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ABSTRACT  
Verifying a highly parameterized design under test (DUT) that can 
be used in one of many different configurations requires additional 
effort over verifying an un-parameterized design or a parameterized 
DUT used in a single configuration. When using a single 
configuration, the parameters can be treated as static for the entire 
process, and the DUT can be verified without worrying about the 
parameters. However, the verification space grows exponentially if 
the DUT functionality must be verified over all possible 
configurations of each parameter. Strategies must be developed to 
ensure the verification process not only tests all parameterizations 
but also is as efficient as possible to maximize the number of 
different parameterizations that can be tested. 
 
This paper will discuss the methods that have proven useful for 
verifying a highly parameterized DUT within an OVM testbench. 
This includes enhancing the default OVM functionality to create 
parameterized OVM tests and, consequently, testbenches that still 
allow the use of +OVM_TESTNAME. Techniques will be discussed 
for dealing with parameterized virtual interfaces, efficiently passing 
parameters down through the testbench hierarchy from the OVM 
test, and determining when to use parameters versus alternative 
methods. The paper will discuss optimizations for improving 
simulation throughput when using parameters, including actual 
numbers illustrating the efficiency improvements. Finally, the paper 
will describe options for ensuring that a parameterizable DUT is 
fully verified. 
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1. INTRODUCTION  
A highly efficient testbench methodology and architecture that 
promote reuse are prerequisites to tackling multiple configurations of 
a parameterized DUT. To that end, the testbench should be built 
using the Open Verification Methodology (OVM) as testbenches 
written in OVM yield vast improvements in the construction and 
reuse of verification code. This is very important when verifying a 
parameterized DUT that will change functionality based upon the 
parameter settings.  
 
 

 
Writing testbenches using the OVM yields huge improvements in the 
construction and reuse of verification code. In part this is because 
OVM provides a library of classes and a methodology for using 
those classes that promotes consistency in testbench development. 
However, OVM out-of-the-box is not set up by default to handle 
situations where both the design under test (DUT) and the testbench 
share parameters. Sharing parameters is an issue when the design 
needs to be tested in multiple, parameterized configurations. Several 
techniques will be described to facilitate parameter sharing and 
improve simulation throughput when parameters are involved. These 
techniques include allowing parameterized tests, selecting those tests 
at run time without having to recompile the code, and handling the 
required parameterized interfaces. Testbenches that utilize these 
techniques enable easy design reconfiguration and optimized 
simulation throughput. We will also describe a set of macros that 
save time and effort while safeguarding the quality of the design 
when passing parameters. 
 

2. PARAMETERS AND THE OVM 
CONFIGURATION SPACE  
Using these techniques will help to ease the use of parameters in 
OVM testbenches. The question might be asked, why are parameters 
used in the first place? Parameters can be used to control bus and 
address widths as seen in the examples below. Parameters can also 
control other aspects of a testbench. Parameters must be used in code 
locations where elaboration time constants are required. Another 
potential usage for parameters is in generate statements. Conversely, 
they should not be used for general testbench configuration, as the 
result is an inflexible environment. In other words, the only time 
parameters should be used in testbenches is when they must be used.  
 
If a parameter does not have to be used to satisfy the language 
requirements of SystemVerilog, the OVM library provides a 
mechanism for storing configuration information that should be used 
instead. This configuration space can store strings, integer types, and 
objects. Utilizing the OVM configuration space allows individual 
tests to control what the testbench environment will look like at run 
time. As shown below, a test can be chosen after a design has been 
compiled and optimized once. 
 

3. PARAMETERIZED TESTS  
If a class (i.e., test) is parameterized, then the normal thing to do is to 
register the class with the factory using the`ovm_component_param_ 
utils() macro. The downside of using this macro is that it registers the 
class only with the type-based factory. This is a problem, because in 
a standard OVM testbench, the test object is created by the run_test() 
task, which uses the string-based factory to create the test object. So 
there is a disconnect here. 
 



In the standard OVM testbench, the test object is the top of the object 
hierarchy and instantiates the testbench environment, which 
instantiates any agents needed to communicate with interfaces on the 
DUT. Called from the top-level testbench module, the run_test() task 
does a string-based lookup in the OVM factory to determine which 
test to create and run. The string that run_test() uses to do the lookup 
is passed in either as an argument when run_test(“example_test”) is 
called or by using a plusarg called +OVM_TESTNAME on the 
command line when starting the simulation.  
 
This setup works great when dealing with classes (tests) that do not 
have parameters because the `ovm_component_utils() macro is used 
to register the non-parameterized class with the factory. This 
registers the class with both the type-based factory and the string-
based factory.  
 
Since parameterized tests are registered using only the type-based 
factory, another tactic must be taken. The solution is to expand the 
contents of the `ovm_component_param_utils() macro and then add 
to this expanded code.  
 
For example, if a test called test1 (which was parameterized with 
BUS_WIDTH and ADDR_WIDTH) was part of the testbench, then 
the expanded macro would look like this: 
 
  class test1 #(int BUS_WIDTH = 16, 

             int ADDR_WIDTH = 5) 
  extends test_base_c;  

 
    typedef ovm_component_registry #( 
     test1 #(BUS_WIDTH, ADDR_WIDTH)) type_id; 

 
    static function type_id get_type(); 
      return type_id::get(); 
    endfunction : get_type 

 
  endclass 
 
The ovm_component_registry type can take two parameters. One 
registers a type with the type-based factory. The other registers the 
class with the string-based factory. Since the goal is to register the 
class with the string-based factory, the code is changed to register 
with both, which looks like this: 
 
  class test1 #(int BUS_WIDTH = 16, 
                int ADDR_WIDTH = 5) 
  extends test_base_c; 
 
    typedef ovm_component_registry #( 
     test1 #(BUS_WIDTH, ADDR_WIDTH), 
     "test1") type_id; 
 
    static function type_id get_type(); 
      return type_id::get(); 
    endfunction : get_type 

 
  endclass : test1 
 
The class is now registered with the string-based factory, but there is 
another problem. If the code asks the string-based factory to create 
an instance of test1, the factory will return the default specialization 
of the test1 class (BUS_WIDTH = 16 and ADDR_WIDTH = 5). 
What if, in this configuration, the DUT has a BUS_WIDTH of 32 
and an ADDR_WIDTH of 4? To allow the same parameters used by 
the DUT to be used by the test object created by run_test(), a 
specialization of the test that matches the DUT has to be created. 
Initially, the top-level testbench module looks like this: 
 
 
 
 

module testbench (); 
  parameter BUS_WIDTH = 32; 
  parameter ADDR_WIDTH = 4; 
 

     dut #(BUS_WIDTH, ADDR_WIDTH) i_dut(...); 
 

  initial begin 
    run_test("test1"); 
  end 
 
endmodule 
 

To establish the required specialization of the class, a typedef for the 
specialization of the test1 class with the correct parameter values set 
is created. The typedef will not be used anywhere. It is there just to 
set the parameter values that are needed. The testbench module now 
looks like this: 
 

module testbench (); 
  parameter BUS_WIDTH = 32; 
  parameter ADDR_WIDTH = 4; 
 
  dut #(BUS_WIDTH, ADDR_WIDTH) i_dut(...); 
 
  typedef test1 #(BUS_WIDTH, ADDR_WIDTH) 

      test1_t; 
 
  initial begin 
    run_test("test1"); 
  end 
 
endmodule 

 
Now when run_test() is called, it will ask the string-based factory to 
create a test1 object. The test1 object that is created will be 
specialized with the parameter values that are needed per the test1_t 
typedef  that was created. With this technique, parameters can be 
shared between the DUT and the testbench where required. 
 

4. COVERAGE WITH PARAMETERS 
Sharing parameters between the DUT and testbench is only one of 
many considerations when dealing with parameters and OVM. 
Verifying designs over a range of parameterizations, rather than one 
static configuration, can greatly increase the coverage space and, 
consequently, the time required to close on that coverage. Obviously 
this problem is compounded as the number of modifiable parameters 
increases. Although the problem is similar to adding additional 
crosses to functional coverage, it does have one difference. That is, 
functional coverage is closed during the simulation phase while 
parameterization coverage must be closed during compile or 
optimization, depending on how parameters are implemented. In 
either case, additional time outside of simulation must be spent to 
change parameters. 
 
In an ideal world, all parameters would be crossed with each other to 
create parameterization coverage, and then that would be crossed 
with all functional coverage. This would ensure that each functional 
coverage item was tested against each specific parameterization. This 
quickly becomes infeasible as the coverage space grows 
exponentially as additional parameters or parameter values are 
added. Starting with a basic case as an example, if a design has only 
two parameters, each with two different values, crossing the 
parameters would result in four different parameterizations, which 
translates to four times the amount of functional coverage. What 
happens if the design has more parameters? Assume now the design 
has ten parameters, again with only two possible values each. This 
would translate to over 1000 different parameterizations. Closing on 
functional coverage is often difficult enough, but it would take an 
unreasonable amount of time if it had to be closed over 1000 times. 
Imagine the problem if a design has 50 to 100 parameters with more 
than two values for each parameter.  



Realizing that most likely the entire parameterization space cannot 
be crossed with functional coverage, a different approach is needed. 
A couple of options exist to ensure functional coverage is adequately 
achieved relative to the various parameterizations. The first step is to 
cover all parameter settings, but without crossing them. This verifies 
that all parameter values have been tested. To further validate the 
parameter coverage, only important parameters or parameters that 
have a direct effect on another should be crossed. Finally, specific 
functional coverage items should be crossed with any parameters that 
affect that functionality. 
 
Another issue when dealing with parameterized classes and coverage 
comes into play when trying to merge coverage results. The problem 
is that each specialization of a parameterized class creates a new 
type. If a covergroup is defined in a parameterized class, then each 
covergroup will be part of its own type and will not merge correctly. 
To help with this issue, covergroups should not be defined in 
parameterized classes. A parameterized class can contain a non-
parameterized class, which then contains a covergroup without 
affecting merging. 
 
5. SIMULATION THROUGHPUT 
OPTIMIZATION 
Even by minimizing the number of coverage items, the amount of 
testing is greatly increased versus a non-parameterized flow. Care 
must be taken to run simulations as efficiently as possible and 
maximize the amount of time spent running a simulation (versus 
compilation or optimization). The parameterized test approach 
allows the design and testbench to be compiled once, with 
+OMV_TESTNAME used to change which test is run. This 
technique is standard for non-parameterized OVM testbenches and 
enables regressions to be as efficient as possible. 
 

 
Figure 1. Simulation Flow Options when Using Parameters 

There are various approaches to compiling, optimizing, and simulating 
a design that affect performance differently. One approach is to require 
all three of these steps to be rerun whenever the parameterization 
changes. This would be the case if the parameters were not passed 
through the testbench, as described in this paper, but instead required 
the design to be recompiled after each change. One example of this is 
if the parameters are tied to a define at the top-level, and those defines 
control the values of the parameters. Defines are compile time 
constants and, consequently, require the entire DUT and testbench to 
be recompiled when a new set of parameters is needed. The flow using 
this method is to select a parameterization, compile, optimize, and then 
simulate a suite of tests. Optionally, those tests could be rerun using the 
same parameterization (and thus avoiding recompilation) but with 
different seeds. Then a new parameterization could be chosen which 
would require recompilation, and finally a new set of simulations could 
take place. This process would then repeat until all parameter and 
functional coverage has been achieved. Requiring recompilation 
whenever the parameterization changes is the least efficient approach. 
 
A more efficient method is a process which only requires two steps 
when changing parameters. In most simulator flows parameters are 
fixed during the optimization step. Most simulators also provide a 
mechanism for setting which parameters should be used when 
optimizing the design and testbench. Utilizing this knowledge, the 
flow can be optimized further, which results in compiling the code 
once. After compilation, a parameterization is selected and the 
design is optimized. A suite of tests can then be run using the 
optimized version of the design. Using +OVM_TESTNAME allows 
different tests to be selected and run with this optimized version of 
the design. After that parameterization has been simulated, a new 
parameterization can be selected and the design can be re-optimized. 
Once optimized, that parameterization is then simulated and the 
process repeats until all parameter and functional coverage has been 
achieved. By compiling once, optimizing a few times, and simulating 
many times, more time is spent where it is needed, resulting in a 
more efficient simulation and a faster time to coverage closure. 
 
A variation of the “2-step” method of optimizing and simulating only 
when parameters change is to simulate the test suite multiple times 
(with different seeds) for a given parameterization. This “1.5-step” 
technique is more efficient than the standard 2-step process because 
each run of the test suite does not require a re-optimization. This 
approach works well when parameter coverage is easier to close than 
functional coverage because less time is spent optimizing and more 
time is spent running tests. The number of times a test suite is 
simulated per parameterization can be tuned using this method so 
that closure of functional and parameter coverage occurs in relatively 
the same amount of time. This leads to spending the minimal amount 
of time on the optimizations necessary to close parameter coverage 
while maximizing the amount of time for running tests to close 
functional coverage, resulting in the most efficient path to combined 
coverage closure. 
 
These first three methods were benchmarked to demonstrate the 
efficiency improvements that can be achieved. In all three cases, the 
test suite consisted of seven tests. The test suite for each of the three 
methods was run 100 times for a total of 700 tests run. In the  
3-step method, the design was compiled and optimized, and the test 
suite was simulated once for each of the 100 different 
parameterizations. The 2-step approach compiled only once but did 
re-optimize the design and run the test suite once for each of the 100 
different parameterizations. The 1.5-step method also compiled only 
once, but it ran the test suite four times per optimization. Thus only 
25 different parameterizations and optimizations were run, but 700 
tests were still simulated. 



Method 3-Step 2-Step 1.5-Step
Number of 
Compiles 

100 1 1 

Number of 
Optimizations 

100 100 25 

Number of 
Simulations 

700 700 700 

Total Minutes 416 373 341 
Performance 
(compared to  
 1.5-step) 

22% 
slower 

10% slower — 

Table 1. Parameter Flow Comparisons 

As shown in the Table 1, the approach that was able to run the  
700 tests in the shortest amount of time was the 1.5-step method. 
This makes sense because it spent the least amount of time compiling 
and optimizing. The next fastest was the 2-step method since it only 
compiled once. This approach was 10 percent slower than the  
1.5-step method. The real difference between these two approaches 
is that the 2-step technique ran four times the number of different 
parameterizations than the 1.5-step technique. (The four times 
difference in parameterization was an arbitrary number chosen  
for benchmarking). In other testbenches, the number of 
parameterizations per run of the test suite may vary, and as a result 
the improvement over the 3-step process will also vary. Because the 
3-step approach must recompile and re-optimize every time a new 
parameterization is required, it is the least efficient method. It is  
12 percent slower than the 2-step method and 22 percent slower than 
the 1.5-step method. 
 
One thing to note is that this testbench is small and efficient and the 
tests ran quickly. Even the “slowest” 3-step approach ran 700 tests 
with 100 compilations and 100 optimizations in 416 minutes, which 
averages to less than one minute per test. Therefore, the amount of 
time spent in compilation and optimization is large, relative to the 
amount of time spent simulating a test. If tests run for hours rather 
than seconds, the compilation and optimization time will be a much 
smaller portion of the overall time, resulting in less improvement. 
 
Although not benchmarked, another method requiring only a single 
step when changing parameters is to allow the parameters to float 
during the optimization step. Parameters can then be changed at run 
time without recompiling. A feature in the Mentor Graphics® 
Questa® verification environment makes this throughput 
optimization possible. It allows the setting of parameter values to be 
deferred until the simulation engine is invoked. To do this, the 
optimization engine needs to pass the +floatparameters switch. To 
maximize performance, the switch should be set up to minimize the 
number of parameters that are floating.  
 
In some cases, using two steps when changing parameters is faster 
than using only a single step. This is because leaving parameters 
floating limits the amount of optimization that can be performed. If 
the parameters will be set once in optimization and then a thousand 
tests run, then that is probably faster. If ten tests are run with a 
specific parameterization and then a new parameterization is 
selected, then using floatparameters is probably faster. A crossover 
point exists where the extra simulation time incurred from using 
floatparameters adds up and passes the amount of time it takes to do 
an optimization. Regardless of the final process chosen, it is very 
clear that multiple simulation runs require only a single compile step. 
 

6. PARAMETERIZED VIRTUAL 
INTERFACES 
Another item to consider is how to deal with the interfaces that are 
parameterized. Instantiating the interface with the proper parameter 
values is straight forward. What is a little more complicated is how 
to associate the virtual interface handle—which points to the 
parameterized interface—with the OVM components that need the 
handle to operate. Drivers and monitors are the OVM components 
that generally need a handle to the virtual interface. The OVM 
configuration space is the best way to get the handles where they are 
needed. An object can be created with a virtual interface handle that 
is parameterized with the same parameters as the interface itself. 
That object can then be placed into the configuration space where 
any driver or monitor can access it.  
 
Any easy way to accomplish this process is to use the 
ovm_container, which is available for download on 
http://ovmworld.org in the user contributions area. The 
ovm_container is a parameterized class itself that contains some 
static functions used to aid interaction with the configuration space. 
Our testbench module example was missing the interface 
connections required to enable communication between the design 
and the testbench. Adding the interface and the ovm_container 
results in the following: 
 

module testbench (); 
  parameter BUS_WIDTH = 32; 
  parameter ADDR_WIDTH = 4; 
 
  intf1 #(BUS_WIDTH, ADDR_WIDTH) i_intf1(); 
  dut #(BUS_WIDTH, ADDR_WIDTH) i_dut(i_intf1); 
 
  typedef test1 #(BUS_WIDTH, ADDR_WIDTH) 
    test1_t; 
 
  initial begin 
    //Use ovm_container to put the instance of 
    //intf1 into the OVM Config space 
    ovm_container #(virtual intf1 #( 
      BUS_WIDTH, ADDR_WIDTH) 
       )::set_value_in_global_config( 
      "intf1", i_intf1); 
 
    run_test("test1"); 
  end 
endmodule 
 

The static function set_value_in_global_config() creates a wrapper 
object and places the i_intf1 handle into that wrapper object. The 
wrapper object is then put into the OVM configuration space with a 
value “*” set for its path and the configuration name intf1. This 
means that anyone can access the interface instance i_intf1 as long as 
they look up the configuration name intf1. Another option would be 
to use a specific path instead of “*” when adding the virtual interface 
container object into the configuration space. This would allow tight 
control over which objects can see and utilize the virtual interface 
and, potentially, aid in debugging when printing the configuration 
information available to an object. 
 
With the virtual interface handle now available in the configuration 
space, the driver and monitor can easily access the necessary signals. 
To do this, their code would look like this: 



class monitor #(int BUS_WIDTH = 16, 
                int ADDR_WIDTH = 5) 
  extends ovm_monitor; 
 
  `ovm_component_param_utils(monitor#( 
    BUS_WIDTH, ADDR_WIDTH) ) 
 
  virtual intf1 #(BUS_WIDTH, ADDR_WIDTH) 

      intf1_h; 
 
  function void build(); 
    super.build(); 
    intf1_h = ovm_container #( virtual intf1 
      #(BUS_WIDTH, ADDR_WIDTH) ):: 
      get_value_from_config(this, "intf1"); 
  endfunction : build 
 
endclass : monitor 
 

Using the configuration space with wrappers for parameterized 
virtual interfaces allows for easy transportation of the virtual 
interface handle to the location that it is needed. 
 

7. PARAMETER PASSING 
Now that a testbench can be created that shares parameters with the 
design, the method of passing the parameters through the testbench 
hierarchy can be improved. This is especially true for cases where a 
large number of parameters are involved. Maintaining the lists of 
parameters is both time consuming and error prone. Adding and/or 
removing a parameter manually involves editing numerous files. 
Additionally, the code becomes cluttered and hard to read as the list 
of parameters grows. To avoid these issues, a set of macros can be 
defined to help ease the burden. 
 
Three macros make up the set. The first macro expands out to 
become the definition of all the parameters in the testbench. The 
second macro is used when creating types and handles. This macro 
contains the mappings of all the macros from the object, module, or 
interface to the type or handle that is created within the object, 
module, or interface. The third macro provides a string 
representation, which is useful for creating messages. Using the code 
presented above, these three macros are defined in a 
params_defines.svh file and look like this: 
 

// Declarations 
‘define params_declare #(int BUS_WIDTH = 16, 
                         int ADDR_WIDTH = 5) 
 
// Instantiations / Mappings 
‘define params_map #(.BUS_WIDTH (BUS_WIDTH), 
                     .ADDR_WIDTH (ADDR_WIDTH) ) 
 
// String Value 
‘define params_string $sformatf("#(%1d, %1d)", 
 BUS_WIDTH, ADDR_WIDTH) 

 

Using these macros results in the testbench module looking like this: 
 

module testbench (); 
  `include "params_defines.svh" 
 
  parameter BUS_WIDTH = 32; 
  parameter ADDR_WIDTH = 4; 
 
  intf1 `params_map i_intf1(); 
  dut `params_map i_dut(i_intf1); 
 
  typedef test1 `params_map test1_t; 
 
  initial begin 
    //Use ovm_container to put the instance of 
    //intf1 into the OVM Config space 
    ovm_container #(virtual intf1  
      `params_map ):: 
      set_value_in_global_config( 
      "intf1", i_intf1); 
 
    run_test("test1"); 
  end 
 
endmodule 

 
The monitor is now defined as follows (the package that contains the 
monitor includes the params_defines.svh file): 
 
  class monitor `params_declare extends 
    ovm_monitor; 
    
    `ovm_component_param_utils(monitor 
      `params_map) 
    virtual intf1 `params_map intf1_h; 

 
    function void build(); 
      super.build(); 
      intf1_h = ovm_container #( 
       virtual intf1 `params_map):: 
       get_value_from_config(this, "intf1"); 
    endfunction : build 

 
  endclass: monitor 
 
These macros are defined only once and every class and object gets 
the full complement of parameters. This may result in parameters 
being added to a class that has no use for them. This is not an issue 
as the extra parameters will be ignored and not produce any side 
effects, while the needed parameters will always be available. 
 

8. CONCLUSION 
Using the techniques described above, a parameterized OVM 
testbench can be created that leverages all of the capabilities of 
OVM, including the reuse advantage of compiling once and running 
multiple times. These techniques also reduce code complexity and 
increase code readability when parameters are involved. 
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