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Abstract—2015 marks the anniversary of Moore’s law and it is still going strong. Hence we continue to enjoy the 
ability of ever growing integration and chip complexity. This complexity drives simulation runtime. An increasing 
number of users face simulation runtimes that last multi-hours or multi-days. This makes verification difficult, 
increasing the need for hardware-based acceleration. The problem is that verification environments are targeted for 
simulation, rather than for acceleration, preventing reuse. In this paper we show how to model UVM environments in 
a way that allows for high-speed execution for acceleration and simulation in a single environment. 
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I.  INTRODUCTION  

In-circuit emulation has been in use for many years, on specialized hardware systems such as emulators. 
These hardware systems have also been capable of accelerating a design under test (DUT) for quite some time. 
Typically, one would move a DUT into an accelerator when the simulation runtime becomes unbearable for 
verification. In the past, this only occurred for very large systems or subsystems and therefore was relatively 
uncommon. 

In the last few years however, the increased integration and transistor budget, in combination with new 
complexities in the mobile, cloud and automotive space, has made simulation runtimes grow significantly. 
Although many aspects can be verified with short simulations, a typical regression suite will contain several long 
pole tests that could run for several hours, or even several days. These runtimes, and the compound effect of 
iterations, has made this a significant problem for verification closure and bug fixing, because it affects the ability 
to verify projects on time. Subsequently, the need and application space for hardware-based acceleration has risen 
significantly. Now, even large IP blocks and many sub-systems are targets for acceleration. 

However, it is not trivial to adopt acceleration in a typical simulation-based environment. This is because the 
constraints for simulation are much looser than for acceleration. As a consequence, one needs to invest significant 
engineering cycles, in particular by modifying the verification environment (VE), to gain the speed advantages of 
acceleration. In addition, the modifications often lead to parallel development streams that often get abandoned 
after the project has been completed.  

This paper shows methods on how to ease the transition to acceleration and to build an environment that is 
both optimized for simulation speed, while enabling an acceleration flow. 

II. FUDAMENTALS 

For a conventional Universal Verification Methodology (UVM) based environment, you have to consider that 
the accelerator will only be accelerating the DUT, and not the class-based verification environment. This is a key 
consideration to contend with. 

As UVM environments by themselves can be very compute intensive, it might not make sense to target every 
simulation-based test for acceleration. In an ideal target the DUT and not the verification environment consumes 
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the bulk of the simulation runtime. In addition, runtimes should be considered in terms of hours in order to make 
the move to acceleration economically viable. 

As a starting point, long running, multi-hour or multi-day, tests will be the targets for acceleration. As a 
second step, one has to determine what portion of the runtime is consumed by the DUT. This is typically done 
with simulation performance profiling. 

A. Heavy Verification Environment – 90% VE Runtime 

Let’s assume you have gathered the performance profile of your longest running tests, and you see that test1, 
runs for 30 hours. In the profile, you see that 90% of the runtime is actually consumed by the VE. Your initial 
thought might be: This test is not suitable for acceleration, because if you squeeze the DUT runtime to close to 
0%, you will end up with a maximum acceleration potential of about 1.11. Subsequently, you might conclude that 
a 27-hour runtime versus a 30-hour runtime is not a sufficient enough improvement.  

However, since the overall runtime was this long, you can look at this from a different perspective. What if 
you could optimize your VE run in less than 30 minutes and at the same time accelerate the DUT runtime by 
100x? That would be 30 minutes for the verification environment and 1.8 minutes for the DUT, for a total of 31.8 
minutes, or a total speedup of over 56 times—this becomes a totally different scenario!  

Now, for example, we can run this test many times a day enabling high-frequency iterations for debug 
purposes and coverage closure. We can even think of modifications to test1 that would allow us to get the DUT 
into states that would otherwise have been unrealistic to attain. For example, a theoretical test1’ that would 
consume 300 hours of simulation runtime with a 56x speedup could now become feasible, as the expected 
runtime would be about 5.5 hours! 

B. Extremely Heavy Verification Environment – 99% VE Runtime 

In the second case, we call test2, we also assume a total runtime of 30 hours with 99% consumption by the 
VE. In this case, the initial seed up potential is only 1.01, or basically negligible noise.  

Now we will try even more aggressive optimization of the VE to go down from over 29 hours to 30 minutes. 
In this case the DUT overhead is so small that going to acceleration does not make sense. 1% of 30 hours is just 
18 minutes. And, if we accelerate these 18 minutes by 100x, we end up with less than a minute. However, 48 
minutes spent in pure simulation compared to 30 minutes in acceleration, is not significantly different enough to 
justify the use of an accelerator. 

C. 50:50 Verification Environment Versus DUT Runtime 

In test3, we assume a total runtime of 16 hours, with 8 hours consumed by the VE, and 8 hours by the DUT. 
Assuming that the VE has been optimized already, we could achieve a maximum speed-up of about 2x. Whether 
this gain is sufficient depends on multiple factors. An 8-hour runtime might actually make a qualitative difference 
for the project. In the morning, one could view the results of the last run, make some modifications, and start 
another run. By the end of the workday, this run might be completed and we now double our chances to view 
results and make changes. In the past, this would have been possible only once a day, for example. In some cases, 
this might actually be enough of an improvement to justify going to acceleration. 

If the VE could be optimized further, to 20 minutes for example, we have a much better case, as the total 
runtime could be approximately 20 minutes (VE) + about 5 minutes (DUT) = 25 minutes total, or a speedup of 
38x allowing for many iterations during the day. 

D. Heavy DUT – 90% VE Runtime 

In this case, the overall runtime is already dominated by the DUT. Even without much VE optimization we 
could achieve a speedup of about 10x. With a test consuming 30 hours, this might already be sufficient 
justification to move to acceleration as it brings down the runtime by one order of magnitude. 
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Now if we assume a test4, with 30 hours runtime, and where the VE can be optimized further from 3 hours to 
5 minutes, we are reaching the ideal situation. In this case we have a potential runtime of 5 minutes (VE) + 16 
minutes (DUT at 100x acceleration) = 21 minutes or a 77x speedup. 

Speedups of over 100x are possible and realistic. It all depends on the VE and DUT contribution to the 
runtime. 

III. THE CHANNEL FACTOR 

The various cases discussed in section II are oversimplified. The runtime is not just consumed by the VE and 
the DUT, but also by the channel, the interface between the software-based simulator and the hardware-based 
accelerator. In some cases this can be a significant factor, in particular if there is a lot of traffic occurring between 
the VE and the DUT. 

However, the ideal test is DUT heavy and has minimized the traffic between simulator and accelerator.  

This paper will not discuss the various forms of channel interfaces. Instead it will show one basic approach 
and a verification environment that does allow for various, more sophisticated channel options. It will also focus 
on the principals on how to build Universal Verification Components (UVCs) and VEs that can support 
simulation and acceleration in one environment. 

IV. THE IDEAL TEST 

The ideal test should be built to optimize the test intent, while achieving maximal acceleration performance. 
Such a test should have most of the action in the DUT, while the UVM environment is used to load memories and 
registers, to start basic operations and eventually determine the pass/fails status in a standardized UVM manner. 
Furthermore, the ideal test minimizes run-time checking both for protocols as well as for data via scoreboard and 
instead performs post-mortem checking so that interactions between the VE and DUT are minimized. 

The ideal test executes as follows: 

1. Load memories using back-door access (see section VIII). 

2. Start the clock and deactivate the reset signal. 

3. Load the register using a front-door bus interface. 

4. Start the device operation. 

5. Start threads to determine end of test 

6. Check for Pass/Fail status. 

If used properly, a test like this could be rerun in case of failure by enabling the scoreboard to find the cause at 
an earlier time in the test. These aspects will be discussed in section X. 

V. CLEAN SIGNAL AND TRANSACTION SEPARATION 

In classic UVM testbenches, the driver and the monitor, and in non-ideal situations even other components or 
objects, directly interact with signals of the DUT model. This means the testbench contains both transaction-
based content and signal based content. This setup works, however it slows down hardware acceleration 
dramatically. Instead, we want to marry the conceptual benefits of keeping the testbench purely transaction-based, 
as well as keeping the resulting performance benefits.  

One of the fundamental problems of acceleration is the requirement to minimize the communication overhead 
between a simulator and an accelerator. Every single interaction with a signal in the testbench requires 
synchronization. Hence, if we move from individual signal driving and monitoring to transaction based data 
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interaction, the associated overhead and amount of synchronization is reduced significantly. This will reduce the 
burden on both the VE and the channel leading to much faster acceleration potential. The bus functional model  () 
associated with driving and monitoring will be in a top module associated with the DUT. 

VI. RESET AND CLOCK CONTROL 

As stated in the previous section, the testbench must not reference any signals. As the clocks are the highest 
frequency signals in the environment, it is particularly important not to have any clock references in the 
testbench. This means that clocks must not be in an interface UVC or, in associated sequence items, sequence 
clocks must also never be referenced.  

We will need to be able to control signals associated with a particular interface as well as signals controlling 
the clocks and resets in the device. 

To do so, we introduce a UVC specifically targeting the control of these signals. The actual signal driving will 
happen in a module instance inside the top module associated with the DUT. The UVC is controlling the 
generation instead by setting value in an associated SystemVerilog interface. In other words, our VE will not have 
direct access to clock events and therefore can run in parallel to the DUT without the need to constantly sync up. 
The virtual sequence of the UVM VE starts off of the clock in the VE and then the clock activity runs purely in 
the hardware domain.  

    clock_and_reset_seq = clock_and_reset_sequence::type_id::create("clock_and_reset_seq"); 
    clock_and_reset_seq.clock_period =  10; 
    clock_and_reset_seq.reset_delay  =  30; 
    clock_and_reset_seq.run_clock    =   1; 
 

clock_and_reset_seq.start(p_sequencer.clock_and_reset_sqr); 

In the example above, we show that the factory creates a sequence, three values are being set, and then the 
sequence is started. This clock and reset initiation could be put into a macro to look like this: 

    `clk_rst_start(10, 30) 
  

VII. BASIC CHANNEL 

In a single UVM VE that supports acceleration and simulation, we need to minimize other traffic between the 
VE and the DUT besides clock and reset. As discussed, ideally we would only send transactions or data, instead 
of accessing signals between the two domains, and we would minimize the number of these transactions. 

In a classic UVM environment the driver and monitor have very frequent interactions with DUT signals. In 
fact, the driver contains the BFM that sets values on various signals, and the monitor reads collections of signals 
to extract from the signal-level to the transaction-level. Every such interaction is costly. 

As a consequence, we are now making the UVM VE completely signal free by having it reside exclusively in 
the transaction-level domain. The signal interaction shifts from the driver and monitor to the SystemVerilog 
interface. These interfaces then run in the accelerator. The interaction between simulator and accelerator will 
become truly be transaction-based, reducing the events between the two by one or two orders of magnitude for 
standard industry protocols. 

In the example below we have moved the driving BFM from the UVM driver to an interface task call. 

Once the UVM driver receives the transaction it will no longer drive signals, instead it will request that the 
interface, by way of the virtual interface handle, drives the DUT. 

 
// Inside SystemVerilog Interface 
task drive_transaction( 
    instruction_type_e instruction_type,  
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    int input_addr,  
    int input_data 
  ); 
    case (instruction_type) 
      WRITE: $display(" driving a WRITE:  address 'h%h, data 'h%h!!",  
                      input_addr, input_data); 
      READ:  $display(" driving a READ:   address 'h%h, data 'h%h!!",  
                      input_addr, input_data); 
    endcase 
    if (instruction_type == WRITE) begin 
      @(posedge clk); 
      @(posedge clk); 
      addr    <= input_addr; 
      data_i  <= input_data; 
      @(posedge clk); 
      req     <= 1'b1; 
      @(posedge clk);     
      @(posedge clk); 
      while (ack == 0) begin 
        @(posedge clk); 
      end 
      @(posedge clk);     
      req     <= 1'b0; 
      addr    <=   '0; 
      data_i  <=   '0; 
    end 
    // SNAP 
  endtask 

 

Similar to the UVM driver, the monitor will no longer operate on signals. It will also request that the interface 
starts to collect transactions and then it will send the collected information back to the monitor. 

    task collect_transaction( 
        output instruction_type_e instruction_type,  
        output int  output_addr,  
        output int  output_data 
      ); 
      @(posedge clk); 
     // SNAP 

  endtask  
 

On the UVM side, these tasks will be called on their virtual interfaces and exchange data. 

VIII. MEMORY INTERACTIONS 

One of the biggest contributors to test traffic is interaction with memory. In modern devices, the memory 
space is large and the amount of data required to start an operation, or to analyze the result of a test, can be very 
large. If you use the bus interface to load memory before traffic starts, or to read the result into memory at the end 
of a test, the overhead can dominate the overall runtime. Hence, one should access the memory in the hardware-
based accelerator directly, and load and read it using a so-called front-door operation. For this purpose, 
accelerators have special APIs to access memory efficiently. 

In a write or read operation one associates the DUT hierarchy to the memory element directly with a UVC 
that transfers the data. 

IX. SIGNAL LEVEL PROTOCOL COMPLIANCE 
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Signal level protocol compliance checking should not occur in the UVM monitor. Instead, the checks should 
be implemented as SystemVerilog Assertions (SVA) inside the SystemVerilog interface. SVA provides full 
syntax to implement protocol compliance. Additionally, these checks can run both in acceleration as well as in 
formal analysis. The example below shows a check for enable that cannot occur without select. 

  master_no_enable_without_select: assert property (@(posedge pclk) 
     disable iff (!presetn) 

     !(!psel && penable)); 

X. ENHANCED CONFIGURABILITY 

As stated initially in this paper, VEs are typically built for simulation in mind, operating under a loose set of 
constraints. Further on, VEs often have limited configurability. To optimize speed in general, and for acceleration 
in particular, it is important to have a sophisticated and flexible configuration mechanism. 

A test should be able to turn almost any aspect of the VE on or off. In particular, a test should be able to 
configure any type of checking, such as dynamic data checking in a scoreboard, protocol and data checking, post 
mortem checking, and so on. It also needs to control any form of coverage. Finally, a test should be able to 
choose between different ways of randomization in order to enable high-speed constraint solving.  

  master_no_enable_without_select: assert property (@(posedge pclk) 
    disable iff (!presetn || !checks_enable) 

    (!psel && penable)); 

For example, a VE should not only push the protocol compliance checking from the VE to the SystemVerilog 
interface to avoid frequent signal interaction. It should also control whether those checks should run or not. 
Hence, the disable clause is not only sensitive to typical signals, such as reset, but also has an enabling bit called 
checks_enable. The UVC that drives and monitors this interface will also control the checks_enable bit 
according to the needs of the test. Similarly, it may control a coverage_enable bit if signal level coverage is 
collected. 

In typical UVC architecture a primary configuration field called is_active is built into the agent. This field 
only controls whether or not an agent is driving. We want to expand configurability to incorporate control of 
monitoring separately. This way, you can generate stimulus without having to monitor it for high-speed 
simulation or an acceleration run. In the example below, we added a field monitor_active to conditionally 
build the monitors. The same condition will be used when connecting the analysis ports of the monitors. 

    // in build_phase 
    if(agent_cfg.monitor_active == UVM_ACTIVE) begin    
      monitor = apb_monitor::type_id::create("monitor",this); 
      monitor.agent_cfg = agent_cfg; 
    end else 

      `uvm_info(get_type_name(), "Monitor disabled via config", UVM_LOW) 

A VE should provide all the hooks to allow you to write a test that can trade off visibility and performance. 
This is not limited to just checking, coverage, or constraint levels, but includes the VE scope of granularity as 
well. A VE should allow any use case: High speed, full debug, partial debug, and any others. This also means that 
the VE needs to set certain configuration bits in the interface. Specifically, the UVM agent needs to pass not only 
relevant enabling configuration information down via its virtual interface such as checks_enable 
coverage_enable but also other values that are important for the operation of driving or monitoring. In simple 
cases, just a few fields might need to be set. In more complex cases, a struct might be used to pass along a 
complete configuration set. 

vif.set_config(cfg_s); 
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Subsequently, the UVCs and top-level environments need to contain the right fields in their configuration 
objects and act accordingly. For checking and coverage, this might be straightforward. For constraint modeling, 
this might be more alien to your everyday simulation engineer. However, there are classes of tests where 
constraint solving should be limited. Where either the transaction should be pre-calculated for speed, or where 
only a subset of constraints should be active. For example, it might not make sense to randomize data values, in 
particular for large and complex transactions and protocols. 

XI. PEFORMANCE IMPLICATIONS 

The modifications to the UVM VE, and its building blocks manifested in the UVC, shown in this paper do not 
negatively impact simulation performance. In fact, we have seen that it actually improves performance while at 
the same time it opens up significant performance gains when moving the DUT into the accelerator. 

XII. SUMMARY 

As soon as long pole simulations reach a few hours they can become bottlenecks for verification closure and 
debugging, as they affect iteration time and therefore productivity significantly. In the majority of such cases it is 
possible to speed up run time significantly using verification, or by up to two orders of magnitude in realistic 
scenarios. However, this requires some work if you start with a conventional simulation focus. This paper showed 
an approach that used a few adjustments to get you to acceleration much more efficiently in a single UVM 
verification environment, without sacrificing anything in the pure simulation space. You will neither loose speed, 
convenience nor flexibility. Instead, you are gaining the option to improve productivity.  
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