
Parameters and OVM — Can’t They Just Get Along?

Bryan Ramirez
Xilinx, Inc.

3100 Logic Dr.
Longmont, CO 80503

720-652-3561
bryan.ramirez@xilinx.com

Michael Horn
Mentor Graphics, Corp.

1811 Pike Rd.
Longmont, CO 80501

303-974-0115
mike_horn@mentor.com

ABSTRACT
Verifying a highly parameterized design under test (DUT) that can
be used in one of many different configurations requires additional
effort over verifying an un-parameterized design or a parameterized
DUT used in a single configuration. When using a single
configuration, the parameters can be treated as static for the entire
process, and the DUT can be verified without worrying about the
parameters. However, the verification space grows exponentially if
the DUT functionality must be verified over all possible
configurations of each parameter. Strategies must be developed to
ensure the verification process not only tests all parameterizations
but also is as efficient as possible to maximize the number of
different parameterizations that can be tested.

This paper will discuss the methods that have proven useful for
verifying a highly parameterized DUT within an OVM testbench.
This includes enhancing the default OVM functionality to create
parameterized OVM tests and, consequently, testbenches that still
allow the use of +OVM_TESTNAME. Techniques will be discussed
for dealing with parameterized virtual interfaces, efficiently passing
parameters down through the testbench hierarchy from the OVM
test, and determining when to use parameters versus alternative
methods. The paper will discuss optimizations for improving
simulation throughput when using parameters, including actual
numbers illustrating the efficiency improvements. Finally, the paper
will describe options for ensuring that a parameterizable DUT is
fully verified.

Categories and Subject Descriptors
B.5.2 [REGISTER-TRANSFER-LEVEL IMPLEMENTATION]:
Reliability and Testing – built-in tests, error-checking, redundant
design, test generation, testability.

General Terms
Measurement, Performance, Standardization, Languages, Design,
Verification

Keywords
OVM, parameters, performance optimization, verification
methodology, testbench

1. INTRODUCTION
A highly efficient testbench methodology and architecture that
promote reuse are prerequisites to tackling multiple configurations of
a parameterized DUT. To that end, the testbench should be built
using the Open Verification Methodology (OVM) as testbenches
written in OVM yield vast improvements in the construction and
reuse of verification code. This is very important when verifying a
parameterized DUT that will change functionality based upon the
parameter settings.

Writing testbenches using the OVM yields huge improvements in the
construction and reuse of verification code. In part this is because
OVM provides a library of classes and a methodology for using
those classes that promotes consistency in testbench development.
However, OVM out-of-the-box is not set up by default to handle
situations where both the design under test (DUT) and the testbench
share parameters. Sharing parameters is an issue when the design
needs to be tested in multiple, parameterized configurations. Several
techniques will be described to facilitate parameter sharing and
improve simulation throughput when parameters are involved. These
techniques include allowing parameterized tests, selecting those tests
at run time without having to recompile the code, and handling the
required parameterized interfaces. Testbenches that utilize these
techniques enable easy design reconfiguration and optimized
simulation throughput. We will also describe a set of macros that
save time and effort while safeguarding the quality of the design
when passing parameters.

2. PARAMETERS AND THE OVM
CONFIGURATION SPACE
Using these techniques will help to ease the use of parameters in
OVM testbenches. The question might be asked, why are parameters
used in the first place? Parameters can be used to control bus and
address widths as seen in the examples below. Parameters can also
control other aspects of a testbench. Parameters must be used in code
locations where elaboration time constants are required. Another
potential usage for parameters is in generate statements. Conversely,
they should not be used for general testbench configuration, as the
result is an inflexible environment. In other words, the only time
parameters should be used in testbenches is when they must be used.

If a parameter does not have to be used to satisfy the language
requirements of SystemVerilog, the OVM library provides a
mechanism for storing configuration information that should be used
instead. This configuration space can store strings, integer types, and
objects. Utilizing the OVM configuration space allows individual
tests to control what the testbench environment will look like at run
time. As shown below, a test can be chosen after a design has been
compiled and optimized once.

3. PARAMETERIZED TESTS
If a class (i.e., test) is parameterized, then the normal thing to do is to
register the class with the factory using the`ovm_component_param_
utils() macro. The downside of using this macro is that it registers the
class only with the type-based factory. This is a problem, because in
a standard OVM testbench, the test object is created by the run_test()
task, which uses the string-based factory to create the test object. So
there is a disconnect here.

In the standard OVM testbench, the test object is the top of the object
hierarchy and instantiates the testbench environment, which
instantiates any agents needed to communicate with interfaces on the
DUT. Called from the top-level testbench module, the run_test() task
does a string-based lookup in the OVM factory to determine which
test to create and run. The string that run_test() uses to do the lookup
is passed in either as an argument when run_test(“example_test”) is
called or by using a plusarg called +OVM_TESTNAME on the
command line when starting the simulation.

This setup works great when dealing with classes (tests) that do not
have parameters because the `ovm_component_utils() macro is used
to register the non-parameterized class with the factory. This
registers the class with both the type-based factory and the string-
based factory.

Since parameterized tests are registered using only the type-based
factory, another tactic must be taken. The solution is to expand the
contents of the `ovm_component_param_utils() macro and then add
to this expanded code.

For example, if a test called test1 (which was parameterized with
BUS_WIDTH and ADDR_WIDTH) was part of the testbench, then
the expanded macro would look like this:

 class test1 #(int BUS_WIDTH = 16,

 int ADDR_WIDTH = 5)
 extends test_base_c;

 typedef ovm_component_registry #(
 test1 #(BUS_WIDTH, ADDR_WIDTH)) type_id;

 static function type_id get_type();
 return type_id::get();
 endfunction : get_type

 endclass

The ovm_component_registry type can take two parameters. One
registers a type with the type-based factory. The other registers the
class with the string-based factory. Since the goal is to register the
class with the string-based factory, the code is changed to register
with both, which looks like this:

 class test1 #(int BUS_WIDTH = 16,
 int ADDR_WIDTH = 5)
 extends test_base_c;

 typedef ovm_component_registry #(
 test1 #(BUS_WIDTH, ADDR_WIDTH),
 "test1") type_id;

 static function type_id get_type();
 return type_id::get();
 endfunction : get_type

 endclass : test1

The class is now registered with the string-based factory, but there is
another problem. If the code asks the string-based factory to create
an instance of test1, the factory will return the default specialization
of the test1 class (BUS_WIDTH = 16 and ADDR_WIDTH = 5).
What if, in this configuration, the DUT has a BUS_WIDTH of 32
and an ADDR_WIDTH of 4? To allow the same parameters used by
the DUT to be used by the test object created by run_test(), a
specialization of the test that matches the DUT has to be created.
Initially, the top-level testbench module looks like this:

module testbench ();
 parameter BUS_WIDTH = 32;
 parameter ADDR_WIDTH = 4;

 dut #(BUS_WIDTH, ADDR_WIDTH) i_dut(...);

 initial begin
 run_test("test1");
 end

endmodule

To establish the required specialization of the class, a typedef for the
specialization of the test1 class with the correct parameter values set
is created. The typedef will not be used anywhere. It is there just to
set the parameter values that are needed. The testbench module now
looks like this:

module testbench ();
 parameter BUS_WIDTH = 32;
 parameter ADDR_WIDTH = 4;

 dut #(BUS_WIDTH, ADDR_WIDTH) i_dut(...);

 typedef test1 #(BUS_WIDTH, ADDR_WIDTH)

 test1_t;

 initial begin
 run_test("test1");
 end

endmodule

Now when run_test() is called, it will ask the string-based factory to
create a test1 object. The test1 object that is created will be
specialized with the parameter values that are needed per the test1_t
typedef that was created. With this technique, parameters can be
shared between the DUT and the testbench where required.

4. COVERAGE WITH PARAMETERS
Sharing parameters between the DUT and testbench is only one of
many considerations when dealing with parameters and OVM.
Verifying designs over a range of parameterizations, rather than one
static configuration, can greatly increase the coverage space and,
consequently, the time required to close on that coverage. Obviously
this problem is compounded as the number of modifiable parameters
increases. Although the problem is similar to adding additional
crosses to functional coverage, it does have one difference. That is,
functional coverage is closed during the simulation phase while
parameterization coverage must be closed during compile or
optimization, depending on how parameters are implemented. In
either case, additional time outside of simulation must be spent to
change parameters.

In an ideal world, all parameters would be crossed with each other to
create parameterization coverage, and then that would be crossed
with all functional coverage. This would ensure that each functional
coverage item was tested against each specific parameterization. This
quickly becomes infeasible as the coverage space grows
exponentially as additional parameters or parameter values are
added. Starting with a basic case as an example, if a design has only
two parameters, each with two different values, crossing the
parameters would result in four different parameterizations, which
translates to four times the amount of functional coverage. What
happens if the design has more parameters? Assume now the design
has ten parameters, again with only two possible values each. This
would translate to over 1000 different parameterizations. Closing on
functional coverage is often difficult enough, but it would take an
unreasonable amount of time if it had to be closed over 1000 times.
Imagine the problem if a design has 50 to 100 parameters with more
than two values for each parameter.

Realizing that most likely the entire parameterization space cannot
be crossed with functional coverage, a different approach is needed.
A couple of options exist to ensure functional coverage is adequately
achieved relative to the various parameterizations. The first step is to
cover all parameter settings, but without crossing them. This verifies
that all parameter values have been tested. To further validate the
parameter coverage, only important parameters or parameters that
have a direct effect on another should be crossed. Finally, specific
functional coverage items should be crossed with any parameters that
affect that functionality.

Another issue when dealing with parameterized classes and coverage
comes into play when trying to merge coverage results. The problem
is that each specialization of a parameterized class creates a new
type. If a covergroup is defined in a parameterized class, then each
covergroup will be part of its own type and will not merge correctly.
To help with this issue, covergroups should not be defined in
parameterized classes. A parameterized class can contain a non-
parameterized class, which then contains a covergroup without
affecting merging.

5. SIMULATION THROUGHPUT
OPTIMIZATION
Even by minimizing the number of coverage items, the amount of
testing is greatly increased versus a non-parameterized flow. Care
must be taken to run simulations as efficiently as possible and
maximize the amount of time spent running a simulation (versus
compilation or optimization). The parameterized test approach
allows the design and testbench to be compiled once, with
+OMV_TESTNAME used to change which test is run. This
technique is standard for non-parameterized OVM testbenches and
enables regressions to be as efficient as possible.

Figure 1. Simulation Flow Options when Using Parameters

There are various approaches to compiling, optimizing, and simulating
a design that affect performance differently. One approach is to require
all three of these steps to be rerun whenever the parameterization
changes. This would be the case if the parameters were not passed
through the testbench, as described in this paper, but instead required
the design to be recompiled after each change. One example of this is
if the parameters are tied to a define at the top-level, and those defines
control the values of the parameters. Defines are compile time
constants and, consequently, require the entire DUT and testbench to
be recompiled when a new set of parameters is needed. The flow using
this method is to select a parameterization, compile, optimize, and then
simulate a suite of tests. Optionally, those tests could be rerun using the
same parameterization (and thus avoiding recompilation) but with
different seeds. Then a new parameterization could be chosen which
would require recompilation, and finally a new set of simulations could
take place. This process would then repeat until all parameter and
functional coverage has been achieved. Requiring recompilation
whenever the parameterization changes is the least efficient approach.

A more efficient method is a process which only requires two steps
when changing parameters. In most simulator flows parameters are
fixed during the optimization step. Most simulators also provide a
mechanism for setting which parameters should be used when
optimizing the design and testbench. Utilizing this knowledge, the
flow can be optimized further, which results in compiling the code
once. After compilation, a parameterization is selected and the
design is optimized. A suite of tests can then be run using the
optimized version of the design. Using +OVM_TESTNAME allows
different tests to be selected and run with this optimized version of
the design. After that parameterization has been simulated, a new
parameterization can be selected and the design can be re-optimized.
Once optimized, that parameterization is then simulated and the
process repeats until all parameter and functional coverage has been
achieved. By compiling once, optimizing a few times, and simulating
many times, more time is spent where it is needed, resulting in a
more efficient simulation and a faster time to coverage closure.

A variation of the “2-step” method of optimizing and simulating only
when parameters change is to simulate the test suite multiple times
(with different seeds) for a given parameterization. This “1.5-step”
technique is more efficient than the standard 2-step process because
each run of the test suite does not require a re-optimization. This
approach works well when parameter coverage is easier to close than
functional coverage because less time is spent optimizing and more
time is spent running tests. The number of times a test suite is
simulated per parameterization can be tuned using this method so
that closure of functional and parameter coverage occurs in relatively
the same amount of time. This leads to spending the minimal amount
of time on the optimizations necessary to close parameter coverage
while maximizing the amount of time for running tests to close
functional coverage, resulting in the most efficient path to combined
coverage closure.

These first three methods were benchmarked to demonstrate the
efficiency improvements that can be achieved. In all three cases, the
test suite consisted of seven tests. The test suite for each of the three
methods was run 100 times for a total of 700 tests run. In the
3-step method, the design was compiled and optimized, and the test
suite was simulated once for each of the 100 different
parameterizations. The 2-step approach compiled only once but did
re-optimize the design and run the test suite once for each of the 100
different parameterizations. The 1.5-step method also compiled only
once, but it ran the test suite four times per optimization. Thus only
25 different parameterizations and optimizations were run, but 700
tests were still simulated.

Method 3-Step 2-Step 1.5-Step
Number of
Compiles

100 1 1

Number of
Optimizations

100 100 25

Number of
Simulations

700 700 700

Total Minutes 416 373 341
Performance
(compared to
 1.5-step)

22%
slower

10% slower —

Table 1. Parameter Flow Comparisons

As shown in the Table 1, the approach that was able to run the
700 tests in the shortest amount of time was the 1.5-step method.
This makes sense because it spent the least amount of time compiling
and optimizing. The next fastest was the 2-step method since it only
compiled once. This approach was 10 percent slower than the
1.5-step method. The real difference between these two approaches
is that the 2-step technique ran four times the number of different
parameterizations than the 1.5-step technique. (The four times
difference in parameterization was an arbitrary number chosen
for benchmarking). In other testbenches, the number of
parameterizations per run of the test suite may vary, and as a result
the improvement over the 3-step process will also vary. Because the
3-step approach must recompile and re-optimize every time a new
parameterization is required, it is the least efficient method. It is
12 percent slower than the 2-step method and 22 percent slower than
the 1.5-step method.

One thing to note is that this testbench is small and efficient and the
tests ran quickly. Even the “slowest” 3-step approach ran 700 tests
with 100 compilations and 100 optimizations in 416 minutes, which
averages to less than one minute per test. Therefore, the amount of
time spent in compilation and optimization is large, relative to the
amount of time spent simulating a test. If tests run for hours rather
than seconds, the compilation and optimization time will be a much
smaller portion of the overall time, resulting in less improvement.

Although not benchmarked, another method requiring only a single
step when changing parameters is to allow the parameters to float
during the optimization step. Parameters can then be changed at run
time without recompiling. A feature in the Mentor Graphics®
Questa® verification environment makes this throughput
optimization possible. It allows the setting of parameter values to be
deferred until the simulation engine is invoked. To do this, the
optimization engine needs to pass the +floatparameters switch. To
maximize performance, the switch should be set up to minimize the
number of parameters that are floating.

In some cases, using two steps when changing parameters is faster
than using only a single step. This is because leaving parameters
floating limits the amount of optimization that can be performed. If
the parameters will be set once in optimization and then a thousand
tests run, then that is probably faster. If ten tests are run with a
specific parameterization and then a new parameterization is
selected, then using floatparameters is probably faster. A crossover
point exists where the extra simulation time incurred from using
floatparameters adds up and passes the amount of time it takes to do
an optimization. Regardless of the final process chosen, it is very
clear that multiple simulation runs require only a single compile step.

6. PARAMETERIZED VIRTUAL
INTERFACES
Another item to consider is how to deal with the interfaces that are
parameterized. Instantiating the interface with the proper parameter
values is straight forward. What is a little more complicated is how
to associate the virtual interface handle—which points to the
parameterized interface—with the OVM components that need the
handle to operate. Drivers and monitors are the OVM components
that generally need a handle to the virtual interface. The OVM
configuration space is the best way to get the handles where they are
needed. An object can be created with a virtual interface handle that
is parameterized with the same parameters as the interface itself.
That object can then be placed into the configuration space where
any driver or monitor can access it.

Any easy way to accomplish this process is to use the
ovm_container, which is available for download on
http://ovmworld.org in the user contributions area. The
ovm_container is a parameterized class itself that contains some
static functions used to aid interaction with the configuration space.
Our testbench module example was missing the interface
connections required to enable communication between the design
and the testbench. Adding the interface and the ovm_container
results in the following:

module testbench ();
 parameter BUS_WIDTH = 32;
 parameter ADDR_WIDTH = 4;

 intf1 #(BUS_WIDTH, ADDR_WIDTH) i_intf1();
 dut #(BUS_WIDTH, ADDR_WIDTH) i_dut(i_intf1);

 typedef test1 #(BUS_WIDTH, ADDR_WIDTH)
 test1_t;

 initial begin
 //Use ovm_container to put the instance of
 //intf1 into the OVM Config space
 ovm_container #(virtual intf1 #(
 BUS_WIDTH, ADDR_WIDTH)
)::set_value_in_global_config(
 "intf1", i_intf1);

 run_test("test1");
 end
endmodule

The static function set_value_in_global_config() creates a wrapper
object and places the i_intf1 handle into that wrapper object. The
wrapper object is then put into the OVM configuration space with a
value “*” set for its path and the configuration name intf1. This
means that anyone can access the interface instance i_intf1 as long as
they look up the configuration name intf1. Another option would be
to use a specific path instead of “*” when adding the virtual interface
container object into the configuration space. This would allow tight
control over which objects can see and utilize the virtual interface
and, potentially, aid in debugging when printing the configuration
information available to an object.

With the virtual interface handle now available in the configuration
space, the driver and monitor can easily access the necessary signals.
To do this, their code would look like this:

class monitor #(int BUS_WIDTH = 16,
 int ADDR_WIDTH = 5)
 extends ovm_monitor;

 `ovm_component_param_utils(monitor#(
 BUS_WIDTH, ADDR_WIDTH))

 virtual intf1 #(BUS_WIDTH, ADDR_WIDTH)

 intf1_h;

 function void build();
 super.build();
 intf1_h = ovm_container #(virtual intf1
 #(BUS_WIDTH, ADDR_WIDTH))::
 get_value_from_config(this, "intf1");
 endfunction : build

endclass : monitor

Using the configuration space with wrappers for parameterized
virtual interfaces allows for easy transportation of the virtual
interface handle to the location that it is needed.

7. PARAMETER PASSING
Now that a testbench can be created that shares parameters with the
design, the method of passing the parameters through the testbench
hierarchy can be improved. This is especially true for cases where a
large number of parameters are involved. Maintaining the lists of
parameters is both time consuming and error prone. Adding and/or
removing a parameter manually involves editing numerous files.
Additionally, the code becomes cluttered and hard to read as the list
of parameters grows. To avoid these issues, a set of macros can be
defined to help ease the burden.

Three macros make up the set. The first macro expands out to
become the definition of all the parameters in the testbench. The
second macro is used when creating types and handles. This macro
contains the mappings of all the macros from the object, module, or
interface to the type or handle that is created within the object,
module, or interface. The third macro provides a string
representation, which is useful for creating messages. Using the code
presented above, these three macros are defined in a
params_defines.svh file and look like this:

// Declarations
‘define params_declare #(int BUS_WIDTH = 16,
 int ADDR_WIDTH = 5)

// Instantiations / Mappings
‘define params_map #(.BUS_WIDTH (BUS_WIDTH),
 .ADDR_WIDTH (ADDR_WIDTH))

// String Value
‘define params_string $sformatf("#(%1d, %1d)",
 BUS_WIDTH, ADDR_WIDTH)

Using these macros results in the testbench module looking like this:

module testbench ();
 `include "params_defines.svh"

 parameter BUS_WIDTH = 32;
 parameter ADDR_WIDTH = 4;

 intf1 `params_map i_intf1();
 dut `params_map i_dut(i_intf1);

 typedef test1 `params_map test1_t;

 initial begin
 //Use ovm_container to put the instance of
 //intf1 into the OVM Config space
 ovm_container #(virtual intf1
 `params_map)::
 set_value_in_global_config(
 "intf1", i_intf1);

 run_test("test1");
 end

endmodule

The monitor is now defined as follows (the package that contains the
monitor includes the params_defines.svh file):

 class monitor `params_declare extends
 ovm_monitor;

 `ovm_component_param_utils(monitor
 `params_map)
 virtual intf1 `params_map intf1_h;

 function void build();
 super.build();
 intf1_h = ovm_container #(
 virtual intf1 `params_map)::
 get_value_from_config(this, "intf1");
 endfunction : build

 endclass: monitor

These macros are defined only once and every class and object gets
the full complement of parameters. This may result in parameters
being added to a class that has no use for them. This is not an issue
as the extra parameters will be ignored and not produce any side
effects, while the needed parameters will always be available.

8. CONCLUSION
Using the techniques described above, a parameterized OVM
testbench can be created that leverages all of the capabilities of
OVM, including the reuse advantage of compiling once and running
multiple times. These techniques also reduce code complexity and
increase code readability when parameters are involved.

9. ACKNOWLEDGMENTS
Our thanks to: Todd Burkholder, Senior Writer, Mentor Graphics, for
editorial support; Stacey Secatch, Senior Staff Verification Engineer,
and Cristi Lovett, Design Engineer, Xilinx, for helping define and
implement this solution; Adam Erickson, Verification Technologist,
Mentor Graphics, for helping with the technical aspects of creating
parameterized OVM tests.

