

AI Driven Verification

Curtis Tsai Cadence Design Systems

cādence°

Introduction

Verification Platform for Fastest Debug TAT

What is Semantic Diff?

- An advanced RTL design comparison tool that compares the two versions of RTL design and determines the Semantic Differences between them
- More sophisticated than text-based diff
 - It ignores comments/blank spaces/newlines
 - It improves productivity as user can concentrate on files with maximum code changes
- It reports the entities and other details of the RTL design with a specific rank where the Semantic Differences, user can concentrate on RTL where rank is higher which implies there are more Semantic Diff's

Semantic Diff Flow

Identify and rank semantic changes between two RTL versions

Ignore harmless changes | Rank "complexity" of genuine logic changes ٠

Snapshot

Rev2

Snapshot

Rev1

WaveMiner flow

WaveMiner Results

Text Report

Signals ranked by relevance	INFO (IWD008): Returning top 5 signals. (1) SYSTEM.bridge32 top.bridge.pci target_unit.wishbone_master.r_att 700195000ps,/multi_rev_dir/waves.shm,/bad_wave_dir/waves.shm 696985000ps,/multi_rev_dir/waves.shm,/bad_wave_dir/waves.shm 2) SYSTEM.bridge32 top.bridge.in_reg_frame_in 697795000ps,/multi_rev_dir/waves.shm,/bad_wave_dir/waves.shm 700195000ps,/multi_rev_dir/waves.shm,/bad_wave_dir/waves.shm 700195000ps,/multi_rev_dir/waves.shm,/bad_wave_dir/waves.shm 70165000ps,/multi_rev_dir/waves.shm,/bad_wave_dir/waves.shm 689335000ps,/multi_rev_dir/waves.shm,/bad_wave_dir/waves.shm 69165000ps,/multi_rev_dir/waves.shm,/bad_wave_dir/waves.shm 69365000ps,/multi_rev_dir/waves.shm,/bad_wave_dir/waves.shm 67975000ps,/multi_rev_dir/waves.shm,/bad_wave_dir/waves.shm 67975000ps,/multi_rev_dir/waves.shm,/bad_wave_dir/waves.shm 648455000ps,/multi_rev_dir/waves.shm,/bad_wave_dir/waves.shm 648455000ps,/multi_rev_dir/waves.shm,/bad_wave_dir/waves.shm 648455000ps,/multi_rev_dir/waves.shm,/bad_wave_dir/waves.shm 63475000ps,/multi_rev_dir/waves.shm,/bad_wave_dir/waves.shm 63475000ps,/multi_rev_dir/waves.shm,/bad_wave_dir/waves.shm 63475000ps,/multi_rev_dir/waves.shm,/bad_wave_dir/waves.shm 63475000ps,/multi_rev_dir/waves.shm,/bad_wave_dir/waves.shm 63475000ps,/multi_rev_dir/waves.shm,/bad_wave_dir/waves.shm 63475000ps,/multi_rev_dir/waves.shm,/bad_wave_dir/waves.shm 63475000ps,/multi_rev_dir/waves.shm,/bad_wave_dir/waves.shm 63475000ps,/multi_rev_dir/waves.shm,/bad_wave_dir/waves.shm 63475000ps,/multi_rev_dir/waves.shm,/bad_wave_dir/waves.shm 63475000ps,/multi_rev_dir/waves.shm,/bad_wave_dir/waves.shm 63475000ps,/multi_rev_dir/waves.shm,/bad_wave_dir/waves.shm 63475000ps,/multi_rev_dir/waves.shm,/bad_wave_dir/waves.shm 63475000ps,/multi_rev_dir/waves.shm,/bad_wave_dir/waves.shm 63475000ps,/multi_rev_dir/waves.shm,/bad_wave_dir/waves.shm 634	1e
Ranked timepoints per signal	634885000ps, ./multi_rev_dir/waves.shm, ./bad_wave_dir/waves.shm ./bad_wave_dir/waves.shm ./bad_wave_dir/waves.shm ./bad_wave_dir/waves.shm ./bad_wave_dir/waves.shm ./bad_wave_dir/waves.shm ./bad_wave_dir/waves.shm ./bad_wave_dir/waves.shm ./bad_wave_dir/waves.shm	1

systems initiative

Passing waveform location

WaveMiner Results Widget

New widget enables easy navigation on the results and provides high level information

Double-click on signal, will bring it to waveform widget

Signals are ranked in decreasing relevance order

	WaveMissin Results		_ 0
Top Ranked Signals	Passing Waveform	Failing Waveform	
→ tb.myFifo.rptr	· · · · · · · · · · · · · · · · · · ·		
770ns	good_wave/ida_fifo.shm	bad_wave/ida_fifo.shm	
790ns	good_wave/ida_fifo.shm	bad_wave/ida_fifo.shm	
110ns	good_wave/ida_fifo.shm	bad_wave/ida_fifo.shm	
tb.myFifo.DATAOUT			
790ns	good_wave/ida_fifo.shm	bad_wave/ida_fifo.shm	
110ns	good_wave/ida_fifo.shm	bad_wave/ida_fifo.shm	

WaveMiner - Visualization

Now you have the two Debug sessions and signal is there, with markers for its time points. The recommendation is to do driver tracing at the time points suggested by WaveMiner

DVCON

AutoFocus flow

Regression Data

Output (JSON format)

Test_case1, seed=32121134 Test_case5, seed=23422324

The output format includes

- Test case name
- The corresponding random seed

Target

.....

• Hit 90% of original regression coverage for modified modules

Al for Regression Productivity

Machine Learning for coverage closure

Trends in Hardware / Software Development

Verification Solution

Find and fix the most bugs per \$ compute per day

Where Does Machine Learning Fit in a Typical MDV Timeline

cādence

The Machine Learning Flow

Original Regression

• 50 tests, 100 seeds per test (5,000 runs)

Random control

Generated Regression

runs

new regression

Generate

Results – Faster Regression and Matching Coverage

cādence

Using ML for Bug Hunting

- Augment full regression with ML-generated runs
 - The ML-generated regression will create a higher percentage of more rare scenarios
 - The bug rate of the ML runs (unique signature / cpuH) will typically be higher than the full regression
 - Use in conjunction with the full regression until the full regression no longer finds new bug signatures
 Unique bug rate vs. Time

Coverage Closure With Iterative Learning

- Orange is the baseline is regression runs without ML
- Green trains a model after 4 iterations of orange and then continues
- Red does iterative learning after 4 more iterations

