer is ignored if specified in the upper half of the address 
range.  Furthermore,  atomic  read-modify-writes  are  only 
defined for the upper half of the address space. Again, a read-
modify-write transfer is otherwise ignored.  Hence, we revise 
the semantic description for the new model to: “Record each 
DMA transfer kind with its corresponding address space.” This 
leads  to  a  higher  fidelity  version  of  the  coverage  model, 
captured in Figure 3 above.

B. Detailed Design
Having  completed  the  top  level  design,  detailed  design 

must map the top-level design of the coverage model into the 
verification  environment.  Three  questions  must  be answered 
when mapping the model:

• What must be sampled for the attribute values?

• Where in the verification environment should we 
sample?

• When should the data be sampled and correlated?

We first consider the detailed design of the low-fidelity model 
of Figure 2. With regard to the what question, we are designing 
a  matrix  coverage  model[6] that  captures  the  different 
WISHBONE transfer kinds and the address ranges exercised.

To  answer  where and  when to  sample,  a  more  detailed 
explanation of the verification environment is necessary. The 
environment  for  the  WISHBONE DMA is  implemented  in 
SystemVerilog  using  the  VMM architecture.[8] Referencing 
Figure 4, within the environment is a scenario generator that 
generates  WISHBONE  transactions  of  type  wb_cycle.  Each 
transaction—a  transfer in  the  parlance  of  the  WISHBONE 
specification—defines  the  parameters  used  by  the  driver  to 
execute  a  bus transaction.  The  wb_cycle is  injected  into  a 
channel (like a FIFO using inter-process communication) that is 
routed  to  a  vmm_xactor extension  implementing  the 
WISHBONE master  driver.  Once  the  master  detects  a  new 
transaction in the channel, it creates a copy and drives it as a 
bus  transaction.  As  soon  as  the  transaction  completes,  the 
master subjects the transaction to a post_cycle callback. This 
callback  is  a  hook  for  user  code—in  our  case  coverage 
recording code—to execute using the most recently transmitted 
transaction. The callback receives a copy of the wb_cycle that 
is  used  to  record  this  coverage  data.  After  the  callback 
completes,  it  is  finally  removed  from  the  channel  using  a 
destructive read and the master repeats the cycle.

We have available  the  transaction itself,  wb_cycle,  that 
contains the transfer  kind and the address of the transaction, 
addr.  A  copy  of  this  transaction  is  received  as  soon  as  it 
finishes being driven on the bus. Hence, we can define a class, 
wb_master_cb_cov,  that implements the callback extension 
to record the coverage data.

As noted earlier, for every transaction that is generated and 
driven  on  the  bus  we  need  to  know the  kind  of  transfer—
READ,  WRITE,  BLK_RD,  BLK_WR or  RMW—and  its 
associated  address  range—0000_0000,  0000_0004, 
0000_0008:FFFF_FFF4, FFFF_FFF8 or FFFF_FFFC. This is 
the implementation of the low-fidelity coverage model:
class wb_master_cb_cov extends wb_master_ 
callbacks;

wb_cycle cycle;
covergroup master_cov;

option.per_instance = 1;
c_kind: coverpoint cycle.kind {

bins s_READ    = {wb_cycle::READ};
bins s_WRITE   = {wb_cycle::WRITE};
bins s_BLK_RD  = {wb_cycle::BLK_RD};
bins s_BLK_WR  = {wb_cycle::BLK_WR};
bins s_BLK_RMW = {wb_cycle::RMW};

}
addr: coverpoint cycle.addr[31:0] {

bins s_LO_00   = {[32’h0000_0000]};
bins s_LO_04   = {[32’h0000_0004]};
bins s_MID     = {[32’h0000_0008:
                   32’hFFFF_FFF4]};
bins s_HI_F8   = {[32’hFFFF_FFF8]};
bins s_HI_FC   = {[32’hFFFF_FFFC]};

}
rwXaddr: cross c_kind, addr;

endgroup
extern function new();
extern virtual task post_cycle(wb_master 

xactor, wb_cycle cycle); ...
endclass:wb_master_cb_cov

Since this is a callback class, the method post_cycle() is 
called  at  the  appropriate  time.  We  implement  this  method, 
manually updating the coverage data, providing a transaction 
kind and address sample for every new transaction driven on 
the wishbone interface:
task post_cycle(wb_master cycle, wb_cycle 
cycle);

// Downcast from vmm_data to wb_cycle
$cast(this.cycle, cycle);
// Manually trigger a coverage update with
// the current wb_cycle

Figure 4. Coverage Model Detailed Design Architecture

Scenario
Generator

Master
(driver)

WISHBONE Interface

Coverage



master_cov.sample();
endtask:post_cycle

Implementing  the  correlation  time  for  this  model  is 
straightforward because the transaction is sampled at the time 
the transmission completes, with both the transaction kind and 
address available.

C. Coverage Model Design Trade-Offs
In  this  section  we  compare  the  trade-offs  of  designing, 

implementing,  using  and  analyzing  a  high-fidelity  coverage 
model with the same for a lower fidelity model. The design of a 
high-fidelity model generally requires more effort than that of a 
lower  fidelity  model  because  more  information  is  required. 
Moreover, precisely describing device behavior for a feature is 
more difficult. Consider the initial low-fidelity model of Figure
2.  The five  transfer  kinds supported  by the  DMA controller 
were identified, along with their 32-bit address.  Without any 
further analysis, we could quickly partition the address space 
into five ranges using intuition and experience, specifying a full 
permutation  of  the  resultant  values.  This  model  structure  is 
known as a matrix model[6] and is implemented using cross 
coverage.  The  coverage  space  size  is  25  points  (5  transfer 
kinds x 5 address ranges).

Contrast  this  with  the  high-fidelity  model  of  Figure  3. 
Again, we identified the five transfer kinds but more time spent 
analyzing  the specification  revealed  that  some addresses  are 
ignored  for  some  transfer  kinds.  Isolating  the  boundary 
addresses  in  each  range  from the  rest  of  the  address  space 
yields a coverage space of only 15 points ({READ, WRITE} x 
(3  address  ranges)  +  {BLK_RD,  BLK_WR} x (3  address 
ranges)  +  {RMW} x (3  address  ranges)),  structured  as  a 
hierarchical model.[6] In general, the design of a high-fidelity 
model  requires  three  to  four  times  as  much time as  a  low-
fidelity model.

As previously illustrated, implementing the coverage model 
for  the  low-fidelity  model  is  straightforward  because  a 
common  address  range  is  considered  valid  for  all  transfer 
kinds,  yielding  a  matrix  model  easily  implemented  using 
SystemVerilog cross coverage.  However,  there are trade-offs 
with using such  a simplified  model.  First,  we are  recording 
coverage  for  many address  ranges  that  are  ignored  for  their 
transfer kinds. This unnecessarily inflates the denominator of 

the coverage ratio points observed
points required

, making it more costly to 

achieve full coverage. Our decision to model the full address 
range  for  each  transfer  kind  resulted  in  25  coverage  points 
(Figure 2). Eliminating the ignored address ranges leaves only 
15  remaining  points.  Simulating  with 100  initial  seeds,  the 
maximum coverage  achieved  for  the low-fidelity model was 
60%  15

25
.  This  is  the  maximum  possible  because  the 

generation  constraints  prevented  generating  ignored 
transactions. A careful comparison of generation constraints to 
the  input  coverage  model  design  would  have  revealed  this 
inconsistency.  Moreover,  the  opportunity certainly exists  for 
the  verification  environment  tool  chain  to  detect  such 
inconsistencies.

To address this deficiency,  we derived the higher-fidelity 
model of Figure 3 and implemented it as follows:

addr: coverpoint cycle.addr[32:0] {
bins s_rw_lo = {0} iff

(cycle.kind==wb_cycle::READ ||
 cycle.kind==wb_cycle::WRITE);

bins s_rw_mid = {[32'h0000_0004:
                  32'hFFFF_FFF8]} iff 

(cycle.kind==wb_cycle::READ ||
 cycle.kind==wb_cycle::WRITE);

bins s_rw_hi = {32'hFFFF_FFFC} iff
(cycle.kind==wb_cycle::READ ||
 cycle.kind==wb_cycle::WRITE);

bins s_blk_lo = {32'h0000_0000} iff
(cycle.kind==wb_cycle::BLK_RD ||
 cycle.kind==wb_cycle::BLK_WR);

bins s_blk_mid = {[32'h0000_0004:
                   32'h7FFF_FFF8]} iff

(cycle.kind==wb_cycle::BLK_RD ||
 cycle.kind==wb_cycle::BLK_WR);

bins s_blk_hi = {32'h7FFF_FFFC} iff
(cycle.kind==wb_cycle::BLK_RD ||
 cycle.kind==wb_cycle::BLK_WR);

bins s_rmw_lo = {32'h8000_0000} iff
(cycle.kind==wb_cycle::RMW);

bins s_rmw_mid = {[32'h8000_0004:
                   32'hFFFF_FFF8]} iff

(cycle.kind==wb_cycle::RMW);
bins s_rmw_hi = {32'hFFFF_FFFC} iff

(cycle.kind==wb_cycle::RMW);
}

rwXaddr: cross c_kind, addr {
// VCS option that disables auto-binning of
// cross bins
option.cross_auto_bin_max = 0;
bins s_cross_rlo = binsof(c_kind)

intersect {wb_cycle::READ} && 
binsof(addr.s_rw_lo);

bins s_cross_rmd = binsof(c_kind)
intersect {wb_cycle::READ} && 
binsof(addr.s_rw_mid);

bins s_cross_rhi = binsof(c_kind)
intersect {wb_cycle::READ} && 
binsof(addr.s_rw_hi);

bins s_cross_wlo = binsof(c_kind)
intersect {wb_cycle::WRITE} && 
binsof(addr.s_rw_lo);

bins s_cross_wmd = binsof(c_kind)
intersect {wb_cycle::WRITE} && 
binsof(addr.s_rw_mid);

bins s_cross_whi = binsof(c_kind)
intersect {wb_cycle::WRITE} && 
binsof(addr.s_rw_hi);

bins s_cross_bkrlo = binsof(c_kind)
intersect {wb_cycle::BLK_RD} && 
binsof(addr.s_blk_lo);

bins s_cross_bkrmd = binsof(c_kind)
intersect {wb_cycle::BLK_RD} && 
binsof(addr.s_blk_mid);

bins s_cross_bkrhi = binsof(c_kind)
intersect {wb_cycle::BLK_RD} && 
binsof(addr.s_blk_hi);

bins s_cross_bkwlo = binsof(c_kind)
intersect {wb_cycle::BLK_WR} && 
binsof(addr.s_blk_lo);

bins s_cross_bkwmd = binsof(c_kind)
intersect {wb_cycle::BLK_WR} && 
binsof(addr.s_blk_mid);



bins s_cross_bkwhi = binsof(c_kind)
intersect {wb_cycle::BLK_WR} && 
binsof(addr.s_blk_hi);

bins s_cross_rmwlo = binsof(c_kind)
intersect {wb_cycle::RMW} && 
binsof(addr.s_rmw_lo);

bins s_cross_rmwmd = binsof(c_kind)
intersect {wb_cycle::RMW} && 
binsof(addr.s_rmw_mid);

bins s_cross_rmwhi = binsof(c_kind)
intersect {wb_cycle::RMW} && 
binsof(addr.s_rmw_hi);

}

While much more thought and care went into designing and 
implementing this model, it is much more accurate, describing 
more  precisely  the  valid  coverage  points.  The  high-fidelity 
model has  only 15 coverage  points.  While all  15 points  are 
reachable  (i.e.  generated  by  our  generation  constraints),  we 
found in using a regression similar to the low-fidelity model 
(100 seeds) that we could not reach our goal of 100%. Analysis 
of  the  results  showed  that  the  first  s_cross_*lo and  last 
s_cross*hi bins for each of the transaction types were not 
observed.  This  isn't  surprising  since  we  are  generating  a 
random 32-bit  value.  The likelihood of generating a specific 
value  is  one  in  four  billion  (232)!  In  this  situation,  the 
generation constraints for the end values should be modified to 
increase the probability of generating these corner cases.

The  labor  required  to  code  and  debug  the  high-fidelity 
model was about two and a half times that of  the low-fidelity 
model. Although the time spent implementing the model was 
minimal, the culprit was debugging. Since these are declarative 
statements,  debugging  coverage  groups  presents  some 
challenges. For example, you cannot step through a coverage 
group  like  procedural  code.  Fortunately,  this  model  is  quite 
regular.  Once a  working template  was implemented  for  one 
combination of address ranges and transaction kind it was easy 
to  replicate  for  the  other  transaction  kinds.  This  further 
strengthens the argument that it takes more up-front effort to 
design a high-fidelity model but that this time—and more—is 
regained once regressions begin.

This brings us to comparing the use of a low-fidelity model 
to  a  high-fidelity  model  in  simulation.  Looking  at  the 
simulation results reveals the values of  Table 1. One hundred 
tests  were  executed  using  both  the  low-  and  high-fidelity 
models. The aggregate coverage reached a maximum of 65.7% 
after 31 tests on the low-fidelity model. As discovered through 
more  detailed  specification  analysis,  the  model  was  over-
simplified  and  had  to  be  modified  to  remove  unnecssary 
values. 

This redundancy analysis reduced the size of the coverage 
space, enabling us to reach 90.9% coverage with only 17 runs. 
However,  the  high-fidelity  model  introduces  a  more  precise 
model,  eliminating  the  need  for  redundancy  analysis. 
Simulation  achieved  a  maximum  coverage  of  65.5%  after 
running  56  tests.  What  does  this  imply  in  our  simulation 
environment?

Disk storage  and simulation time differ  for  each project. 
However, certain trends are common.  A high-fidelity model 
records the minimum number of coverage points required to 
satisfy  the  specification.  In  a  project  with  a  large  attribute 
matrix,  implemented  with  cross  coverage,  expect  a  small 
increase in simulation time due to the requirement of additional 
guards (conditional exclusions used to implement a hierarchical 
coverage  model  using cross  coverage).  Guards  require  more 
conditional checks within the model but this reduces the actual 
number of bins and crosses stored. While more simulation time 
may be required, less memory is typically used. Based on prior 
experience, substituting a high-fidelity model for a low-fidelity 
model  may increase  the  time  spent  recording  coverage  (not 
overall  simulation time) 10-20% but the amount of memory 
used by coverage data often falls as much as 25-35%.

Analysis is where the high-fidelity model offers the biggest 
gain.  Although  a  high-fidelity  model  front-end  loads  the 
development process, the back-end is the big winner. Data is 
recorded  and  may be  immediately presented  without  further 
analysis or massaging. This gain is further realized as multiple 
regressions are run over the course of the project. The more 
frequent  the  regressions,  the  more  time  we  gain.  For  the 
WISHBONE DMA  controller,  analysis  time was reduced 90% 
on the first run and essentially eliminated on subsequent runs. 
We had  only moderate  confidence  in  the  correctness  of  the 
model during the first run but this turned to full confidence in 
subsequent runs. We still needed to review results for each run 
but the time spent on this incrementally fell.

With a low-fidelity model we can converge more quickly to 
100%  observed  coverage.  However,  we  introduce  certain 
inaccuracies that require a substantial amount of analysis time
—i.e.  coverage  data  must  be  reviewed  and  justified  before 
being presented to the project team. In practice, analyzing the 
results is time consuming and requires deep design knowledge. 
Repeatedly performing this analysis for frequent regressions is 
not advisable because of the potential for user errors and delay 
in obtaining results.

The high-fidelity model, on the other hand, requires more 
time up-front  to  architect  and  verify.  However,  this  doesn’t 
have to be repeated with each regression run, making it less 
error prone and providing a faster turnaround. As for impact on 
simulation  time,  the  low-fidelity  model  provided  “better” 
results in fewer simulation runs but that time was easily lost 
with repeated unreachability analysis. Disk space consumption 
and  runtime  per  test  between  the  two  models  was  not 
significantly  different  (the  high-fidelity  model  is  slightly 
larger). It is possible this difference would be magnified with a 
larger high-fidelity model but the savings in back-end analysis 
easily justifies this cost.

Model Maximum 
Coverage

Number of 
Tests

low-fidelity 65.7% 31

low-fidelity 
(redundancy 
removed)

90.9% 17

high-fidelity 65.5% 56

Table 1. Low- and High-Fidelity Coverage Results



V. COVERAGE DATA ANALYSIS

Having compared  the  trade-offs  of  using low- and  high-
fidelity coverage models, in this section we address the use of 
three techniques for analyzing coverage results—in particular 
coverage holes—with an aim toward identifying the reasons for 
missing coverage and how to fill it. These techniques are hole 
aggregation, partitioning and projection.[5]

A. Hole Aggregation
In  order  to  quickly  determine  why  particular  coverage 

points  have  not  been  observed  after  extensive  simulation, 
identifying commonalities among the holes is required. Since 
our  low-  and  high-fidelity  coverage  models  measure  input 
coverage—a record  of  stimulus applied to the  DUV—a hole 
may reveal a defect in either the generation or coverage aspects 
of the verification environment. In  Figure 5 we illustrate the 
high-fidelity  model  as  a  matrix  with  excluded  regions.  The 
black regions are observed coverage points; the white regions 
are coverage holes; and the gray regions are outside the defined 

space of the model (a consequence of illustrating a hierarchical 
model as a matrix). For example, if we represent a coverage 
hole  as  a  tuple  of  attribute  values,  <attr  A,  attr  B>,  two 
coverage  holes  in  this  figure—<RMW,  8000_0000>  and 
<RMW, FFFF_FFFC> may be coalesced into the single hole 
<RMW, {8000_0000, FFFF_FFFC}>,  revealing the common 
attribute value of transfer kind, RMW, for the two addresses.

B. Partitioning
The  second  means  of  identifying  the  commonalities  of 

coverage  holes  is  to  find  out  how they  are  conceptually  or 
semantically similar. Lachish et al refer to this as partitioning. 
For  example,  regarding  the  three  holes  <{BLK_RD, 
BLK_WR},  0000_0000>  and  <RMW,  FFFF_FFFC>,  we 
might  discover,  while  talking  with  the  DUV architect,  that 
block transfers and atomic accesses to end regions of the full 
address space are prohibited because of timing constraints. We 
could  group  these  points  together  into  a  single  region  for 
analysis.

C. Projection
A  coverage  hole  having  one  or  more  attributes  never 

observed  may  be  rendered  and  subsequently  analyzed  as  a 
projection. Projection collapses one or more dimensions of a 
coverage  model  in order  to  simplify it  and expose common 
hole  values.  For  example,  if  we  project  the  transfer  kind 
attribute, considering its five values identical, the coverage hole 
described  earlier  in  Section  IV.C. may  be  represented  as 
<*, {0000_0000,  FFFF_FFFC}>,  where  * represents  all  five 
transfer kinds. When presented graphically as in  Figure 5, it 
becomes apparent we have not generated the address space end 
points for any transfer kinds.

VI. SUMMARY

In this paper we stated a counter-intuitive postulate: There 
is an inverse relationship between coverage model fidelity and 
size.  The  primary  trade-off  between  using  low-  and  high-
fidelity  models  is  that  a  low-fidelity  model  postpones  most 
labor to the end while a high-fidelity model demands it  up-
front.  After  reviewing  previous  work  and  introducing  the 
design-under-verification,  a  WISHBONE  DMA controller,  we 
described the procedure for designing a high-fidelity coverage 
model.  Top-level  design  requires  a  semantic  description, 
followed by attributes, their values and their relationships, all 
captured in a coverage model design table. The refinement of 
an  initial  low-fidelity  model  to  a  high-fidelity  model  was 
illustrated.  Detailed design requires  answering the three Ws: 
What? Where? and When? Once detailed design was complete, 
the implementation of the low- and high-fidelity models using 
SystemVerilog was illustrated. We addressed the trade-offs in 
designing, implementing, using and analyzing low- and high-
fidelity  models,  reporting  results  for  each.  If  resources  are 
available early in the project to design high-fidelity models, do 
so!  Otherwise,  use  low-fidelity  models  at  the  outset, 
substituting high-fidelity models later on. Finally, three useful 
techniques  for  analyzing  coverage  holes—aggregation, 
partitioning and projection—were explained and demonstrated.
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