
Parallel Computing for Functional Verification and Compute
Farms: The Holy Matrimony

Amit Sharma
Synopsys

RMZ Infinity, Old Madras Road
Bangalore, India

0091.80.40189129,
amits@synopsys.com

Shekhar Basavanna
Synopsys,

RMZ Infinity, Old Madras Road
Bangalore, India

0091.80.40188068,
bshekhar@synopsys.com

Srinivasan Venkataramanan
CVC

Vibhu Complex, HSR Layout,
Bangalore, India

0091.80.42134156
srini@cvcblr.com

ABSTRACT
In the functional verification of complex chips, there are several

phases where the requirements for the memory and runtime are far

beyond the simple, single compute-server capabilities. With multi-core

processors being ubiquitous nowadays, EDA tools have emerged over

the last several years to provide solutions leveraging these multiple

cores through parallel computing to push the limits of memory and

runtime limitations of erstwhile simple computer infrastructure. At the

same time, CAD teams across semiconductor organizations create

Regression Infrastructures across Load Sharing Facility (LSF) setups

and compute farms to use the multiple cores per machines optimally.

This is done through intelligent automation which schedules various

jobs across available cores to give the best possible throughput while

running regressions.

Though compute and human resources are available, using them

efficiently is the key. While the above approaches make use of multi-

core processors in different useful ways, it becomes a challenge for

CAD teams to come up with an optimal flow to leverage the Parallel

Compute solutions and Compute Farm Regression Infrastructure

together to increase the throughput further. One of the reasons for this

is the fact that typically for the parallel compute solutions, the gains do

not scale in the same order as the numbers of cores used in a specific

application. For example, a simulation running on four cores might

give a 2X improvement in runtime, however this is lesser than the

throughput one could have obtained by scheduling four similar jobs on

these four cores. This results in a lower throughput than the scenario

when multiple jobs are scheduled on different cores. Another

important aspect in Functional Verification is the Turn Around Time

(TAT) for debug. Long running simulations take even longer when

debug modes are turned on.

This paper analyzes different innovative models and comes out with a

methodology for Regression Management which leverages Parallel

Computation Solutions along with compute farm based solutions to

give the best possible throughput. This takes into account the specific

requirements for scheduling long running simulations along with

shorter simulations of varying runtimes and memory overhead. The

approaches are discussed and dissected for different functional

verification and simulation requirements. This involves parallelism at

compile time, parallelism at runtime which includes application level

parallelism and design level parallelism, coverage analysis and

merging parallelism. Finally, along with a presentation of the models

which can be leveraged by different CAD teams, we conclude with an

analysis of the modern day compute server configurations, trends and

guidelines to choose for VLSI Design and Verification teams.

Categories and Subject Descriptors
New Frontiers in Verification

General Terms
 Performance, Theory, Verification

Keywords
Compute farms, multi-core, simulation

1. INTRODUCTION
Given the complexity of today’s chips, the number of simulations

that are required to verify various functionalities in a DUT, the

manifold iterations of analysis and debug, the requirements to merge

and update different databases, poses a significant challenge to the

verification engineers and CAD teams of various organizations.

Long running simulations end up hogging resources and increase

(Turn Around Time) TAT for debug and analysis. Compute farms

and farm based solutions help in the utilization of available

resources, however, do not provide any mechanism to cut down the

time required to run the longer tests.

The EDA tools have now emerged over the last couple of years to

leverage multi-core processors and parallel computing to improve

simulation performance and also to push the limits of memory

limitations. However, there are definite challenges in deploying

parallel compute solutions professed by these EDA technologies in

compute farms. The primary drawback is on the overall ‘throughput’.

Owing to Amdahl’s law and the inherently sequential or ‘dependent’

nature of several applications, the gains do not scale in the same

order of maginitude as the numbers of cores used. Hence, this causes

a potential challenge when trying to deploy these solutions especially

when compute resources are limited. Additionally, there are

challenges with respect to load balancing, OS scheduling etc. when

the farm based solutions try to launch multi-core jobs leading to non-

optimal utilization of the farm.

In this paper, we talk about all these challenges and then delve into

how we can look at each of these challenges and come up with

different solutions to mitigate the same. We explore and come up

with scenarios where running multi-core jobs on compute farms give

the best results and can be leveraged to impact project schedules and

productivity in the best possible . This paper also talks about the

guidelines we followed to come up with a small application or

middleware to help the compute farm software to schedule multi-

core simulations better. Readers can go through this paper and come

up with their own variations or algoritms to help meet their custom

requirements.

2. COMPUTE FARMS IN FUNCTIONAL

VERIFICATION
Verifying complex chips now require millions of simulations to be

run across the project life cycle. This includes interactive, batch and

simulations of different runtimes and priorities. Hence compute

farms comprising of collections of machines with high speed

processors or multiprocessors have become ubiquitous in design

houses for launching their EDA jobs. When multiple such jobs are

launched at the same time, it is important to have ‘job schedulers’ to

help launch jobs optimally in the farms and with high throughput for

atomic and batch submission of jobs.

In summary, some of the benefits that farm based solutions bring in

are:

• Enables jobs processing and better processing of resources

• Software addresses load balancing so that there are minimal

page faults

• Fair queuing of jobs

• QoS levels maintained

• Helps the administrator to manage priorities

• Launch jobs on appropriate machines

Thus, these software help in increasing CPU utilization rates, reducing

I/O wait times, and eliminating memory paging. They enable shorter

run times for jobs taking up lesser memory, as well as the concurrent

execution and completion of large-memory jobs that otherwise would

not complete. There are various high performance compute farms

solutions available now. The most widely used amongst them are Sun

Grind Engine (SGE) from SUN, and Load Sharing Facility (LSF) from

Platform Computing. These does a fair job of load

balancing/distribution for single core simulations besides delivering

other benefits mentioned above. However, multi-core simulations

throw a different set of challenges. In this paper, we explore solutions

to deal with these on the LSF compute farm. The same solutions could

be applied on SGE also.

3. PARALLEL COMPUTING IN FUNCTIONAL

VERIFICATION
Multi-core is the trend in modern processor architectures providing

performance improvement in computation and greater throughput with

less power. Gains diminish on single core architectures with increase

in operating frequency. Hence, multi-core processors provide an

opportunity for verification tools to leverage the parallelism offered by

the multi-core compute platforms to improve the overall performance.

The EDA tools such as VCS have been performing this through one of

the following mechanisms:

• Exploiting Design Level Parallelism (DLP): Simulate

different cores of a multi-core design or different partitions

of a design in parallel with other cores, leading to better

simulation performance

• Exploiting Application Level Parallelism (ALP): Offloading

Verification technologies or applications like waveform

dumping, functional coverage collection, toggle coverage

reporting, evaluation of SystemVerilog Assertions to

different CPU’s – reducing the overhead on the core HDL

simulation

• Spawning out the compilation and linking processes of

creating a simulation executable on multiple threads.

4. THE LSF SCHEDULER
The LSF Batch is a layered distributed load sharing batch system built

on top of Platform LSF Base. When users run a regression, LSF

follows the flow as in Figure 1 to launch the jobs [3]. LIM ((Load

Information Module) and Master Load Information Module (MLIM)

modules return the potential hosts on which a given job can be run, and

Master Batch Daemon (MBD) module identifies the host. The master

host puts the job in a queue and dispatches the job to an execution host

after waiting for an appropriate time when an execution host with the

necessary resources becomes available. When more than one host is

available, the best host is chosen.

Figure 1: The LSF Batch Scheduler

5. ADOPTION CHALLENGES IN COMPUTE

FARMS
With exciting multi-core technologies available, which give definite

gains on long running simulations, design and verification, engineers

can significantly improve the TAT on debug and other design

iterations. However, as CAD teams start planning for deploying

these technologies in the compute farms, they are faced with new set

of questions and challenges.

5.1. Managing Throughput
Though gains offered by ALP/DLP can go up to 5-6X, typical gains

are smaller in magnitude compared to the cores used. For example, if

the number of cores used is two, the gains would be lesser than 2X

and for three cores it might be lesser or significantly lesser than 3X,

unless the ‘parallelism’ exhibited by the designs is of the

‘embarrassingly parallel’ type which it typically is not. The gains are

restricted by Amdahl’s law which describes an upper bound of

parallel speedup over ‘n’ cores as given in the following equation:

 Tparallel = {(1-P) + P/n} Tserial + O

 Scaling = T(p)/T(s) < n

Figure 2: Amdahl’s Law

Here,

 Tserial or T(s) is the time taken for the serial simulation

Tparallel or T(p) is the time taken for the parallel simulation

(1-P): the part of the problem which cannot be parallelized and hence

is run sequentially

P: part of the problem which can be parallelized

O: time taken for synchronization etc.

Thus we can see that the ‘Serial code’ limits scaling. The higher the

value of (1-P), the lesser is the potential of getting high gains. Also,

with even a small value of (1-P), the gains from Parallel compute will

never match up to the number of cores used for the simulation.

Hence, if we just look at throughput, ‘n’ single core jobs submitted in

an ‘n’ core machine will always give a higher throughput than

submitting the same as a batch of multi-core simulations no matter

how close the gains are to a theoretical maximum. Thus, this drives the

perception in CAD teams that although they have access to superior

technology, this might come at a higher cost. Though they might get

good results on individual simulations, there might be non-optimal

results when multiple jobs need to be turned around quickly with

limited compute.

5.2. Scheduling Jobs
The compute farm software helps schedule all the single core

simulations based on the dynamic state of the farm. The load balancing

techniques ensure that the jobs are equally distributed across all the

available machines. The requirements when it comes to multi-core

simulations are different. The same algorithms that help in the job

scheduling of singe core simulations might cause multi-core

simulations to be run non-optimally. Here are some of the scenarios for

which existing load balancing software do an inadequate job:

a) Slot reservation/Starvation: Multi-core jobs require more

than one core to run. Hence, the Job Schedulers should be

able to free up slots on a single machine as it prepares to

launch multi-core jobs. Thus, there can be scenarios where

there are multiple slots available on the farm, however, the

sufficient slots will not be available on the individual

machines to run multi-core jobs.

The reverse can be true as well and machines completely set

aside for multi-core runs might be ‘idle’ in specific intervals.

Hence, a lot of planning is required to avoid these scenarios.

b) Conflict and collision: There would be scenarios when single

core jobs and multi-core jobs would be launched on the same

machines at the same time resulting in multiple jobs running

on the same core and thus degrading performance for both.

When parallel simulations are launched, they do not start

running all the threads immediately. This is because, the

master scheduler sitting on the main partition will take some

time to start launching child threads or partitions on these

different cores. As a reason, LSF will end up launching other

serial/parallel simulations as well on the same cores thus

overloading all.

c) Managing Priorities: Priorities change throughout a project

cycle. For example, late in the project cycle, specific

regressions have higher priority, whereas earlier in the

project cycle,, specific interactive jobs have higher priority.

d) Alarm System/Cycle Stealing: Also, besides the scenarios

mentioned in ‘b’ above, the threads running on some of the

cores in multi-core simulations can go into ‘wait’ mode. This

typically happens when threads are waiting for a

synchronization event. The compute farm software which

keeps on monitoring all these different cores sees that there

is no real activity scheduled on specific cores and end up

scheduling other jobs on these. This is ‘cycle stealing’ and is

a factor that degrades performance for both the ongoing

multi-core simulation and the new job that is launched.

e) Paging/Page Swaps: LSF by default launches jobs in the

background if the running jobs do not take up the complete

CPU memory.. Though this can be configured to get better

results, as the default setup will overload all the jobs on a

machine. Even if one manually identifies jobs that can run in

parallel and serial, unless they are launched after the

running jobs complete, they can overload the currently

running jobs.

f) Scheduling Across Queues: Teams need to find out an

effective mechanism to schedule specific multi-core across

queues if specific queues are idle.

Because of these limitations, even a high priority regression will not

be able to exploit the benefits of a multi-core simulation.

5.3. Utilization of Resources

Teams need to come up with their own analysis and criteria for

deciding whether a simulation should be launched on single core or

on multiple cores. The inputs for these decisions would be based on

the gains available with multi-core, the number of cores used, the

time taken for a simulation, the priority of the job, the compute

resources and licenses available and so on.

For example, one of the questions could be,

 If a‘n’ core job will hog ‘n’ licenses and ‘n’ cores to give a gain of

‘x’%, does the improvement of x% justify the degradation in

utilization?

 A lot of these variables are dynamic in nature and hence the

decisions on whether to launch a job as a single core job or a multi-

core will change dynamically as well.

5.4 Issues with Default OS Scheduling
With multi-core processors, the OS that runs on these processors

implements/provides a default scheduling, also known as OS

scheduling. Many of the existing OS scheduling algorithms on multi-

core systems work on the basis of “load balancing” across the cores.

With a specific focus on the EDA tools used in VLSI design flow

(though this fact is likely true for other applications as well), this

model is not so optimal. The default OS scheduling tries to balance

the jobs/threads across the available resources to ensure fair

distribution of CPU time and minimize the idling of cores. This has

been studied, explored and several deficiencies have been identified

in other works [4,5]. The problem gets compounded as these cores

are not truly “independent”, they rather work in a single multi-core

CPU setup, hence perform certain housekeeping processes internally

from time-to-time. This can lead to some “instantaneous” load on

one of the cores while the OS scheduler tries to look for a free core.

Also, it is generally observed in several design verification compute

processes that the peak memory/load utilization occurs during the

end of the process and most importantly it tends to be non-linear.

For example, consider two compile processes getting launched on a

four-core machine. Assume that comp-1 has been launched on core-1

and it is in its pre-processing stage (hence not huge load yet on core-

1). Now when comp-2 arrives for scheduling, assume that the core-2

is performing some housekeeping and hence shows a large

“instantaneous” load. It is likely that the default OS scheduler along

with the Farm Job scheduler in this case schedules the comp-2

process on core-1 again.

LSF would launch jobs based on the slots availables and

instantaneous loads. As there is no historical information of the

resource requirement of the job, either because of the %CPU

utilization or the memory required, it can directly impact the

performance of the job. This also means that more than one ‘heavy’

job running on a single core.

6. DELIVERING VALUE WITH PARALLEL

COMPUTE JOBS ON COMPUTE FARMS

The value of a new technology can be judged based on how it is

complimentary to the existing ecosystem. If the new benefits from the

parallel simulations cannot be delivered on the compute farms, its

impact and adoption might not match the promise it holds. Given the

challenges that have been seen, it can now be understood that the

deployment of these technologies on server farms cannot be done

through brute force expecting the existing farm based solutions to

launch these jobs optimally. Also, at any point in time, there would

always be a mix of single core jobs and multi-core jobs. And therefore,

any solution has to account for this.

6.1 Parallel Compute Deployment Across a

Project Life cycle
Given that the primary concern for adopting the multi-core

technologies is with respect to compute resources being used up, it

becomes relevant to look at the resource utilization across a project life

cycle. Consider an example of compute usage, though the usage will

vary across projects and organizations.

Figure 3: Example of Compute Resource Usage Across

Project Life Cycle

What is apparent from the above usage representation is that the usage

of these compute resources would vary significantly at different times.

Hence, based on a simple integration to a license monitor or a LSF

daemon for dynamic evaluation of ‘free licenses’ and ‘available

compute’, CAD teams can formulate simple steps to ensure more

multi-core runs are scheduled during the phases when there is more

compute availability than the number of jobs being launched at

specific times. This also ensures that the resources are effectively

utilized at all points of time and are not left ‘IDLE’.

Application of the types of parallel compute solutions across project
life cycles: We can see that there also are different requirements during

these cycles. With respect to parallel compute solutions in functional

verification, we can map these different solutions to these different

stages. During the debug phases, long running interactive jobs

requiring waveform dumping and message logging has to be thrown at

the servers. Hence, bumping up the priority of the jobs with

‘Waveform Dumping’ enabled in separate cores will improve the TAT.

Similarly during the IP integration phase or the Interconnect validation

stage, more ‘Parallel Toggle Coverage’ runs can be scheduled.

Multi-core job scheduling for lower job rates:
During the scenarios where the number of jobs submitted is relatively

lower, a set of simple constraints can determine how many jobs should

be submitted as single core jobs or multi-core ones.

(Consider a simple scenario of having the same runtime for all the

jobs)

• Submit multi-core jobs when:

 jobs * no of cores < number of active slots

• For jobs* no. of cores > slots,

min. regression time is time taken for serial run

Individual jobs can be run on serial core or

multi-core based on the following constraints:

constraint all_jobs {

 no_of_serial_jobs +

max_no_of_parallel_jobs = no_of_jobs;

 no_of_serial_jobs +

max_no_of_parallel_jobs*cores_per_sim =

no_of_slots;

 }

Here is a simple illustration of the above explanation:

Table 1: Parallel Mode, jobs < slots

For the experiment,

No. of machines = 100

No. of cores per machine = 4

Runtime per job = 100

Gain with 2 cores = 1.25x

Gain with 3 cores = 1.4x

Gain with 4 cores = 1.5x

Thus, for different number of multi-core jobs, as long as the

requirements for cores are less than the total available, multi-core

gives an improvement in individual and regression time. For multi-

core requirements > ‘number of active slots’, but ‘number of jobs’ <

‘number of active slots’, the scheduler can schedule both serial and

multi-core runs without impacting overall utilization (regression time

= serial regression time, but individual run times for ‘x’ no of jobs

will be improved).

6.2 Defining a Parallel Computation

Methodology

Now, consider the scenario which is more typical when the runtime

across different simulations differ. Assume there are six jobs (j1, j2,

j3, j4, j5 and j6) and 4 cores are available (c1, c2, c3 and c4).

Assume runtimes are: j1 : 5, j2 : 6, j3 : 8, j4 : 11 and j5 : 25

If this test list is given to LSF, c1, c2, c3 and c4 might run j1, j2, j3 and

j4 first, followed by j5.

 c1 c2 c3 c4

Jobs | j1 j2 j3 j4

Jobs | j5 idle for 24 idle for 22 idle for 19

core “c1” runs for a longer time (j1 + j5 => 5+25): 30 mins which is

the Total Regression Time. LSF can help reorganize this in serial

mode (provided we give it a list with the historical times) to run same

regression in 25 units (launch j5 early).

Now let’s say that j5 gives a gain of 1.6x on 2 cores. Hence, if we

launch the same set of jobs directly on specific hosts as given below:

 c1 c2 c3 c4

Jobs | j5 j5 j4(5) j3(6)

Jobs | j5 j5 j1(11) j2(8)

We see that we can complete the regression in 16 time units which is

an improvement over the serial run.

The above can be extrapolated to generate an efficient job matrix for a

larger number of jobs across more slots for effective utilization of the

farm.

Here ajn1 (run on 2 cores), cjn3 , djn4 are the runtimes of individual jobs

∑ajn1 (2cores) == ∑cjn2 == ∑djn3 (for ensuring max core utilization

and avoiding paging effects).

Here ‘n1’ ,’n 2’, ‘n3’ need not be equal

aj1-ajn1, cj1-cjn3 and dj1-djn4 are four test lists which are created based on

historical data taking into account available cores, load on the

machines, run time per job and gains per job on parallel mode

Hence, using the available resources optimally through a combination

of identifying specific hosts for specific jobs, parallel computer

solutions can provide an improvement to utilization and TAT for

individual as well as regression time.

This simplistic illustration helps deliver the following two important

things:

– “Directed Scheduling” where the user is aware of the full picture

and hence has more control to decide how jobs can be scheduled

on specific hosts.

– Historical Data on runtimes/memory which can aid in the

decision making process.

Thus, some kind of a mechanism is needed to change the default

scheduling of compute farm solutions. Additionally, this has to make

sure that there is enough configurability to take in different levels of

user inputs. Given the fact, that there are multiple parameters which

can influence how these simulations can be launched, the decisions

on how to go about these should be accompanied by a set of

guidelines.

6.2.1 Creating a ‘Middleware’ or ‘LSF wrapper’

Figure 4: Middleware to Control LSF Scheduling

The ‘Middleware’ shown above would bias the LSF scheduling

towards serial or mutlicore simulations based on the dynamic

evaluation of variables and historical data lodged in the

‘MiddleWare’ database. The assumption is that the multi-core run

times and serial mode run times are known, the gains with different

cores are known and constant, the memory consumption pattern is

known across single and parallel runs, and the degradation due to

paging effects are captured.

For this application to give the best results, it has to manage the

challenges enumerated in Section 5 above. Additionally, it has to

address the following challenges:

6.2.2 Effects of Swapping/High Memory Jobs
“Swapping" occurs when chunks of RAM are paged to the disk in

order to free the virtual memory. These additional read/writes that

are incurred slow everything down. This typically happens when

multiple large memory jobs are launched on different cores of a

machine thus significantly increasing the queuing delay times

encountered by other jobs. Because of multiple page swaps, there is a

significant degradation in runtimes of jobs on different cores in a

machine.

Hence, submitting these jobs as parallel jobs, but sequentially can

give better throughput.

Core1 Core 2 Core 3 Core 4

aj1 aj1 cj1 dj1

aj1 aj1 cj2 dj2

aj3 aj3 cj3 dj3

… … … …

ajn1 ajn1 cjn2 djn3

Figure 5: Effects of Paging

Figure 5 shows how multiple large memory jobs on multiple cores

cause a reduction in throughput. Here the throughput of serial runs

changes as more jobs are scheduled on different cores. Instead, if the

same set of jobs is run sequentially on the same machine in parallel

mode, the throughput with parallel mode becomes higher.

As mentioned earlier, even if one manually identify the high memory

jobs that can run in parallel and serial, until they are launched after the

running jobs complete, they can overload the running jobs (refer

section 5.2b). Therefore, for these jobs, parallel simulations must

complete first, otherwise application will end up wasting time waiting

for enough cores to be available to run a parallel job. Thus there has to

be check for the same.

The following table shows a typical run where T3, T4, T5 end up

running on the same cores as multi-core tests T1 and T2, even though

T1 and T2 occupies all the four cores of two machines with two cores

each.

The overall regression time is 92.35 minutes.

Testcase Parallel (min) Serial(min)

T1 67.58 -

T2 68.12

T3 73.47

T4 76.56

T5 92.06

Regression with paging effects

Now, introducing the check of ensuring that serial simulations are not

run on the machines till the parallel simulations are completed gives

the following results:

Testcase Parallel (min) Serial(min) Comments

T1 21.28 (on

vgamd269 –

core 1 and 2)

 Running

parallel

T2 21.28 (on

vgamd270 –

core 1 and 2)

T3 48 (vgamd 269

– core 1)

Running

parallel

T4 48 (vgamd 269

– core 2)

T5 48(vgamd 270

– core 1)

T6 48 (vgamd 270

– core 2)

Table 3: Mixed Parallel and Serial Regressions with Paging

Effects Nullified

The total regression time is 48+21.28 = 69.28 mins.

Thus from the 2nd job onwards, having the application check not only

for the CPU utilization but also for the job termination, provides a

perceptible difference in overall regression time.

6.2.3 Honoring Priorities
In any project group, different individuals and different classes of

tests would have different priorities. Hence, priorities might be set

per user or per job. The application needs to keep track of the

‘tokens’ for submitting jobs. These tokens would take care of

tracking the priorities. Through this, the application needs to come

up with objective metrics to re-evaluate a ‘virtual’ utilization based

on gains, cores usage, license usage and weightage of job into

consideration. Thus jobs can be submitted in parallel mode if

recomputed utilization is higher than serial utilization.

6.2.4 Slot Reservation/Pre-Emptive Strategies

The middleware would need to free up slots in a machine based on

cores required by parallel mode jobs whenever there is a priority.

This would involve the following:

• Re-launch low-priority jobs on different machine/or

suspend them to free up slots. This can also free up

memory and avoid swapping. Lower priority jobs can be

terminated if the ‘computed lost cycles’ is low.

• Needs to be done on the fly/dynamically as otherwise

machines/slots may lay unutilized. Hence dynamic re-

computation and analysis of input job queue is required.

• The application should be able to disable this when

required.

This is required to ensure that parallel simulations can be scheduled

not necessarily only when the farm has available machines but also

in scenarios of lower priority single core simulations hogging

simulation slots.

6.3 Creating Middleware

The following section describes a mechanism how a viable

middleware for some of our requirements can be created. Referring

to Figure 1, our middleware would interact with MBD and LIM. It

uses LIM functions to identify the hosts on which the jobs can be

run, and submits the jobs to the queue. The primary difference is

that here, MBD will not choose the host; instead, jobs will be

submitted directly to the queue.

Users can invoke this application in the following two ways:

1. Single job

2. Multiple jobs (also known as batch job)

6.3.1 Job Flow

1. Get job info: Runtime of the job and its runtime memory.

2. Get the available machine list based on the memory

required: Use ls_gethostinfo function to get list of the

available machines; use ls_sharedresourceinfo() to get

memory and CPU related information.

3. Based on available cores and memory, identify number of

slots: Identify serial/parallel simulation (discussed below);

If jobs are of high priority, use lsb_switchjob() to push low-

priority jobs to a different queue.

4. Generate test list: not required for single test flow

5. Start Submit: Lock the machines - ls_lockhost.; To avoid

cycle stealing , use Submit jobs - lsb_submit

 6.3.1.1 Identifying Serial/Parallel Simulations

To identify the number of serial and parallel simulations, the following

algorithm can be used.

Define the following variables:

NoC -> no of cores

ToS -> no of simulations to run

ToR -> Total runtime of all jobs

MoJ -> Memory required for each job

SRoJ -> Serial Runtime of a job

PRoJ2-> Parallel runtime of the job – 2 threads

PRoJ3-> Parallel runtime of the job – 3 threads

PRoJ4-> Parallel runtime of the job – 4 threads

 NoS -> number of serial simulation

NoP -> number of parallel simulation

Based on the dynamic info (memory required and available) generated

in #2, associate jobs with possible machines which run the job without

introducing any swapping effect.

 If NoC > 4*ToS -> run jobs in P-mode – 4 threads

 elseIf NoC > 3*ToS -> run jobs in P-mode – 3 threads

 elseIf NoC > 2*ToS -> run jobs in P-mode – 2 threads

 else if (NoC > ToS)

 if (single Job) -> run in serial mode.

 if (BatchJob)->IdentifyPar_Ser_Sims();

IndentifyPar_Ser_Sims():

Jobs that can run in parallel must meet the below condition

(SRoJ-PRoJn)≥(SRoJ1+⋯+SRoJn)

“n" is the no of cores.

The Gain observed with a parallel simulation using n threads is

equivalent to running any ‘n’ jobs in serial mode. This constraint will

ensure that any of the parallel simulation will not cause any

degradation of utilization of the regression farm.

Job satisfying the above equation can run in parallel mode.

6.3.1.2 Generate Test List
Static test list generation can be generated based on the following

scheme:

1. Sort the runtimes in descending order – using the list

returned above.

2. Distribute the jobs onto the available cores, starting with

parallel jobs first.

3. Total of “Required memory” of jobs should not exceed the

available memory – if more than one job is launched on the

same machine.

4. Continuously monitor the total runtimes on each core.

5. Distribution has to be ensured that there is no high variation.

6.3.1.3 Job Submission

Here the machine and the queue to which jobs will be launched are

known and the following steps are considered:

1. Submit the jobs using lsb_submit function.

2. Lock the hosts on which jobs are running to avoid cycle

stealing. This would also protect from LSF directly

launching other jobs.

Thus the application leverages functionality created using LSF APIs

and could be extended for other server farm solutions. They provide

additional intelligence in terms of scheduling jobs when multi-core

executables are launched. It follows a “learn and apply”

methodology. Therefore, it expects job’s runtime, and peak memory

required data to be available before hand. This can be enhanced to

take in dynamic inputs and change scheduling on the fly so that

depending on the available compute, jobs which might not strictly

meet the requirements to be launched as parallel jobs can still be

scheduled on different cores leading to better runtimes.

The application deals with the following situations in different ways:

1. Jobs requiring high memory

2. Jobs with low memory requirement

Assuming that memory is not a bottleneck for the tests, tests

runtimes are sorted so that longest running job will be launced first

and the shortest at the end. Now, the number of cores available is the

maximum number of jobs that can run together across various cores.

The job submissions routine will identify parallel and serial

simulations and will launch them accordingly.

If memory is a bottleneck, it only means that any additional job on

that host can degrade the overall performance of each job. In such

cases, it is better to run them individually, which would imply

running them in parallel mode to get the best overall regression time.

Here are some more illustrative examples on how the scripts take

care of submitting jobs based on available resource. This is for 6/4/2

tests on two machines (2+1 cores available)

Serial runtime – 48 minutes

Parallel runtime – 21 minutes (2-threads)

6 tests (T1, T2, T3, T4, T5, T6) – available cores 2 + 1 – available

hosts 2

Core 1 (machine 1) Core 2(machine 1) Core 1(machine 2)

21 (T1) 21 (T1) 48 (T2)

21 (T3) 21 (T3) 48 (T5)

21 (T4) 21 (T4)

21 (T6) 21 (T6)

From the results, we can see that the script ensures that cores are

equally loaded, and will not overload other jobs running. Hence jobs

will complete as efficiently as when launched separately.

4 tests (T1, T2, T3, T4) – available core 2+1 – available hosts 2

Core 1 (machine 1) Core 2(machine 1) Core 1(machine 2)

21 (T1) 21 (T1) 48 (T2)

21 (T3) 21 (T3)

21 (T4) 21 (T4)

Here, it is ensured that most of the jobs run in parallel, ensuring

better throughput compared to running in serial mode.

2 tests (T1, T2) – available core 2+1 – available hosts 2

Core 1 (machine 1) Core 2(machine 1)

21 (T1) 21 (T1)

21 (T2) 21 (T2)

As number of cores>jobs, the script launches both the jobs in parallel

mode. Hence the overall regression time is >2X.

7. RESULTS
Though the application does not cater to all the challenges which were

enumerated earlier, it gives the user a mechanism to add in the

additional configuration parameters. In its present shape, it has the

following advantages:

1. Provides the ability to exploit the benefits of multi-core

simulation wherever possible.

2. Based on changing priorities, can dynamically run the job in

parallel mode

3. If slots are not available, as the total runtimes are known and

the current time is known, it can approximately predict if the

job has to wait for a longer duration for a slot. It then

proceeds to start reserving slots if the job can run in multi-

core mode.

We have also enumerated results of some of the smaller runs on the

prototype at different points in the paper. Across, a larger set of serial

and multi-core jobs over multiple designs across Synopsys VCS

Benchmarks, we have seen gains ranging 2-3x when simulations are

launched directly on the LSF.

8. ANALYSIS OF THE MODERN DAY

COMPUTE SERVER CONFIGURATIONS
If we look at the roadmap of modern multi-core servers from major

providers, we can see some interesting trends from the purview of

multi-core simulations. What is apparent and common in the roadmaps

posted by the most powerful server manufacturers is that the number

of cores available on these servers is continuously increasing. What

this would mean in the context of parallel compute simulations is that

on compute farms, the availability of multiple cores for a single

simulation will significantly increase reducing the chances of

‘starvation’ for parallel simulations. Also, with more memory, the

effects of swapping might be minimized to some extent. However,

with the increased numbers of cores, the number of permutations will

also increase with respect to gains, cores used, and memory

requirements and so on, there would be always a challenge to come up

with an objective mechanism of ensuring the best possible utilization

of these machines and hence applications like the one described in this

paper can play an important role.

Also, there are performance benchmarks done by Intel on various

Xeon based systems showing potential speed-ups. As this data tends to

be highly dynamic, we highly recommend checking with the respective

vendors for updated information. Intel has published several

whitepapers focused on “EDA application performance” with its Xeon

family of servers. With growing number of cores available per server,

Intel has shown that the TCO (Total Cost of Ownership) for running

large regressions can be significantly reduced by replacing several

existing, old servers with single or few new servers. Readers are highly

recommended to explore further through www.intel.com/it.

Recently several simulation case studies, benchmarks in EDA have

emerged revealing some interesting results. Multi-core along with

GPUs boosts simulation performance in certain classes of problems

such as numerical computation. This may not apply to the wide range

of problems but in general GPUs have been proven very useful if

there are enormous numbers of “small” computations that are very

similar in nature such as finite element analysis, image processing

etc. At the time of writing this paper, detailed results from such

experiments were not publically available.

9. CONCLUSION

Besides delivering superior gains in runtimes for individual jobs, we

can see that there can be multiple scenarios where multi-core can

give additional productivity in compute farms. As long as a set of

guidelines are catered to, and some intelligence is added to existing

farm based solutions, we can get the additional increase in server

utilization. Also with time-to-market pressures, design teams often

tend to erase the previous data as fast as they can to pave way for

new databases. However as demonstrated by various experiments in

this paper, having access to quality, reliable data specific to a

company design can greatly help in predicting the need for next

designs, arrive at optimal scheduling etc. For instance if the previous

tapeout had regressions with 80% short runs and 20% long runs,

having just this data can immensely benefit in arriving at a

customized scheduling for the current design.

Though quite a few challenges for parallel compute on server farms

are enumerated in this paper, there are a few other areas which can

be analyzed further. These includes generating models to compute

change in overall utilization because of launching of a parallel job,

analysis of optimal means of freeing up slots to support a multi-core

job/s, and considering the effects of I/O and data management and

data caching when it comes to multi-core jobs on compute farms,

Managing these will help in refining a model that was presented here

in a more comprehensive manner.

10. ACKNOWLEDGMENTS
Our thanks to the Synopsys VCS R&D team for helping us

understand the different intricacies of parallel simulation and giving

us different live cases to experiment with using Parallel VCS. We

would also like to thank the Synopsys Infrastructure team to provide

us with compute farm resources for all our experiments.

11. REFERENCES
[1] http://www.design-reuse.com/articles/5732/maximize-cpu-power-

for-physical-verification.html (Maximize CPU power for physical

verification)

[2] www.exludus.com/PDFfiles/IBM%20Paper.pdf (Improving

Compute Farm Throughput in Electronic Design Automation (EDA)

Solutions)

[3] LSF Programmer Guide

[4] S. Cho and L. Jin. Managing Distributed, Shared L2 Caches

through OS-Level Page Allocation. In MICRO 39: Proceedings of

the 39th Annual IEEE/ACM International Symposium on

Microarchitecture, pages 455–468, 2006.

[5] G. E. Suh, S. Devadas, and L. Rudolph. A New Memory

Monitoring Scheme for Memory-Aware Scheduling and Partitioning.

In HPCA ’02: Proceedings of the 8th International Symposium on

High-Performance Computer Architecture, page 117, 2002.

[6] www.intel.com

[7] www.amd.com

