
1

Parameterized and Re-usable Jitter Model for

Serial and Parallel Interfaces

Amlan Chakrabarti, Member of Technical Staff, AMD India Pvt. Ltd., Bangalore, India
(amlan.chakrabarti@amd.com)

Malathi Chikkanna, Member of Technical Staff, AMD India Pvt. Ltd., Bangalore, India
(malathi.chikkanna@amd.com)

Abstract—Jitter is the short term variation of a signal with respect to its ideal position in time. When verifying

any serial or parallel interface, it is critical to model this jitter during data transmission. A jitter model modifies the

width of a data bit when the master agent transmits data to a slave, or when the designunder test (DUT) receives

data. In packet based protocols that employ a serial link to communicate to the link partner, many times the clock is

not sent along with the data. In the physical (PHY) layer, when the data is received, the clock needs to be recovered

from the data. Modeling the bit width variation on the link is crucial to exhaustively verifying the clock-data recovery

(CDR) logic. If the DUT has an elastic buffer, such a variation can expose problems such as inadequate depth of the

elastic buffer. Traditionally, we have developed a separate jitter model for each new interface. In this paper, we

describe an approach to develop a parameterized and reusable jitter model using universal verification methodology

(UVM) that can be used for any serial and parallel interface.The jitter model developed using this approach on a

serial interface found 2 critical bugs that could have potentially caused a silicon respin.

Keywords—Jitter Model;Clock-Data Recovery(CDR);Parameterized;Reusable;UVM.

I. INTRODUCTION

Jitter refers to the variation of a signal in time with respect to its ideal position. Jitter occurs in real systems

from sources such as phase-locked loops (PLLs), random thermal noise from a crystal, signal transmitters,

traces, and cables. Jitter on data can result in incorrect data being captured at the receiver. A jitter model

modifies the width of a data bit during data transmission. On serial interfaces, many times the clock is not sent

along with the data. This is done to reduce the pin count and hence the package cost. In such protocols, when the

data is received, the clock needs to be recovered from the data using a clock-data-recovery (CDR) logic. To

exhaustively verify the CDR logic, it is essential to model the bit width variation on the link. Through this

modeling, problems such as inadequate depth of an elastic buffer in the DUT can be exposed.

 For a parallel interface on the board, different bits of a data bus can experience varying amounts of jitter. The

distributions in the jitter model mentioned above enable us to mimic this behavior. Thus, a jitter model enables us

to determine the maximum amount of jitter which the designundertest (DUT) can tolerate.

II. TYPES OF JITTER MODELING

 The variation introduced by the jitter model can be deterministic (sinusoidal, triangular), random(Gaussian),

or a combination of both.

Sinusoidal jitter can be modeled through the following equation:

sj_offset + (sj_ampl*$sin(2*3.1416*curr_sj_freq*$realtime))

where

- sj_offset = an initial offset of the jitter sinusoid

- sj_ampl = amplitude of the jitter sinusoid

- curr_sj_freq = frequency of the jitter sinusoid

Random jitter can be modeled as

rj_offset + $dist_normal(rj_seed, 0, rj_stdev)*10/1000

where

- rj_offset = an initial offset for the random jitter

- rj_seed = initial seed for the normal distribution

- rj_stdev = standard deviation for the density function

mailto:amlan.chakrabarti@amd.com
mailto:malathi.chikkanna@amd.com

2

III. PAST APPROACH FOR MODELING JITTER

Figure 1 depicts the way jitter was modeled for different interfaces in the past.

In this methodology, a separate jitter model is developed for each interface. There can be significant differences

between the interfaces, such as serial/parallel, difference in data bus port names, and bus widths. Also the

protocols to which the interfaces comply can be entirely different. Hence, reusing a jitter model across different

interfaces is not easy. Furthermore, since jitter is modeled in the interface, the model is always enabled.

Therefore, it requires static allocation of memory.

IV. PROPOSED METHODOLOGY FOR DEVELOPING A JITTER MODEL

Figure 2 depicts our proposed approach for developing a jitter model.

In this proposed approach, the jitter model is developed using Universal Verification Methodology(UVM). This

approach is parameterized, reusable, andscalable.

Figure 1: Past approach for modeling jitter.

Figure 2: Proposed approach to model jitter.

3

V. COMPONENTS OF THE SOLUTION

A typical jitter model has the following parameters:

 a) Parameters of the interface on which the jitter has to be injected. These include the data bus port

names and the data bus width

b) Testbench parameters, such as type of jitter and enable/disable of the jitter model.

In our proposed approach for the interface parameters, we have developed a Perl script which takes the

interface signals and their properties as parameters from a file(or command line), and automatically generates the

interface file based on these parameters. The file consists of the inputs, outputs, and thebus widths. The script

reads these values from the file and generates the interface file as shown in Figure 3 below.

Figure 3: Script for generating the interface file.

Also, the script automatically adds the logic to insert the delay between the inputs and the outputs. Figure 4 shows

a snippet of an example interface file. The interface file is then hooked between the testbench and the design

under test.

The jitter model is developed as an UVM agent, which performs the bit width variation based on the testbench

parameters. This is described in sections VII and VIII.

Figure 4: Example interface file.

4

VI. UVM TESTBENCH ENVIRONMENT

Figure 5 below shows the UVM testbench developed with the proposed approach. The DUT can have a serial

or a parallel interface. The environment is comprised of agents which are used to transmit data to/receive data

from the DUT via serial/parallel interface. The jitter agent shown in Figure 5 injects jitter on the interface, based

on the configuration parameters.

VII. COMPONENTS OF JITTERAGENT– CONFIGURATION OBJECT

The jitter agent has a configuration object which containstestbench parameters. These parameters can be

configured by the user based on design requirements. The type of jitter can be deterministic (sinusoidal or

triangular), random (Gaussian), or a combination of both. For a sinusoidal jitter, the amplitude and frequency of

the jitter sinusoid need to be considered. For jitter with a triangular profile, the minimum and maximum levels

and the frequency of repetition need to be considered.Figure 6 below shows a sample configuration object.

Figure 5: UVM testbench developed with the proposed approach.

5

VIII. COMPONENTS OF JITTER AGENT– DRIVER

The base class of the jitter driver computes the jitter based on the configuration object parameters. This base

class driver is extended to create drivers specific to a serial or a parallel interface. For a serial or parallel

interface, the delays present in the interface are assigned the jitter values computed in the driver. These delays

cause the incoming data to be delayed before appearing at the output.Figure 7 illustrates this delay computation.

Figure 7: Example of a jitter driver.

Figure 6: Sample configurationobject.

6

IX. CREATION OF THE JITTER AGENT

The jitter agent consists of the configuration object, driver, sequencer, and monitor. This agent can be

configured as active or passive. When the agent is configured as passive, only the monitor is instantiated. When

the agent is configured as active, all of the driver, sequencer,and monitor are instantiated. However,the jitter

agent is dynamic in nature and can be disabled when not needed. This can be programmed by the user through

the configuration object. Hence, it doesn’t require any static allocation of memory. Figure 8 below shows how

the creation of jitter agent can be dynamically controlled by the configuration object.

X. REUSING THE JITTER MODEL FOR A NEW INTERFACE

In order to reuse this jitter model for any new interface, we need to follow these steps:a) use the Perl script to

generate the interface file b)instantiate the jitter agent in theverification environment and c) configure the

configuration object parameters in the test. This is illustrated in Figure 9.

Figure 8:Dynamic creation of the jitter agent.

Figure 9:Reusing the jitter model for a new interface.

7

XI. CASE STUDIES AND RESULTS

In this section we discuss the results obtained with our proposed approach, both on serial and parallel

interfaces.

A. WAVEFORMS ON SERIAL AND PARALLEL INTERFACES

In Figure 10, HSDP_P0 and HSDM_P0 refer to a differential pair of data lines on a serial interface. In

Figure 10 the data bits received by the DUT don’t have jitter. Hence, the width of the data bit is constant and is

2080 ps.

In Figure 11, jitter has been introduced on the data stream received by the DUT on HSDP_P0 and HSDM_P0.

The width of a bit varies because of this jitter. For the 2 bits marked in Figure 10, they have been measured as

2044 ps and 2097 ps.

Figure 10:Data stream on a serial interface without jitter introduced.

8

Figure 12 depicts the introduction of jitter on a parallel interface on the write path. During a write operation,

jitter has been introduced on the parallel data bus and the write data strobe.BP_DQ is a 32 bit bidirectional data

bus and BP_WDQS_T is the write strobe without any jitter. BP_delay_DQ is the 32 bit data bus output, which

has varying amounts of jitter/skew introduced on every bit of BP_DQ. BP_WDQS_delay_T is the write strobe

obtained after introducing jitter on BP_WDQS_T. At the receiving end(agent/slave), the data bus BP_delay_DQ

is sampled with respect to the write strobe BP_WDQS_delay_T. The varying amounts of jitter introduced is

based on the jitter profile configured in the configuration object, and the monitor ensures that the jitter is within

the given jitter margin.

Figure 11: Data stream on a serial interface with jitter introduced.

Figure 12: Jitter on a parallel interface on the write path.

9

Figure 13 depicts the introduction of jitter on the read path on the same interface. During a read operation, jitter

has been introduced on the parallel data bus and the read data strobe. BP_SLV_BQ is a 32 bit read data bus and

BP_RDQS_SLV_T is the read strobe without any jitter coming from the slave/agent. BP_DQ is the 32 bit data

bus output which has varying amounts of jitter/skew introduced on every bit of read data bus BP_SLV_DQ.

BP_RDQS_delay_T is the read strobe obtained after introducing jitter on BP_RDQS_SLV_T. At the receiving

end (DUT), the read data bus BP_DQ is sampled with respect to the read strobe BP_RDQS_delay_T. The jitter

added is based on the parameters in the configuration object.

B.BUGS ON A SERIAL INTERFACE

Table 1 captures the bugs found on a serial interface with our proposed approach.

Table 1: Bugs.

Category Description of the bug

Received
data

corrupted

Final bit of a HS sync pattern is received in the first bit of a UI where 2 bits

are processed. If this happens, the 2nd bit doesn’t get written into the elastic

buffer, but is discarded.

False

assertion
of receive

error

Noise at the end of a HS chirp response aliases to a start-of-packet pattern.
This falsely asserts receive error to the controller.

Figure 14depicts the first bug mentioned in the table, which is received data corruption on a serial interface. In

this figure,dp/dm refer to a pair of differential serial data lines. rx_data is a 8-bit parallel data obtained after the

clock-data recovery of the serial data. At the position indicated by the marker, the data bit doesn’t get written

into the elastic buffer, but is discarded. This results in thefirst byte obtained on rx_data being incorrect.

Figure 13: Jitter on a parallel interface on the read path.

10

XII. CONCLUSION AND FUTURE WORK

A separate jitter model for each new interface lacks reusability. With our proposed approach, any new interface

can be generated and the jitter model can be quickly integrated in the verification environment. Due to the

configurability, the model can be reused across any serial or parallel interface. The model is dynamic in nature

and can be disabled when not needed. This approach saved us 2 weeks worth of effort when developing a jitter

model for a new interface.

In the future, we want to incorporate modeling clock jitter as a part of this solution. This will enable us to

generate jitter on the clock in a controlled fashion. We also want to develop the solution as a Verification IP

(VIP).

ACKNOWLEDGMENT

 We would like to acknowledge our colleaguesToni Simov, Atanaska Yanachkova, and Govinda Raju at AMD

for their valuable suggestions during this effort.

REFERENCES

[1] Pavan Kumar Hanumolu, Bryan Casper, Randy Mooney, Gu-Yeon Wei, and Un-Ku Moon, “Jitter in high-speed serial and parallel

links,”ISCAS 2004, pp. IV-425-428, 2004.

[2] Nelson Ou, Touraj Farahmand, Andy Kuo, Sassan Tabatabaei, and André Ivanov,“Jitter Models for the Design and Test of Gbps-

Speed Serial Interconnects,” IEEE Design & Test of Computers, pp 302-313, July-August 2004.

[3] UVM Cookbook. [Online]. Available:www.verificationacademy.com.Retrieved September, 2014.

[4] Cadence,Mentor Graphics, Synopsys, “Accellera : Universal Verification Methodology (UVM) 1.1 User’s Guide,” May 18,2011.

ATTRIBUTION

© 2014 Advanced Micro Devices, Inc. All rights reserved. AMD, the AMD Arrow logo, and combinations

thereof are trademarks of Advanced Micro Devices, Inc. Other product names used in this publication are for

identification purposes only and may be trademarks of their respective companies.

Figure 14: Received data corruption on a serial interface.

http://www.verificationacademy.com/

