
Co-simualtion platform of SystemC and
System-Verilog for algorithm verification

Li Jinghui, Xi’ An R&D Center, Inspur, Xi’an, China (lijinghui01@inspur.com)
Shao Haibo, Xi’ An R&D Center, Inspur, Xi’an, China (shaohaibo@inspur.com)

Gou Jiazhen, Xi’ An R&D Center, Inspur, Xi’an, China (goujiazhen@inspur.com)

Agenda

• Current Verification Challenges

• Why SystemC

• The SystemC model of compression algorithm

• Verification with SystemC

• C/C++ vs. SystemC model for Verification

• Advantages of Co-sim Platform of SystemC and System-Verilog

Current Verification Challenges

• increasing complexity of SoC design
• time to market is getting shorter and shorter
• verification growth in cost and schedules

Source: IBS Global Semiconductor Industry Service Report, 2018

Why SystemC

• extended library of C++
• hardware-oriented features

– Time model
– Hardware data types
– Module hierarchy to manage

structure and connectivity
– Concurrency model
– Communications

management between
concurrent units of
execution

Why SystemC

• Support modeling at different
levels of abstraction
– ALM
– SAM
– TLM
– RTL

• highly reused in the development
of SoC

• as a bridge between various
departments

• C/C++ vs. SystemC for development processes

Why SystemC

The SystemC model for compression algorithm

• algorithm requirements
– Original algorithm is to find a possible matching character byte by

byte, can only process one byte of input data per cycle
– Need to increase the data throughput rate, explore the parallelization

of hardware implementation, process more data in one cycle
– Limited memory resources, HW architecture has no input buffer
– Pipelined processing methods are used to implement a forward and

branch-free algorithm

The SystemC model for compression algorithm

The SystemC model for compression algorithm

performance analysis

File QAT
initial arch updated arch

SRAM
240KB

SRAM
1152KB

SRAM
576KB

SRAM
288KB

ratio ratio
BW12_C12

ratio
BW11_C12

ratio
BW10_C12

dickens 1.659 1.449 1.58 1.652 1.592
mozilla 2.188 1.853 1.966 1.953 1.922

mr 1.992 1.754 1.91 1.905 1.875
nci 5.765 2.681 4.36 4.356 4.34

ooffice 1.618 1.453 1.53 1.521 1.489
osdb 1.89 1.710 2.22 2.131 1.86

reymont 2.207 1.736 1.96 1.941 1.902
samba 2.889 2.079 2.73 2.696 2.61

sao 1.158 1.188 1.18 1.173 1.162
webster 2.165 1.808 2.18 2.154 2.092

x-ray 1.136 1.057 1.124 1.107 1.072
xml 3.714 2.641 3.73 3.875 3.772

average 2.247249 1.823031 2.131843 2.119311 2.061693

Verification with SystemC

Verification with SystemC

• Build a pin-level algorithm model

– The interface timing of the model is
exactly the same as the RTL ;

– Output intermediate results through
the SystemC out port for
debugging

Verification with SystemC

• Use the SystemC model to build UVM TB in advance
– Before RTL is available, the SystemC model can be used as a DUT to

build TB for preliminary verification

Verification with SystemC

• Verify the real RTL
• Upgrade the verification

environment

Verification with SystemC

• EDA tools such as VCS has
built-in support for SystemC.

• When integrating the SystemC
model into the System-Verilog
environment, just instantiate
the model like an RTL module

Verification with SystemC

 Co-sim platform of SystemC and System-Verilog

Verification with SystemC

• simulation command with VCS

Verification with SystemC

 simulation results

Verification with SystemC

 debug SystemC model with VCS Cbug

Verification with SystemC

 VCS SystemC co-simulation interface
- Enables Verilog,VHDL and SystemC modeling to work together
- Supports for Verilog-top/SystemC-top/multiple-top topology
- VCS Extensions to SystemC Library, such as get_full_name()…
- Unified compilation/simulation/debug flow
- Transaction Level Interface (TLI) enables integrating transaction level

SystemC models into a SystemVerilog environment seamlessly and
efficiently

Advantages of Co-sim Platform

C/C++ vs. SystemC model for Verification

C/C++ vs. SystemC for Verification

items C++ SystemC

integratio
n

Develop DPI-C function As simple as instantiating RTL

driver Call the DPI function in the test case Driven by the same driver of RTL

checker Need to store the results of C/C++
model

Take up additional storage space

Monitor the results through
interface

debuggin
g

Internal variables are difficult to
debug

Dump variables to files or use
breakpoints

Output key variables through
SystemC ports or signals

Verification start earlier

Verification
can start at
least 1
month in
advance

The reusability of SystemC model is high

Be reused by Arch/HW/SW team

Be easily reused for module/sub-system/SOC verification

When the RTL of some modules has not been delivered,
SystemC model can be used to start sub-system or SOC
level verification

Summary

items C/C++ Model SystemC Model

Model integration time About 3 days Less than 1 day

Debug difficult easier

Verification start earlier No Yes

Verification reusability low high

THANK YOU!

