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ABSTRACT  
In the functional verification of complex chips, there are several 

phases where the requirements for the memory and runtime are far 

beyond the simple, single compute-server capabilities. With multi-core 

processors being ubiquitous nowadays, EDA tools have emerged over 

the last several years to provide solutions leveraging these multiple 

cores through parallel computing to push the limits of memory and 

runtime limitations of erstwhile simple computer infrastructure. At the 

same time, CAD teams across semiconductor organizations create 

Regression Infrastructures across Load Sharing Facility (LSF) setups 

and compute farms to use the multiple cores per machines optimally. 

This is done through intelligent automation which schedules various 

jobs across available cores to give the best possible throughput while 

running regressions.  

 

Though compute and human resources are available, using them 

efficiently is the key. While the above approaches make use of multi-

core processors in different useful ways, it becomes a challenge for 

CAD teams to come up with an optimal flow to leverage the Parallel 

Compute solutions and Compute Farm Regression Infrastructure 

together to increase the throughput further. One of the reasons for this 

is the fact that typically for the parallel compute solutions, the gains do 

not scale in the same order as the numbers of cores used in a specific 

application. For example, a simulation running on four cores might 

give a 2X improvement in runtime, however this is lesser than the 

throughput one could have obtained by scheduling four similar jobs on 

these four cores.  This results in a lower throughput than the scenario 

when multiple jobs are scheduled on different cores. Another 

important aspect in Functional Verification is the Turn Around Time 

(TAT) for debug. Long running simulations take even longer when 

debug modes are turned on. 

 

This paper analyzes different innovative models and comes out with a 

methodology for Regression Management which leverages Parallel 

Computation Solutions along with compute farm based solutions to 

give the best possible throughput. This takes into account the specific 

requirements for scheduling long running simulations along with 

shorter simulations of varying runtimes and memory overhead. The 

approaches are discussed and dissected for different functional 

verification and simulation requirements. This involves parallelism at 

compile time, parallelism at runtime which includes application level 

parallelism and design level parallelism, coverage analysis and 

merging parallelism. Finally, along with a presentation of the models 

which can be leveraged by different CAD teams, we conclude with an 

analysis of the modern day compute server configurations, trends and 

guidelines to choose for VLSI Design and Verification teams. 

 

Categories and Subject Descriptors  
New Frontiers in Verification  
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 Performance, Theory, Verification 
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1. INTRODUCTION 
Given the complexity of today’s chips, the number of simulations 

that are required to verify various functionalities in a DUT, the 

manifold iterations of analysis and debug, the requirements to merge 

and update different databases, poses a significant challenge to the 

verification engineers and CAD teams of various organizations. 

Long running simulations end up hogging resources and increase 

(Turn Around Time) TAT for debug and analysis.  Compute farms 

and farm based solutions help in the utilization of available 

resources, however, do not provide any mechanism to cut down the 

time required to run the longer tests.  

 

The EDA tools have now emerged over the last couple of years to 

leverage multi-core processors and parallel computing to improve 

simulation performance and also to push the limits of memory 

limitations. However, there are definite challenges in deploying 

parallel compute solutions professed by these EDA technologies in 

compute farms. The primary drawback is on the overall ‘throughput’. 

Owing to Amdahl’s law and the inherently sequential or ‘dependent’ 

nature of several applications, the gains do not scale in the same 

order of maginitude as the numbers of cores used. Hence, this causes 

a potential challenge when trying to deploy these solutions especially 

when compute resources are limited. Additionally, there are 

challenges with respect to load balancing, OS scheduling etc. when 

the farm based solutions try to launch multi-core jobs leading to non-

optimal utilization of the farm.  

 

In this paper, we talk about all these challenges and then delve into 

how we can look at each of these challenges and come up with 

different solutions to mitigate the same. We explore and come up 

with scenarios where running multi-core jobs on compute farms give 

the best results and can be leveraged to impact project schedules and 

productivity in the best possible . This paper also talks about the 

guidelines we followed to come up with a small application or 

middleware to help the compute farm software to schedule multi-

core simulations better. Readers can go through this paper and come 

up with their own variations or algoritms to help meet their custom 

requirements. 
 

2. COMPUTE FARMS IN FUNCTIONAL 

VERIFICATION 
Verifying complex chips now require millions of simulations to be 

run across the project life cycle. This includes interactive, batch and 

simulations of different runtimes and priorities. Hence compute 

farms comprising of collections of machines with high speed 

processors or multiprocessors have become ubiquitous in design 

houses for launching their EDA jobs. When multiple such jobs are 



launched at the same time, it is important to have ‘job schedulers’ to 

help launch jobs optimally in the farms and with high throughput for 

atomic and batch submission of jobs.  

 
In summary, some of the benefits that farm based solutions bring in 

are:  

• Enables jobs processing and better processing of resources 

• Software addresses load balancing so that there are minimal 

page faults 

• Fair queuing of jobs 

• QoS levels maintained  

• Helps the administrator to manage priorities  

• Launch jobs on appropriate machines  

 

Thus, these software help in increasing CPU utilization rates, reducing 

I/O wait times, and eliminating memory paging. They enable shorter 

run times for jobs taking up lesser memory, as well as the concurrent 

execution and completion of large-memory jobs that otherwise would 

not complete. There are various high performance compute farms 

solutions available now. The most widely used amongst them are Sun 

Grind Engine (SGE) from SUN, and Load Sharing Facility (LSF) from 

Platform Computing. These does a fair job of load 

balancing/distribution for single core simulations besides delivering 

other benefits mentioned above. However, multi-core simulations 

throw a different set of challenges. In this paper, we explore solutions 

to deal with these on the LSF compute farm. The same solutions could 

be applied on SGE also. 

 

3. PARALLEL COMPUTING IN FUNCTIONAL 

VERIFICATION 
Multi-core is the trend in modern processor architectures providing 

performance improvement in computation and greater throughput with 

less power. Gains diminish on single core architectures with increase 

in operating frequency. Hence, multi-core processors provide an 

opportunity for verification tools to leverage the parallelism offered by 

the multi-core compute platforms to improve the overall performance. 

The EDA tools such as VCS have been performing this through one of 

the following mechanisms:  

• Exploiting Design Level Parallelism (DLP): Simulate 

different cores of a multi-core design or different partitions 

of a design in parallel with other cores, leading to better 

simulation performance 

 

• Exploiting Application Level Parallelism (ALP): Offloading 

Verification technologies or applications like waveform 

dumping, functional coverage collection, toggle coverage 

reporting, evaluation of SystemVerilog Assertions to 

different CPU’s – reducing the overhead on the core HDL 

simulation   

 

• Spawning out the compilation and linking processes of 

creating a simulation executable on multiple threads.  

 

 

4. THE LSF SCHEDULER 
The LSF Batch is a layered distributed load sharing batch system built 

on top of Platform LSF Base. When users run a regression, LSF 

follows the flow as in Figure 1 to launch the jobs [3]. LIM ((Load 

Information Module) and Master Load Information Module (MLIM)  

modules return the potential hosts on which a given job can be run, and 

Master Batch Daemon (MBD) module identifies the  host. The master 

host puts the job in a queue and dispatches the job to an execution host 

after waiting for an appropriate time when an execution host with the 

necessary resources becomes available. When more than one host is 

available, the best host is chosen. 

 

 

Figure 1: The LSF Batch Scheduler 

 

5. ADOPTION CHALLENGES IN COMPUTE 

FARMS 
With exciting multi-core technologies available, which give definite 

gains on long running simulations, design and verification, engineers 

can significantly improve the TAT on debug and other design 

iterations. However, as CAD teams start planning for deploying 

these technologies in the compute farms, they are faced with new set 

of questions and challenges. 

 

5.1. Managing Throughput 
Though gains offered by ALP/DLP can go up to 5-6X, typical gains 

are smaller in magnitude compared to the cores used. For example, if 

the number of cores used is two, the gains would be lesser than 2X  

and for three cores it might be lesser or significantly lesser than 3X, 

unless the ‘parallelism’ exhibited by the designs is of the 

‘embarrassingly parallel’ type which it typically is not. The gains are 

restricted by Amdahl’s law which describes an upper bound of 

parallel speedup over ‘n’ cores as given in the following equation: 

 

   Tparallel = {(1-P) + P/n} Tserial + O 

   Scaling = T(p)/T(s) < n   

 
Figure 2: Amdahl’s Law 
 
Here, 

 Tserial  or T(s) is the time taken for the serial simulation 

Tparallel  or T(p) is the time taken for the parallel simulation 

(1-P): the part of the problem which cannot be parallelized and hence 

is run sequentially 

P:  part of the problem which can be parallelized 

O: time taken for synchronization etc. 

 



Thus we can see that the ‘Serial code’ limits scaling. The higher the 

value of (1-P), the lesser is the potential of getting high gains. Also, 

with even a small value of (1-P), the gains from Parallel compute will 

never match up to the number of cores used for the simulation. 

 

Hence, if we just look at throughput, ‘n’ single core jobs submitted in 

an ‘n’ core machine will always give a higher throughput than 

submitting the same as a batch of multi-core simulations no matter 

how close the gains are to a theoretical maximum. Thus, this drives the 

perception in CAD teams that although they have access to superior 

technology, this might come at a higher cost. Though they might get 

good results on individual simulations, there might be non-optimal 

results when multiple jobs need to be turned around quickly with 

limited compute. 

  

5.2. Scheduling Jobs 
The compute farm software helps schedule all the single core 

simulations based on the dynamic state of the farm. The load balancing 

techniques ensure that the jobs are equally distributed across all the 

available machines. The requirements when it comes to multi-core 

simulations are different. The same algorithms that help in the job 

scheduling of singe core simulations might cause multi-core 

simulations to be run non-optimally. Here are some of the scenarios for 

which existing load balancing software do an inadequate job: 

a) Slot reservation/Starvation: Multi-core jobs require more 

than one core to run. Hence, the Job Schedulers should be 

able to free up slots on a single machine as it prepares to 

launch multi-core jobs. Thus, there can be scenarios where 

there are multiple slots available on the farm, however, the 

sufficient slots will not be available on the individual 

machines to run multi-core jobs.  

The reverse can be true as well and machines completely set 

aside for multi-core runs might be ‘idle’ in specific intervals. 

Hence, a lot of planning is required to avoid these scenarios. 

b) Conflict and collision: There would be scenarios when single 

core jobs and multi-core jobs would be launched on the same 

machines at the same time resulting in multiple jobs running 

on the same core and thus degrading performance for both. 

When parallel simulations are launched, they do not start 

running all the threads immediately. This is because, the 

master scheduler sitting on the main partition will take some 

time to start launching child threads or partitions on these 

different cores. As a reason, LSF will end up launching other 

serial/parallel simulations as well on the same cores thus 

overloading all. 

c) Managing Priorities: Priorities change throughout a project 

cycle. For example, late in the project cycle, specific 

regressions have higher priority, whereas earlier in the 

project cycle,, specific interactive jobs have higher priority. 

d) Alarm System/Cycle Stealing: Also, besides the scenarios 

mentioned in ‘b’ above, the threads running on some of the 

cores in multi-core simulations can go into ‘wait’ mode. This 

typically happens when threads are waiting for a 

synchronization event. The compute farm software which 

keeps on monitoring all these different cores sees that there 

is no real activity scheduled on specific cores and end up 

scheduling other jobs on these. This is ‘cycle stealing’ and is 

a factor that degrades performance for both the ongoing 

multi-core simulation and the new job that is launched. 

e) Paging/Page Swaps:  LSF by default launches jobs in the 

background if the running jobs do not take up the complete 

CPU memory.. Though this can be configured to get better 

results, as the default setup will overload all the jobs on a 

machine. Even if one manually identifies jobs that can run in 

parallel and serial, unless they are launched after the 

running jobs complete, they can overload the currently 

running jobs. 

f) Scheduling Across Queues: Teams need to find out an 

effective mechanism to schedule specific multi-core across 

queues if specific queues are idle. 

 

Because of these limitations, even a high priority regression will not 

be able to exploit the benefits of a multi-core simulation. 

 

5.3. Utilization of Resources 

Teams need to come up with their own analysis and criteria for 

deciding whether a simulation should be launched on single core or 

on multiple cores. The inputs for these decisions would be based on 

the gains available with multi-core, the number of cores used, the 

time taken for a simulation, the priority of the job, the compute 

resources and licenses available and so on. 

For example, one of the questions could be, 

 If a‘n’ core job will hog ‘n’ licenses and ‘n’ cores to give a gain of 

‘x’%, does the improvement of x% justify the degradation in 

utilization? 

 A lot of these variables are dynamic in nature and hence the 

decisions on whether to launch a job as a single core job or a multi-

core will change dynamically as well. 

 

5.4 Issues with Default OS Scheduling  
With multi-core processors, the OS that runs on these processors 

implements/provides a default scheduling, also known as OS 

scheduling. Many of the existing OS scheduling algorithms on multi-

core systems work on the basis of “load balancing” across the cores. 

With a specific focus on the EDA tools used in VLSI design flow 

(though this fact is likely true for other applications as well), this 

model is not so optimal. The default OS scheduling tries to balance 

the jobs/threads across the available resources to ensure fair 

distribution of CPU time and minimize the idling of cores. This has 

been studied, explored and several deficiencies have been identified 

in other works [4,5]. The problem gets compounded as these cores 

are not truly “independent”, they rather work in a single multi-core 

CPU setup, hence perform certain housekeeping processes internally 

from time-to-time. This can lead to some “instantaneous” load on 

one of the cores while the OS scheduler tries to look for a free core. 

Also, it is generally observed in several design verification compute 

processes that the peak memory/load utilization occurs during the 

end of the process and most importantly it tends to be non-linear. 

For example, consider two compile processes getting launched on a 

four-core machine. Assume that comp-1 has been launched on core-1 

and it is in its pre-processing stage (hence not huge load yet on core-

1). Now when comp-2 arrives for scheduling, assume that the core-2 

is performing some housekeeping and hence shows a large 

“instantaneous” load. It is likely that the default OS scheduler along 

with the Farm Job scheduler in this case schedules the comp-2 

process on core-1 again. 

 

LSF would launch jobs based on the slots availables and 

instantaneous loads. As there is no historical information of the 

resource requirement of the job, either because of the %CPU 

utilization or the memory required, it can directly impact the 

performance of the job. This also means that more than one ‘heavy’ 

job running on a single core. 

 

 

6. DELIVERING VALUE WITH PARALLEL 

COMPUTE JOBS ON COMPUTE FARMS 



The value of a new technology can be judged based on how it is 

complimentary to the existing ecosystem. If the new benefits from the 

parallel simulations cannot be delivered on the compute farms, its 

impact and adoption might not match the promise it holds.  Given the 

challenges that have been seen, it can now be understood that the 

deployment of these technologies on server farms cannot be done 

through brute force expecting the existing farm based solutions to 

launch these jobs optimally. Also, at any point in time, there would 

always be a mix of single core jobs and multi-core jobs. And therefore, 

any solution has to account for this. 

 

6.1 Parallel Compute Deployment Across a 

Project Life cycle 
Given that the primary concern for adopting the multi-core 

technologies is with respect to compute resources being used up, it 

becomes relevant to look at the resource utilization across a project life 

cycle.  Consider an example of compute usage, though the usage will 

vary across projects and organizations. 

 
Figure 3: Example of Compute Resource Usage Across 

Project Life Cycle 
 

What is apparent from the above usage representation is that the usage 

of these compute resources would vary significantly at different times. 

Hence, based on a simple integration to a license monitor or  a LSF 

daemon for dynamic evaluation of ‘free licenses’ and ‘available 

compute’, CAD teams can formulate simple steps to ensure more 

multi-core runs are scheduled during the phases when there is more 

compute availability than the number of jobs being launched at 

specific times. This also ensures that the resources are effectively 

utilized at all points of time and are not left ‘IDLE’. 

 

Application of the types of parallel compute solutions across project 
life cycles: We can see that there also are different requirements during 

these cycles. With respect to parallel compute solutions in functional 

verification, we can map these different solutions to these different 

stages. During the debug phases, long running interactive jobs 

requiring waveform dumping and message logging has to be thrown at 

the servers. Hence, bumping up the priority of the jobs with 

‘Waveform Dumping’ enabled in separate cores will improve the TAT. 

Similarly during the IP integration phase or the Interconnect validation 

stage, more ‘Parallel Toggle Coverage’ runs can be scheduled. 

 

Multi-core job scheduling for lower job rates:  
During the scenarios where the number of jobs submitted is relatively 

lower, a set of simple constraints can determine how many jobs should 

be submitted as single core jobs or multi-core ones. 

(Consider a simple scenario of having the same runtime for all the 

jobs) 

 

• Submit  multi-core jobs when: 

  jobs * no of cores < number of active slots 

• For jobs* no. of cores  > slots, 

min. regression  time is time taken for serial run 

Individual jobs can be run on serial core or 

multi-core based on the following constraints: 

 

constraint all_jobs { 

      no_of_serial_jobs +  

max_no_of_parallel_jobs = no_of_jobs; 

      no_of_serial_jobs + 

max_no_of_parallel_jobs*cores_per_sim = 

no_of_slots; 

   } 

 

Here is a simple illustration of the above explanation: 

 
Table 1: Parallel Mode, jobs < slots 
 
For the experiment,  

No. of machines = 100 

No. of cores per machine = 4 

Runtime per job = 100 

Gain with 2 cores = 1.25x 

Gain with 3 cores = 1.4x 

Gain with 4 cores = 1.5x 

Thus, for different number of multi-core jobs, as long as the 

requirements for cores are less than the total available, multi-core 

gives an improvement in individual and regression time. For  multi-

core requirements > ‘number of active slots’,  but ‘number of jobs’ < 

‘number of active slots’, the scheduler can schedule both serial and 

multi-core runs without impacting overall utilization (regression time 

= serial regression time, but individual run times for ‘x’ no of jobs 

will be improved).   

 

6.2 Defining a Parallel Computation 

Methodology 

 

Now, consider the scenario which is more typical when the runtime 

across different simulations differ.  Assume there are six jobs (j1, j2, 

j3, j4, j5 and j6) and 4 cores are available (c1, c2, c3 and c4). 

 



Assume runtimes are: j1 :  5, j2  : 6,  j3 : 8, j4 : 11 and j5 : 25  

 

If this test list is given to LSF, c1, c2, c3 and c4 might run j1, j2, j3 and 

j4 first, followed by j5.  

 

 c1      c2             c3                         c4 

 ----------------------------------------------------------- 

Jobs   | j1    j2            j3                         j4 

Jobs   | j5            idle for 24         idle for 22 idle for 19 

 ----------------------------------------------------------- 

 

core “c1” runs for a longer time (j1 + j5 => 5+25):  30 mins  which is 

the Total Regression Time. LSF can help reorganize this  in serial 

mode (provided we give it a list with the historical times) to run same 

regression in 25 units (launch j5 early).  

 
Now let’s say that j5 gives a gain of 1.6x on 2 cores. Hence, if we 

launch the same set of jobs directly on specific hosts as given below: 

 c1  c2 c3 c4 

 ----------------------------------------------------------- 

Jobs   |    j5 j5 j4(5) j3(6) 

Jobs   |   j5 j5           j1(11)     j2(8) 

 ----------------------------------------------------------- 

 

We see that we can complete the regression in 16 time units which is 

an improvement over the serial run. 

 

The above can be extrapolated to generate an efficient job matrix for a 

larger number of jobs across more slots for effective utilization of the 

farm. 

 

 

 

 

 

 

 

 

 

 

 

 

 

Here ajn1 (run on 2 cores), cjn3 , djn4 are the runtimes of individual jobs  

∑ajn1 (2cores) == ∑cjn2 == ∑djn3  (for ensuring max core utilization 

and avoiding paging effects). 

Here ‘n1’ ,’n 2’, ‘n3’  need not be equal 

aj1-ajn1, cj1-cjn3 and dj1-djn4 are four test lists which are created based on 

historical data taking into account available cores, load on the 

machines, run time per job and gains per job on parallel mode  

 

Hence, using the available resources optimally through a combination 

of  identifying specific hosts for specific jobs,  parallel computer 

solutions can  provide  an improvement to utilization and TAT for 

individual as well as regression time.   

 
This simplistic illustration helps deliver the following two important 

things:   

– “Directed Scheduling” where the user is aware of the full picture 

and hence has more control to decide how jobs can be scheduled 

on specific hosts.   

–  Historical Data on runtimes/memory which can aid in the 

decision making process. 

  

Thus, some kind of a mechanism is needed to change the default 

scheduling of compute farm solutions. Additionally, this has to make 

sure that there is enough configurability to take in different levels of 

user inputs. Given the fact, that there are multiple parameters which 

can influence how these simulations can be launched, the decisions 

on how to go about these should be accompanied by a set of 

guidelines. 

 

6.2.1 Creating a ‘Middleware’ or ‘LSF wrapper’  
 

 

 
 

Figure 4: Middleware to Control LSF Scheduling 

 

The ‘Middleware’ shown above would bias the LSF scheduling 

towards serial or mutlicore simulations based on the dynamic 

evaluation of variables and historical data lodged in the 

‘MiddleWare’ database. The assumption is that the multi-core run 

times and serial mode run times are known, the gains with different 

cores are known and constant, the memory consumption pattern is 

known across single and parallel runs, and the degradation due to 

paging effects are captured. 

 

For this application to give the best results, it has to manage the 

challenges enumerated in Section 5 above. Additionally, it has to 

address the following challenges: 

 

6.2.2 Effects of Swapping/High Memory Jobs 
“Swapping" occurs when chunks of RAM are paged to the disk in 

order to free the virtual memory. These additional read/writes that 

are incurred slow everything down. This typically happens when 

multiple large memory jobs are launched on different cores of a 

machine thus significantly increasing the queuing delay times 

encountered by other jobs. Because of multiple page swaps, there is a 

significant degradation in runtimes of jobs on different cores in a 

machine. 

 

Hence, submitting these jobs as parallel jobs, but sequentially can 

give better throughput. 

 

Core1  Core 2  Core 3  Core 4  

aj1  aj1  cj1  dj1  

aj1  aj1  cj2  dj2 

aj3  aj3  cj3  dj3  

…  …  …  … 

ajn1  ajn1  cjn2  djn3  



 
Figure 5: Effects of Paging 

Figure 5 shows how multiple large memory jobs on multiple cores 

cause a reduction in throughput. Here the throughput of serial runs 

changes as more jobs are scheduled on different cores. Instead, if the 

same set of jobs is run sequentially on the same machine in parallel 

mode, the throughput with parallel mode becomes higher.  

 

As mentioned earlier, even if one manually identify the high memory 

jobs that can run in parallel and serial, until they are launched after the 

running jobs complete, they can overload the running jobs (refer 

section 5.2b). Therefore, for these jobs, parallel simulations must 

complete first, otherwise application will end up wasting time waiting 

for enough cores to be available to run a parallel job. Thus there has to 

be check for the same.  

 

The following table shows a typical run where T3, T4, T5 end up 

running on the same cores as multi-core tests  T1 and T2, even though 

T1 and T2 occupies all the four cores of two machines with two cores 

each.  

The overall regression time is 92.35 minutes.  

Testcase Parallel (min) Serial(min) 

T1 67.58 - 

T2 68.12  

T3  73.47 

T4  76.56 

T5  92.06 

Regression with paging effects 
 

Now, introducing the check of ensuring that serial simulations are not 

run on the machines till the parallel simulations are completed gives 

the following results: 

 

Testcase Parallel (min) Serial(min) Comments 

T1 21.28 (on 

vgamd269 – 

core 1 and 2) 

 Running 

parallel 

T2 21.28 (on 

vgamd270 – 

core 1 and 2) 

 

T3  48 (vgamd 269 

– core 1) 

Running 

parallel 

T4  48 (vgamd 269 

– core 2) 

T5  48(vgamd 270 

– core 1) 

T6  48 (vgamd 270 

– core 2) 

Table 3: Mixed Parallel and Serial Regressions with Paging 

Effects Nullified 
 

The total regression time is 48+21.28 = 69.28 mins.  

 

Thus from the 2nd job onwards, having the application check not only 

for the CPU utilization but also for the job termination, provides a 

perceptible difference in overall regression time.  

 

6.2.3 Honoring Priorities  
In any project group, different individuals and different classes of 

tests would have different priorities. Hence, priorities might be set 

per user or per job. The application needs to keep track of the 

‘tokens’ for submitting jobs. These tokens would take care of 

tracking the priorities. Through this, the application needs to come 

up with objective metrics to re-evaluate a ‘virtual’ utilization based 

on gains, cores usage, license usage and weightage of job into 

consideration. Thus jobs can be submitted in parallel mode if 

recomputed utilization is higher than serial utilization.  

 

6.2.4 Slot Reservation/Pre-Emptive Strategies 
 
The middleware would need to free up slots in a machine based on 

cores required by parallel mode jobs whenever there is a priority. 

This would involve the following: 

• Re-launch low-priority jobs on different machine/or 

suspend them to free up slots. This can also free up 

memory and avoid swapping.  Lower priority jobs can be 

terminated if the ‘computed lost cycles’ is low. 

• Needs to be done on the fly/dynamically as otherwise 

machines/slots may lay unutilized. Hence dynamic re-

computation and analysis of input job queue is required. 

• The application should be able to disable this when 

required. 

 

This is required to ensure that parallel simulations can be scheduled 

not necessarily only when the farm has available machines but also 

in scenarios of lower priority single core simulations hogging 

simulation slots. 

 

6.3 Creating Middleware 
 

The following section describes a mechanism how a viable 

middleware for some of our requirements can be created. Referring 

to Figure 1, our middleware would interact with MBD and LIM. It 

uses LIM functions to identify the hosts on which the jobs can be 

run, and submits the jobs to the queue.  The primary difference is 

that here, MBD will not choose the host; instead, jobs will be 

submitted directly to the queue.  

 

Users can invoke this application in the following two ways: 

1. Single job 

2. Multiple jobs (also known as batch job) 

 

6.3.1 Job Flow 

 

1. Get job info: Runtime of the job and its runtime memory. 

 

2. Get the available machine list based on the memory 

required: Use ls_gethostinfo function to get list of the 

available machines; use ls_sharedresourceinfo() to get 

memory and CPU related information. 

 

3. Based on available cores and memory, identify number of 

slots: Identify serial/parallel simulation (discussed below); 



If jobs are of high priority, use lsb_switchjob() to push low-

priority jobs to a different queue. 

 

4. Generate test list: not required for single test flow 

 

5. Start Submit: Lock the machines  -  ls_lockhost.; To avoid 

cycle stealing , use Submit jobs - lsb_submit 

 

 6.3.1.1 Identifying Serial/Parallel Simulations 
 

To identify the number of serial and parallel simulations, the following 

algorithm can be used. 

Define the following variables: 

NoC -> no of cores 

ToS -> no of simulations to run 

ToR -> Total runtime of all jobs 

MoJ -> Memory required for each job 

SRoJ -> Serial Runtime of a job 

PRoJ2-> Parallel runtime of the job – 2 threads 

PRoJ3-> Parallel runtime of the job – 3 threads 

PRoJ4-> Parallel runtime of the job – 4 threads 

 NoS -> number of serial simulation 

NoP -> number of parallel simulation 

 

Based on the dynamic info (memory required and available) generated 

in #2, associate jobs with possible machines which run the job without 

introducing any swapping effect. 

 

 If NoC > 4*ToS -> run jobs in P-mode – 4 threads 

       elseIf NoC > 3*ToS -> run jobs in P-mode – 3 threads 

         elseIf NoC > 2*ToS -> run jobs in P-mode – 2 threads 

                           else if (NoC > ToS) 

                 if (single Job) -> run in serial mode. 

                 if (BatchJob)->IdentifyPar_Ser_Sims(); 

 

 

 

IndentifyPar_Ser_Sims(): 

 

Jobs that can run in parallel must meet the below condition 

(SRoJ-PRoJn)≥(SRoJ1+⋯+SRoJn) 

 

“n" is the no of cores. 

The Gain observed with a parallel simulation using n threads is 

equivalent to running any ‘n’ jobs in serial mode. This constraint will 

ensure that any of the parallel simulation will not cause any 

degradation of utilization of the regression farm. 

 

Job satisfying the above equation can run in parallel mode.  

 

6.3.1.2 Generate Test List 
Static test list generation can be generated based on the following 

scheme: 

1. Sort the runtimes in descending order – using the list 

returned above. 

2. Distribute the jobs onto the available cores, starting with 

parallel jobs first. 

3. Total of “Required memory” of jobs should not exceed the 

available memory – if more than one job is launched on the 

same machine. 

4. Continuously monitor the total runtimes on each core. 

5. Distribution has to be ensured that there is no high variation. 

 

6.3.1.3 Job Submission 

Here the machine and the queue to which jobs will be launched are 

known and the following steps are considered: 

1. Submit the jobs using lsb_submit function. 

2. Lock the hosts on which jobs are running to avoid cycle 

stealing. This would also protect from LSF directly 

launching other jobs. 

 

Thus the application leverages functionality created using LSF APIs 

and could be extended for other server farm solutions. They provide 

additional intelligence in terms of scheduling jobs when multi-core 

executables are launched. It follows a “learn and apply” 

methodology. Therefore, it expects job’s runtime, and peak memory 

required data to be available before hand. This can be enhanced to 

take in dynamic inputs and change scheduling on the fly so that 

depending on the available compute,  jobs which might not strictly 

meet the requirements to be launched as parallel jobs can still be 

scheduled on different cores leading to better runtimes. 

 

 

The application deals with the following situations in different ways: 

 

1. Jobs requiring high memory 

2. Jobs with low memory requirement 

 

Assuming that memory is not a bottleneck for the tests, tests 

runtimes are sorted so that longest running job will be launced first 

and the shortest at the end. Now, the number of cores available is the 

maximum number of jobs that can run together across various cores. 

The job submissions routine will identify parallel and serial 

simulations and will launch them accordingly.  

 

If memory is a bottleneck, it only means that any additional job on 

that host can degrade the overall performance of each job. In such 

cases, it is better to run them individually, which would imply 

running them in parallel mode to get the best overall regression time.  

 

Here are some more illustrative examples on how the scripts take 

care of submitting jobs based on available resource. This is for 6/4/2 

tests on two machines (2+1 cores available)  

Serial runtime – 48 minutes 

Parallel runtime – 21 minutes (2-threads) 

 

6 tests (T1, T2, T3, T4, T5, T6) – available cores 2 + 1 – available 

hosts 2 

Core 1 (machine 1) Core 2( machine 1) Core 1( machine 2) 

21 (T1) 21 (T1) 48 (T2) 

21 (T3) 21 (T3) 48 (T5) 

21 (T4) 21 (T4)  

21 (T6) 21 (T6)  

 

From the results, we can see that the script ensures that cores are 

equally loaded, and will not overload other jobs running. Hence jobs 

will complete as efficiently as when launched separately. 

 

4 tests (T1, T2, T3, T4) – available core 2+1 – available hosts 2 

Core 1 (machine 1) Core 2( machine 1) Core 1( machine 2) 

21 (T1) 21 (T1) 48 (T2) 

21 (T3) 21 (T3)  

21 (T4) 21 (T4)  

 

Here, it is ensured that most of the jobs run in parallel, ensuring 

better throughput compared to running in serial mode. 

 



 

2 tests (T1, T2) – available core 2+1 – available hosts 2 

Core 1 (machine 1) Core 2( machine 1) 

21 (T1) 21 (T1) 

21 (T2) 21 (T2) 

As number of cores>jobs, the script launches both the jobs in parallel 

mode. Hence the overall regression time is >2X. 

 

7. RESULTS 
Though the application does not cater to all the challenges which were 

enumerated earlier, it gives the user a mechanism to add in the 

additional configuration parameters.  In its present shape, it has the 

following advantages: 

 

1. Provides the ability to exploit the benefits of multi-core 

simulation wherever possible. 

2. Based on changing priorities, can dynamically run the job in 

parallel mode 

3. If slots are not available, as the total runtimes are known and 

the current time is known, it can approximately predict if the 

job has to wait for a longer duration for a slot. It then 

proceeds to start reserving slots if the job can run in multi-

core mode. 

 
We have also enumerated results of some of the smaller runs on the 

prototype at different points in the paper. Across, a larger set of serial 

and multi-core jobs over multiple designs across Synopsys VCS 

Benchmarks, we have seen gains ranging 2-3x when simulations are 

launched directly on the LSF.  

 

8. ANALYSIS OF THE MODERN DAY 

COMPUTE SERVER CONFIGURATIONS 
If we look at the roadmap of modern multi-core servers from major 

providers, we can see some interesting trends from the purview of 

multi-core simulations. What is apparent and common in the roadmaps 

posted by the most powerful server manufacturers is that the number 

of cores available on these servers is continuously increasing. What 

this would mean in the context of parallel compute simulations is that 

on compute farms, the availability of multiple cores for a single 

simulation will significantly increase reducing the chances of 

‘starvation’ for parallel simulations. Also, with more memory, the 

effects of swapping might be minimized to some extent. However, 

with the increased numbers of cores, the number of permutations will 

also increase with respect to gains, cores used, and memory 

requirements and so on, there would be always a challenge to come up 

with an objective mechanism of ensuring the best possible utilization 

of these machines and hence applications like the one described in this 

paper can play an important role.  

 

Also, there are performance benchmarks done by Intel on various 

Xeon based systems showing potential speed-ups. As this data tends to 

be highly dynamic, we highly recommend checking with the respective 

vendors for updated information. Intel has published several 

whitepapers focused on “EDA application performance” with its Xeon 

family of servers. With growing number of cores available per server, 

Intel has shown that the TCO (Total Cost of Ownership) for running 

large regressions can be significantly reduced by replacing several 

existing, old servers with single or few new servers. Readers are highly 

recommended to explore further through www.intel.com/it.  

 

Recently several simulation case studies, benchmarks in EDA have 

emerged revealing some interesting results. Multi-core along with 

GPUs boosts simulation performance in certain classes of problems 

such as numerical computation. This may not apply to the wide range 

of problems but in general GPUs have been proven very useful if 

there are enormous numbers of “small” computations that are very 

similar in nature such as finite element analysis, image processing 

etc. At the time of writing this paper, detailed results from such 

experiments were not publically available.  
 

9. CONCLUSION 
 

Besides delivering superior gains in runtimes for individual jobs, we 

can see that there can be multiple scenarios where multi-core can 

give additional productivity in compute farms. As long as a set of 

guidelines are catered to, and some intelligence is added to existing 

farm based solutions, we can get the additional increase in server 

utilization. Also with time-to-market pressures, design teams often 

tend to erase the previous data as fast as they can to pave way for 

new databases. However as demonstrated by various experiments in 

this paper, having access to quality, reliable data specific to a 

company design can greatly help in predicting the need for next 

designs, arrive at optimal scheduling etc. For instance if the previous 

tapeout had regressions with 80% short runs and 20% long runs, 

having just this data can immensely benefit in arriving at a 

customized scheduling for the current design. 

Though quite a few challenges for parallel compute on server farms 

are enumerated in this paper, there are a few other areas which can 

be analyzed further. These includes generating models to compute 

change in overall utilization because of launching of a parallel job, 

analysis of optimal means of  freeing up slots to support a multi-core 

job/s, and considering the effects of I/O and data management and 

data caching when it comes to multi-core jobs on compute farms, 

Managing these will help in refining a model that was presented here 

in a more comprehensive manner. 
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