

Co-simualtion platform of SystemC and System-Verilog for algorithm verification

Li Jinghui, Xi' An R&D Center, Inspur, Xi'an, China (<u>lijinghui01@inspur.com</u>) Shao Haibo, Xi' An R&D Center, Inspur, Xi'an, China (<u>shaohaibo@inspur.com</u>) Gou Jiazhen, Xi' An R&D Center, Inspur, Xi'an, China (<u>goujiazhen@inspur.com</u>)

Agenda

- Current Verification Challenges
- Why SystemC
- The SystemC model of compression algorithm
- Verification with SystemC
- C/C++ vs. SystemC model for Verification
- Advantages of Co-sim Platform of SystemC and System-Verilog

Current Verification Challenges

- increasing complexity of SoC design
- time to market is getting shorter and shorter
- verification growth in cost and schedules

Why SystemC

- extended library of C++
- hardware-oriented features
 - Time model
 - Hardware data types
 - Module hierarchy to manage structure and connectivity
 - Concurrency model
 - Communications
 management between
 concurrent units of
 execution

Why SystemC

- Support modeling at different levels of abstraction
 - -ALM
 - SAM
 - TLM
 - RTL
- highly reused in the development of SoC
- as a bridge between various departments

Why SystemC

C/C++ vs. SystemC for development processes

The SystemC model for compression algorithm

algorithm requirements

- Original algorithm is to find a possible matching character byte by byte, can only process one byte of input data per cycle
- Need to increase the data throughput rate, explore the parallelization of hardware implementation, process more data in one cycle
- Limited memory resources, HW architecture has no input buffer
- Pipelined processing methods are used to implement a forward and branch-free algorithm

The SystemC model for compression algorithm

performance analysis						
	QAT	initial arch	updated arch			
File		SRAM 240KB	SRAM 1152KB	SRAM 576KB	SRAM 288KB	
		ratio	ratio BW12_C12	ratio BW11_C12	ratio BW10_C12	
dickens	1.659	1.449	1.58	1.652	1.592	
mozilla	2.188	1.853	1.966	1.953	1.922	
mr	1.992	1.754	1.91	1.905	1.875	
nci	5.765	2.681	4.36	4.356	4.34	
ooffice	1.618	1.453	1.53	1.521	1.489	
osdb	1.89	1.710	2.22	2.131	1.86	
reymont	2.207	1.736	1.96	1.941	1.902	
samba	2.889	2.079	2.73	2.696	2.61	
sao	1.158	1.188	1.18	1.173	1.162	
webster	2.165	1.808	2.18	2.154	2.092	
x-ray	1.136	1.057	1.124	1.107	1.072	
xml	3.714	2.641	3.73	3.875	3.772	
average	2.247249	1.823031	2.131843	2.119311	2.061693	

Build a pin-level algorithm model

- The interface timing of the model is exactly the same as the RTL ;
- Output intermediate results through the SystemC out port for debugging

- Use the SystemC model to build UVM TB in advance
 - Before RTL is available, the SystemC model can be used as a DUT to build TB for preliminary verification

- Verify the real RTL
- Upgrade the verification environment

- EDA tools such as VCS has built-in support for SystemC.
- When integrating the SystemC model into the System-Verilog environment, just instantiate the model like an RTL module

Co-sim platform of SystemC and System-Verilog

simulation command with VCS

//Compile Systemc: syscan -cpp g++ -cc gcc -cflags -g -full64 \$(SC_SRC)

```
//Compile System-Verilog:
vlogan -full64 -sverilog $(SV_SRC)
```

//elaboration
vcs -full64 -cpp g++ -cc gcc -sverilog -sysc SV_TOP_TB

debug SystemC model with VCS Cbug

3270000 x1ps	Set <u>up</u> Rebuild and Start Start/ <u>C</u> ontinue	F5 25000	nber.1∖	• 8 • ~ • 19.
Hierarchy	Step/Ne <u>x</u> t Run To Source Line Set Continue Time	•	ulti_result_dly_r[63 dly_r[4:0]	3:0]
tunnamed tunnamed trunnamed tash32_n	Restart. Terminate	Ctrl+E5	_dly_r[4:0] lt_s[63:0] lf_data_s[63:0]	
■gen_n[1]. ■gen_n[1]. ■gen_n[1].	Save State Restore State	252959	[31:0]	250315311
+≣gen_n[1]. +≣gen_n[1].	Add Checkpoint Rewind To Checkpoint Delete Checkpoint	•		
■gen_n[1]. ■gen_n[0]. ■gen_n[0]. ■gen_n[0].	Eorce Value Change Value Dump Full Hierarchy	Parising.	[9:0] [9:0]	Party Ind.
■gen_n[0]. •■gen_n[0]. •■gen_n[0].	Add Dump Dump Capture Delta Cycle Value	20 ²⁰⁵	.0 0[16:0]	2535314
gen_n[0].	Periodic Waveform Update C/C++ Debugging Constraints	•	/IDTH[31:0] - Enable Show External E	unctions
Type: - Seve	rity: - Code: All		* @ * *	S

- VCS SystemC co-simulation interface
 - Enables Verilog, VHDL and SystemC modeling to work together
 - Supports for Verilog-top/SystemC-top/multiple-top topology
 - VCS Extensions to SystemC Library, such as get_full_name()...
 - Unified compilation/simulation/debug flow
 - Transaction Level Interface (TLI) enables integrating transaction level SystemC models into a SystemVerilog environment seamlessly and efficiently

Advantages of Co-sim Platform

C/C++ vs. SystemC for Verification

items	C++	SystemC
integratio n	Develop DPI-C function	As simple as instantiating RTL
driver	Call the DPI function in the test case	Driven by the same driver of RTL
checker	Need to store the results of C/C++ model Take up additional storage space	Monitor the results through interface
debuggin g	Internal variables are difficult to debug Dump variables to files or use breakpoints	Output key variables through SystemC ports or signals

Verification start earlier

Be reused by Arch/HW/SW team

Be easily reused for module/sub-system/SOC verification

When the RTL of some modules has not been delivered, SystemC model can be used to start sub-system or SOC level verification

items	C/C++ Model	SystemC Model	
Model integration time	About 3 days	Less than 1 day	
Debug	difficult	easier	
Verification start earlier	No	Yes	
Verification reusability	low	high	

THANK YOU!