
AI Driven Verification
Curtis Tsai

Cadence Design Systems

Introduction

AI-driven Verification

Formal Simulation Emulation Prototyping Virtual Platform

Wave

data

Design

Repository

Data & AI Platform
Coverage

data

Mined

attributes

AI

models

Manager

Debug

SemanticDiff PinDown WaveMiner AutoTriage

WaveMiner

Verification Platform for Fastest Debug TAT

Design
Version N Simulation

Design
Repository

AutoTriage

SemanticDiff

PinDown

Automatically groups tests failing due to
the same underlying bug

Automatically identifies code differences
between design versions N and N+1

Analyzes waveforms and automatically
identifies root cause of bug (signals + time)

Design
Version N+1 Simulation

AI-driven submission of
tests to compute farm

P
la

tf
o

rm
 M

a
n

a
g

e
r

Platform

AI Enabled Apps

AI accelerated
results for debug

AI-Enabled Debug for fastest TAT

Automatically predicts which check-ins are
most likely to have to introduced failures

1

2

3

• An advanced RTL design comparison tool that compares the two versions of
RTL design and determines the Semantic Differences between them

• More sophisticated than text-based diff
o It ignores comments/blank spaces/newlines

o It improves productivity as user can concentrate on files with maximum code changes

• It reports the entities and other details of the RTL design with a specific rank
where the Semantic Differences, user can concentrate on RTL where rank is
higher which implies there are more Semantic Diff’s

What is Semantic Diff ?

Identify and rank semantic changes between two RTL versions

• Ignore harmless changes | Rank “complexity” of genuine logic changes

Semantic Diff Flow Snapshot
Rev1

Snapshot
Rev2

Snapshot Read

Module/Entity Level File/Line Level Signal Level

Semantic Comparator
Smart Analysis

Semantic Diff
Output Report(s)

module cg (d, clk);
input d, clk;
reg orig;
reg clone;
reg g_latch;
wire w = orig ^ d;
wire gclk = clk & g_latch;

always @(clk or w)
if (~clk) g_latch <= w;

always @(posedge gclk) clone <= d;

always @(posedge clone) orig <= d;

fd : assert property (
@(posedge clk) orig == clone

);
Endmodule

module cg (d, clk);
input d, clk;
reg orig, clone, g_latch;

// Comments …
wire w = orig ^ d;
wire gclk = clk & g_latch;

always @(clk or w)
if (clk) g_latch <= w;

always @(posedge gclk)
clone <= d;

always @(posedge clone)
orig <= d;

fd : assert property (
@(posedge clk) orig == clone

);
endmodule

?

WaveMiner flow

Waveform
Analysis

Failing

Passing W
a

vefo
rm

s

Regression runs

User Defined

Scope Analysis scope

Signals to
Design

Mapping

Failure
Root

Cause
Ranking

Ranked Culprit

Signals and

Timepoints

Debug Difference on
Waveform

Si
g

n
a

ls
 /

 In
st

a
n

ce
s

Optional

Design
releases

Passing Failing

Snapshot Analysis

Snapshots

WaveMiner Results
Text Report

Signals ranked by relevance

Top <N> ranked

culprit signals

and simulation

timepoints to be

investigated by

the user

Full hierarchical signal name

Ranked timepoints per signal

Passing waveform location

Failing waveform location

WaveMiner Results Widget

Signals are ranked

in decreasing

relevance order

Double-click on signal, will

bring it to waveform widget

Double-click on time point, will put the

debug cursor at that time in debug's

waveform widget

New widget enables easy navigation on the results and provides high level information

WaveMiner - Visualization
Passing Session Failing Session

Top ranked signals

Ranked simulation

time point to debug

Back annotation to

source code

Now you have the two Debug sessions and signal is there, with markers for its time points. The recommendation is to do driver tracing at the

time points suggested by WaveMiner

AutoFocus flow

Test_case1, seed=32121134

Test_case5, seed=23422324

……

Old

Snapshot
Snapshot Analysis

Coverage Grading

New

Snapshot

Regression Data

Output (JSON format)

Test_case1
Test_case2
….
Test_caseN

The output format includes
• Test case name
• The corresponding random seed

Target
• Hit 90% of original regression

coverage for modified modules

Regression Manager

AutoFocus

AI for Regression Productivity
Machine Learning for coverage closure

ROI mindset:

Bugs found

per $ per day

Trends in Hardware / Software Development

Verification

Throughput

Exponential Challenge

65nm 40nm 28nm 22nm 16nm 10nm 7nm 5nm

Software

Verification

Physical

Architecture

IP qualification

To
ta

l C
o

st
 o

f
So

C

© 2022 Cadence Design Systems, Inc. Cadence confidential. Internal use only.13

Fastest

Engines

Most Choice

of Compute

Smartest

Apps Total Verification Management
Regression Manager – Debug Platform – VIP – System VIP – C code generator

Find and fix the most bugs per $ compute per day

Verification Solution

Prototyping
Protium™

Verification Cloud

X86 or Arm CPU

Simulation

X86 CPU

Virtual and Hybrid

Custom Processor

Emulation

FPGAX86 or Arm® CPU

Formal Prototyping

© 2022 Cadence Design Systems, Inc. Cadence confidential. Internal use only.15

Where Does Machine Learning Fit in a Typical MDV Timeline

Environment
development

•Develop / Reuse components

•Create tests

•Add functional coverage model

RTL Verification
/ bugfix cycle

•Developer check in tests

•Nightly runs on code changes

•Weekly complete regressions

•Ends when bug rate hits a
suitably low threshold

Bug hunting

•Add additional corner case
scenarios

•Fill up available resources with
randomized runs

•Typically budgeted for a
specific amount of time and
given specific resources

Coverage
closure

•Regress continuously until
convergence

•Analyze gap to 100%

•Refine and create directed
testcases

•Ends with 100% coverage
achieved or “close enough”, i.e.
at schedule deadline

Environment Development

RTL Verification and bugfix cycle

Bug hunting

Coverage closure

Time

The Machine Learning Flow

Simulation with Machine Learning

Machine Learning analyzes

patterns hidden in verification

regression results

ML Client …
ML Client

Simulation

ML Client

ML Client
ML Client
Simulatio

n
ML Client

ML Models Regression Generation

ML Master

ML Learning

Coverage

and Control

Data

ML Regression

Goal

Learn

Generate

1

2 3

4

Generated

regression

3-5x compressed

Same coverage

Some bins not

regained

Original Regression

Coverage model

run_100 focus=>MIX

rank=4

test_1

test_50

…

run_1
focus=>HIGH

rank=>3

run_2
focus=>MIX

rank=>7

run_100 focus=>HIGH

rank=2

run_1
focus=>LOX_X

rank=>5

run_2
focus=>HIGH

rank=>3

ML Regression Coverage

model

run_34 focus=>MIX

rank=4

test_4

test_48

…

run_1
focus=>HIGH

rank=>3

run_2
focus=>MIX

rank=>7

run_73 focus=>HIGH

rank=2

run_1
focus=>LOX_X

rank=>5

run_2
focus=>HIGH

rank=>3

G
e
n
e
ra

te
 n

e
w

 r
e
g
re

s
s
io

n
 r

u
n
s

Original Regression
• 50 tests, 100 seeds per test (5,000 runs)

Random control
class cfg_c extends uvm_sequence_item;

rand focus_e focus;

rand [2:0] rank;

...

endclass
function void test::setup();

cfg_c cfg = get_config();

cfg.randomize();

set_config_info(cfg);

endfunction

Some bins

newly hit

Generated Regression
30 tests, 1,500 runs

ML

Constraints

© 2022 Cadence Design Systems, Inc. Cadence confidential. Internal use only.19

Xcelium Machine Learning App
Use Cases

U
n
iq

u
e
 b

u
g
 /
 h

o
u
r

Project timeline

• Original Regression
• ML augmentation
• Cummulative rate

Regression Compression - Same coverage in less time

Replace Original regression with ML generated regression

Bug Hunting – Find bugs early

Augment Original regression with ML generated regression

Use advanced ML techniques to hit coverage holes

Target Rare Bins

Extend to Cousin Bug Hunting

Extend to Coverage Maximization

Requires a modified form of Reinforcement Learning:

• Target unhit cross bins: cover (A x B)

• Target unhit bins using structural and statistical correlation

• Create new streams by stitching sequences

Can be used early in design process to find bugs:

• Before even user has started to put coverage

• Target failure signatures rather than coverage

• Recent example: 17 rare signatures. Found 12 more.

© 2022 Cadence Design Systems, Inc. Cadence confidential. Internal use only.20

Results – Faster Regression and Matching Coverage

0

500

1000

1500

2000

2500

Example 1 Example 2 Example 3

Regression CPU Cycles

Original sim (Tcycles) Xcelium ML sim (Tcycles)

0

5,000

10,000

15,000

20,000

25,000

30,000

Example 1 Example 2 Example 3

Coverage

Original coverbins Xcelium ML coverbins

99%

99%

99%

3X

4X 4.5X

™
ML Sim (T cycles) ML Sim (T cycles)

• Augment full regression with ML-generated runs
• The ML-generated regression will create a higher percentage of more rare

scenarios
• The bug rate of the ML runs (unique signature / cpuH) will typically be higher

than the full regression
• Use in conjunction with the full regression until the full regression no longer

finds new bug signatures

Using ML for Bug Hunting

ML
Bugs

Found

Full
Regressi
on Bugs
Found

Coverage Closure With Iterative Learning

• Orange is the baseline is regression
runs without ML

• Green trains a model after 4
iterations of orange and then
continues

• Red does iterative learning after 4
more iterations

